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Pseudoscalar mesons play somewhat special role among
hadrons, being would-be Goldstone bosons associated with
the dinamical breaking via quark-antiquark condensation of
the SUL{S}XSUR[SJ chiral symmetry, which is good enough for

QCD because u-, d- and s-quark masses are small compared to
the strong interaction scale ~ | Gev. So one can expect that
in the low energy region it is possible to develop the
effective theory of pseudoscalars only and the chiral
symmetry of the underlying QCD will to great extent dictate
the properties of such a theory [I, 2].

The low energy effective action for pseudoscalars "con—
taining the minimal possible number of derivatives and
correctly reproducing current algebra low energy theorems
has the following form [3, 4, 5] (the notations of [5] are
used):

Z
: F i
F=_81Idx5p{3UﬁuU+}——TJ.Sp(aEJ, (1)
Y4 H 80w

M

where U = exp —FZ-—L ®, Fn= 135 MeV is the pion decay constant,
T

@ = (BMU]U_ldx‘u = (dU)U_l (it is very useful to use the dif-

rential form language [5, 6]), and the pseudoscalar meson
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matrix is
N2 anVE = | K"
= i 0 / Y27 +q / V6 K’ L2
= ' -20/V6

The necessity of the second term in (1) is dictated [3]
by a requirement of the correct description of QCD chiral
anomaly [7] consequences. Besides, the effective lagrangian
without this term will possess greater symmetry than QCD
[4].

It is clear that (1) can’t describe all low energy
meson physics. First of all it is necessary to include the
electromagnetic interactions and = this is usually done by
replacing ordinary derivatives by covariant ones:

L B = At T e (3

where A = Apdx“ is electromagnetic 1-form and

a8 0
Q=110 =173 . ©Q
8] Wsnd s

Doing so the Wess - Zumino - Witten term ~ J Sp (u:E'J
5

M
needs some care because we have an integral over S-dimen-

sional manifold M> whose boundary is Minkowski space- time

M'. As a rule this difficulty is overcome by the use: of
Noetherian trial and error methods for gauging [4, 5] or by
developing some global integration techniques for chiral
anomaly [8]. But the usual method of introduction covariant
derivatives can also be applied [9]. Let us briefly demonst-
rate this.

Under interchange (3) differential forms o« = (dU)U

and B = vlau = U« U undergo the transformation

4

o« —> o - [eAT ; B —— B+ieAdS , (4)

where T = Q - UQU'and S =@ - U U = -U 1V,
Taking into account that A= 0 and Aa = -xd we get for the
Wess - Zumino - Witten term
o= C ISp{a - tedT)%= ¢ J.Sp (@) - SieC _[Sp[afm (5)°
5 5 5
M : M M
=

80n*
written in such a way

where C =

. As to the second term in (5), it can be re-

Sp («'AT) = 4 Sp {Q(a* - B*) = 4 Sp (Q dla* + 8%} =
= - d [4 Sp {0a® + B*)}] + (dA) Sp {QW® + B%) |

where we have used the fact [S] that even powers of « and B
are exact forms: a’" = da’ ", g " sl
By the use of Stokes’ theorem j dw = J w we get the
5

4
M M

following expression

rwzw = € LSp («°) + 5ieC I4A Sp {G{ixs + .6’3]} -
M M

- 5ieC J- (d4) Sp {0’ + B°) (6)
; _
M

Let us further transform the last term:
Sp {Q(cxza + BSJ} = Sp {(Q + UQU™) &) = Sp {(Q + UQU™) x

x (@ - ieAT)’} + ied Sp {(Q + UQU™) («*T - aTa + Ta?))

but due to anticommutativity property of 1-forms
S5




Sp (Qu Qa) = Sp (BQ BQ) = O |

and therefore
Sp {(Q + UQU™") (a°T - oTw + Ta’)) =
= Sp {2Q%(a’- B%) - Qu Qu + 200 UQU'a - BO BO) =
= 2d [Sp {ff{m. + B8} - 2 Sp {Q(dU) Qlau™'y

the second term is an exact form too, because

Sp {Q(dU) Q(dU ™ )} =

= -d [Sp {a QU QAU - b Q(dU™Y) o i aeb =

Thus, we have

5

J' (d4) Sp {05+ = J (d4) Sp {(Q+UQU “Ya-iedT)® +
. .
M M

+ 2ie f A(d4) diSp {0%a« + B) + aQU 0dU - bO(AU™Y QU}]
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and, since A(dA)dX) = - d[A(dA)X] + (dA)(dA)X, we get for
(5)

¢ o ap j Esmcﬁ + SteC J’;q Sp {0’ + g% -
M M

- 106 J. AldA) Sp {sznc + B) + aQU“IQdU - bQ{dU_l] QU} -

3
M

- Eiap f (dA) Sp (0 + UQU™Y) (a-iedT)) +
5
M

+ 10e%C j (dA)(dA) SpiQ*(a + B) + aQU™'QdU - bQ(aU™) oU) .

5
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The last two terms are gauge invariant. For the first
one this is obvious because it is expressed through cova-
riant derivatives only, as (4) shows (note that dA =

1 v o, : ; ;
& 5 Fﬁpdx‘undx i1s gauge invariant). As to the last term, its
invariance becomes evident if one rewrites jt like that

(@ + b =1)
Sp{Q“(a + B) + aQU QAU - bO(AU™) QU} =
= Sp{Q°(« - ieAT + B + ieAS) + aQUu 'Q(dU - ieA [Q, U] +
+ QU (AU - ied [0, U] U 'ou) +

+ ied Sp{QT - S) + QU Q% - Q% lou) .

In the first term all derivatives have been replaced ' by
covariant ones and the second term equals zero, as is easily
checked by substituting T and S . :

We are interested in a minimal gauge invariant exten-
sion of (1), so one can drop gauge invariant terms in (7).
Note also that the remaining part of (7) doesn’t depend on
arbitrary constants a and b,such that a + b = 1. Indeed 5l

Sp{aQU ' QdU - bQ(dU ™) Qu} =

a-b
2
and the last term vanishes after integration over Mm*.

Thus photon and pseudoscalar meson world at low
energies can be described by the effective action

wi A Sp{QU'QdU - QUQ(aU™Y)) + d [SploU ™ Qu)]

2

L Wl Mw. A) + r‘:'Z': (L1 (8)
where
N Fz
Pl a) e ot J.dx Sp{(D V) (o"u)h (9)
M4



and
r":zi P . j Sp({xﬁ} s : I A Sp{Q{oc3 + BS}} +
i 80n 161 _
M M '
- (10}
ie” 2 1 -1 1 -1
b = j Ald4) Sp(Q°(a + B) + 5~ QUTQAU - 5~ QUQAU™)} .
81 :
4
M
It was shown [10] that (8) correctly reproduces all

current algebra low energy theorems [11].

But even (8) can’t be a complete story for low energy
meson physics because pseudoscalar mesons, except pions,
aren’t considerably lighter than other hadrons, so at least
vector mesons must be included in a more realistic effective
lagrangian. :

To include vector (and in general axial-vector) mesons
into the game, usually they gauge more wide than U(1)
subgroup of SUL[S}xSUR(Sl global symmetry group and consider

the corresponding gauge bosons as vector mesons. However
this procedure can hardly be considered as satisfactory
because QCD doesn’t possess so large local symmetry and it
is very unexpected for this symmetry to appear in the low
energy limit of QCD.

The main idea of this work is that for including
vector mesons into the low energy effective lagrangian it is
quite sufficient to gauge a U(l) subgroup (to turn on elec-
tromagnetism) and to use a phenomenoclogically well estab-
lished principle of vector meson dominance [12].

For effective action T‘eff[U, A, V) to reproduce the low

energy theorems as well as Fem (U, A), let us demandf F3,
14]
exp {lre'm.(U, A)} = J- DV“exp {Ll."ﬂ”[U, A, V)i (11)

(we omit normal'ization factors in functional integrals).

The vector meson dominance suggests the following form
fer T = U, A, V) [13]

e ’

POl A V=
ef f

2 g gl

m e TR e
— — e - —_— A V- — 4 » 12
ru, V) 5 J- dx Sp{(l&’u = MQ){ - Q)} (12)
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M
where g = M, for g defined from the p - meson width
e 5
2 —> 3 2z 2 —asg
I St 2 gpfﬂ[ | qr1rr:| = gp}nrn mp s 4m“
i Sl o e 2 é 17 2
: m m
p p

As to the vector meson matrix V, we don’t take into

account the unitary symmetry breaking and assume ideal
@ - ¢ mixing
L p A2 vw /N P K 1
0
V= p- s IV Ao rf K19
* *0 :
: o B K = y
Note that (11} and (12) have the infinite number of
solutions
expl{iCW, V) = J. DZ“ exp{iFD(U, Z) +
- .
m, i
+i—jdx5p{{2 Sy ety (14)
2 gooop .
3
M
The only restriction on TU{U, Z) 1%
E e
r (v, o Ay = U A - (15)

Clearly, one gets a minimal embedding of the vector me-
sons if

- : £
rw, z) = P Wea 0 2 (16)

g




that is
(s, 2) s r‘gw, ZY + r‘;’ZW[U, oy

where

&
00 ™

rw, z) = J' dx Sp((o,U - tglZ, unEtut- igiz* vty

4
M

and (we have symmetrized ZdZ term)

J Sp[ncﬁ] P

2
: lén 2
M M

Pz J SpiZ (o + 8% 4

Ban

i 2
L ig
2

f Sp{lZdZ + (dZ) Z)« + B) + ~ zu N az)au) +
16m° | e

4
M

-
2

L
2

1

(dZ)U'z(dU) - ZU(dz)(au™) - 5

+ (dz) vzau™) .

Then we have a Gaussian integral in (14), but it is

calculated approximately [14] considering Wess - Zumino -
Witten term as perturbation.

I, v) » r‘f‘”w, Z' %y rg{u. o o

2
m
v

{sp]_ (sp)jL e
bl jdx Sp{(Zu VH}(Z Vg (17)

4
M

) g .
where pr saddle point is defined from the normal part.

We also expand U relative to ® and omit vertices which
contain more than five particles. Then it is sufficient to

know a saddle point with accuracy of terms of order &2

10
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Expanding Zp = Z;la/@ , A® being Gell-Mann matrices, we get

2

m

) [ F”[U, Z )+ : I dx sp{(Z - v WzZM- P"u]}] =
az“ ¢ K < e & (sp)
M 4 Z = .

M g

Lot R s o e B

i 1t
where with the needed accuracy
A =m? 8™ - - g8 spia®, el A, ]y,
B = - m°v® - —£ sp{lx® @] 3 @) .
M A H

therefore we get for the saddle point

2
Z{Sp} o T £
23 M m

W 0% + 0%y ) +
it i

Z
v
i

e oV & +
JL

m fr
v v

this expression can be rewritten more compactly by the
introduction of a covariant derivative Duti' &= 6“4) - i.g{lfp, P]

€. [98d-(3 )8
2 T u

z®=v -—2 (D3, 9. (19)
0 s u
1‘!’
Substituting this into (17), we get the effective
Lagrangian in the above described approximation
S e T o (20)
eff
where
2
VDM e e u e .1 1
L =-——8Sp{(V. - — A" - = 2%},
e {( g HQ g ) J
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i -2- Spi(D, ) D* 8)) +

1 1 2
. [ ks aK] Sp(@ (D,0) & (0'9) - 6D &)(DMe)

and

= 33
x Sp(®(a @)(5 2)(8,8)(3 )}

4F Sp{(auif' )8,V )8} - v

(L% et ) Sp{lfpfavdﬂr){&h@}{aﬂﬁl} +

oy

Fs
n
2 £ 2
¢ it Sp{V(ﬂV)[Q(Bﬂbl‘-@{ﬂ¢}@+fl+3m](6@]¢]]+
_ 4F3 H v aA o o gl
; 4

2 2
*BF,) VI + 30,) 073 2) - 8(5,2) & + (5, 810°)] -
= L+ 30V, 9(3,,)(8,2) @ + (3 V) 8V, (5, 9) 8] +
' 2 | 2 =
VOBV, )(8,8) + (1 + 60,)(8 V) 8V, (5 0)

- (1 - 3D:K} VHQ[BPV?L} @(S‘TQ} - (1 + QmK][BpVU] wh@(aﬁm}} ;

¢y
g FTI ko ¢
. Note that a = =
2 K 2
m’v

corresponds to well known KSRF relation [15].

In these formulas ‘Ix

We are grateful to S.I. Eidelman for reading the

manuscript.
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