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ABSTRACT

The two nonperturbative formulations of 2(51 g:javity are
compared. The first one is an analytical co{lt1nuat10n 0? t_he
matrix integral. This method provides a simple description
of random surfaces statistics, but leads to complex
expectation values. In the second method, prqp?sed by
Marinari and Parisi, observables in 2d gravity are
identified with the correlators for 1d supersymme}:r{c
string. The correct quantization in the double §caling 11'm1t
reduces the problem to calculation of a few mgenfu{lctmqs
of simple one dimensional Hamiltonian. The function 1Is
proposed which may substitute the Painleve transi:endenii for
the second definition of 2d  gravity. The universality of

the model is also discussed.
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1. INTRODUCTION

Since the double scaling limit [1 - 3] in the matrix
models [4 - 6] was found the problem of nonperturbative
investigation of two dimensional gravity attracts a per-.
manent interest. In this limit it is easy to find the
contribution to the partition function of surfaces with any
fixed genus. But the sum over genera occurs to be the sum of
asymptotic series and requires nonperturbative definition.
At first sight the matrix integral itself provides the most
natural nonperturbative definition of 2d gravity. But this
is not entirely so. For the pure gravity double scaling
limit is realized if only the action in matrix integral s
unbounded from below and thus the integral exists only in
terms of perturbation theory.

Two methods are used for rigorous definition of a
matrix integral. The first method is the analytical conti-.
nuation over the coupling constant. The consequences of such
analytical continuation are discussed in papers [7 - 9]. Due
to nonperturbative corrections’ the partition function of 2d
gravity becomes complex. ;

In this paper we would like to discuss in details a
formulation of 2d gravity via the 1d supersymmetric string
[10], or by the "fifth-time" formalism [11] (see also
[12, 13]). The method of papers [10. - 13] leads naturally to
real values of all observables. On the other hand all the
practical calculations became now considerably more involv-
ed. Analytical results were obtained in the planar limit
only [10]. For nonplanar contributions the authors of papers
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[10, 11] have performed computer simulations with matrices
of the size N ~ 10 (it is worthy to note that corrections to
scaling are of order N ).

In section 2 of this paper we remind how the analytical
continuation allows to fix nonperturbative features of 2d
gravity. |

The formulation of the method of papers [10 - 13] is
given in section 3.

In section 4 we discuss the properties of the appro-
ximate solution of supersymmetric matrix Hamiltonian [10].
Expectation values which could be found with this appro-
wimate wave functions are identical to that found by
analytical continuation of the matrix integral. But fermio-
nic wave functions of sec. 4 are useful to compare two
models of gravity.

In section 5 of this paper we consider a nonpertur-
bative features of a model proposed by Marinari and Parisi
[10). The matrix quantum mechanics in double scaling limit
is equivalent to quantum mechanics of fermions in universal
bottomless potential (see, e.g., [12]). Crucial for the un-
derstanding of nonperturbative phenomena is the observation
that in the double scaling limit the fermionic energy levels
are quantized. All nonperturbative effects are saturated by
a few eigenfunctions of simple one dimensional Hamiltonian.

In section 6 we compare the Green functions in both
formulations of 2d gravity. The new expression for the
Painleve transcendent was found. We also define the function
which may substitute the Painleve transcendent for the
second model of gravity.

In section 7 we examine the wuniversality of the
Marinari - Parisi model [10].

2. WHAT DO WE LEARN
FROM THE ANALYTICAL CONTINUATION?

Partition function Za_of 2d quantum gravity is deter-
mined by the integral over hermitian N X N matrices [4 - 6]

Sl ) 2 J expl-N tr V(M)] dM . (2.1)
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The discretized random surfaces are associated with the dual
Feynman graphs in the perturbative expansion of the integral
(2_.2;). Birth of new handles is suppressed by the factor
N ~. The main result of papers [1 - 3] is the observation

that in the double scaling limit (y=(g -g)N*’> fixed at N-w)
r [

"string susceptibility" f(y)=Z (y) satisfies
equation

the Painleve T

V= (2.2)

Expansion over topologies now appears as asymptotic expan-
sion for large y

iyl =vy ' = - Beh (2.3)
Byz 128}'9/2

All the information about 2d gravity which may be
interpreted’ inm' terms . of . surfaces ' is  stored 1n | the
coefficients of the asymptotic series (2.3). In order to
obtain the full nonperturbative  definition of 2d quantum
gravity one has to specify uniquely the solution of Painleve
equation. The large y behavior (2.3) fixes only one of
boundary conditions for this solution. :

As it was noted before, the scaling behavior described
by eq. (2.2) takes place only for bottomless matrix actions
V(M) (2.1). Following the line of reasoning of [7, 8] one
may consider as a nonperturbative definition of the quantum
gravity not the integral (2.1) itself, but  its analytical
continuation from the point where the integral is well
defined to point where it really corresponds to 2d gravity.
The result of analytical continuation can be considered as
the contour deformation for the integral over the matrix M

eigenvalues X The solution of the Painleve I equation

which correspond to well defined complex matrix integral has
the asymptotic:
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David [7] has shown that in quantum gravity the so called
"triply truncated solution” is realized. In paper [8] the
asymptotic of the nonperturbative imaginary part of f was

found for the particular action V(M):

m L S 1/3 eXp {— M y5/4} i (2.5)
S y 5

The pre-exponential coefficient of Im(f) together with Fhe
boundary conditions (2.4) allows fix uniquely the solution

of the Painleve I equation (2.2).

The price for the simple description of gravity by the .

analytical continuation of the integral (2.1) is imaginary
nonperturbative part of correlators.

3. FORMULATION OF THE METHOD

Now we would like to discuss another very elegant

definition of two dimensional gravity [10 - 13].
The authors of [10 - 13] proposed to interpret averaged
values of operators in quantum gravity as the expectation

- yalues _
0> = 3.1
<Q> {wﬂlol e (

over ground state wave function for quantum mechanical
Hamiltonian

s N A 8 N !
by i v (3.7
gty eriniem e WL o T
where IV is a polynomial action (2.1). The Hamiltonian [3.5.3]
corresponds to purely bosonic sector of some supersymmetric

matrix Hamiltonian. _
The formal solution of the equation H¥ = 0 1s

e

. exp {— g Ty F(MJ}
v = : : (3.3)
ViiZ
, For an action tr V(M) bounded from below the function
¥ is the exact ground state of H (3.2). But as pointed

above there is no continuous limit in pure gravity for

bounded actions. Nevertheless in this case the Hamiltonian
(3.2) has a well def‘med ground: state. The true eigenfunc-
tion 'I' coincides with ¥* (3.3) to any order of perturbation

theory. We associate random surfaces with perturbative
expansion of (2.1} or (3.1). Therefore all the phenomena
connected with surfaces in both formulations of 2d gravity
coincide identically. Only nonperturbative corrections that
cannot be expanded in powers of coupling constant differ for
the two approaches.

This method to make unstable theories senmble was pro-
posed in [14].

At the end of this paper we will return to the theories
with arbitrary action V(M) but now let us discuss the
simplest model

Mz g 3
Hamiltonian H (3.2) in this case takes the form:
2 2.2
Wi 2. [(M - gM?) ]
H = EM”BMJi + N tr { 7 + gM - :’):} ; (3.5)

The ground state wave function ¥ is a symmetric
function of the eigenvalues X of the hermitian matrix M. It

is useful to introduce the antisymmetric function ®(x):

o(x) = [ (e - x) ¥x) =

i<]

det ((x)7) w(x) 2 = (3l6)

Now @ is the wave function for the system of N noninte-
racting fermions [15]. The one fermion Hamiltonian is given
by _. ;
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H@:{_—HE"'NI: f +gx_2_]}{pi=E1¢1
[ R

(3.7)

®(x) =

i det (golx]}) -

4. PROPERTIES OF THE APPROXIMATE -
"SUPERSYMMETRIC" SOLUTION

: N
Consider the function xk = x" exp |:~ 5 V(x')] - where

V(x) is the polynomial (3.4).

i ) o ”[2k2”+1] - (N-1-k) Ng 2% (4.)
Here H is the one par:ticle operator (3.7). The first N
functions v (0 = k < N) form an invariant subspace for the
operator H. That means that eq. (3.7) has N formal solutions

a a
Y= Ei Py
(4.2)
N N 2 Ng 3
@'? . Pi[JC) exp [‘ —'2"'- V]= pi{XJ E}(p[“ T X 3 .::C]
where pI(x} is a polynomial of the power N-1 . Moreover,
N-1 .
y B =0 (4.3)

The Hamiltonian H (3.7) resembles the so called quasi
exactly solvable Hamiltonians (see [16]). The N solutions of
eq. (3.7) can be found algebraically. But <p (4.2) grows to

infinity at x = o and therefore is not the true eigenfunc-

tion of H. '
The polynomials P, '(4.2) should not be confused with

orthogonal polynomials P which are usually used in random
n

8
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matrix theory (see e.g. [11). The polynomials P = x'+
n

are of the power n , but they are not solutions of any
differential equation.  All the polynomials p, are of the

same power N-1 and they are solutions of the dif ferential
equation (4. 2)

Like ¥® (3.3) for not too large g is an approximate
eigenfunction of Hamiltonian H (3. 5), the functions g}a are

the appgammate e1genfunc:t10ns of one particle operator H
(i) @, and E coincide with the exact eigenfunction and

energy fp_, E to any order of the coupling g.

We can calculate the e:-:pectatlon values of any operator
in 2d gravity with functions qﬂ provided that the integrals

are taken along the contour (-w, exp (in/3)'=). Moreover in
this case

exp(in/3) ~e -
J- rp? qua_L @t iniig (4.4)
i i g
-0 .
Such a definition of 2d gravity is identical to the analyti-
cal continuation over coupling constant in the integral

(2.1) described in [7, 8].
Let us write the polynomials p (x) in the form
i /

N-1
P= TRfbe = xk), (4.5)
k=1

where x, are zeros of the polynomial, not necessarily real.
From (4.2) we get:

' 1 bl gxz
i) e
nk{xHx](x-x} K k
n#&Ek :

The absence of poles in (4.6) l.h.s. implies the system of
equations:
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_Z“m””‘xk“g"d:@- G
n¥k n k

This system allows a simple physical

equations (4.7) are the equilibrium

particles moving in the external field V =

and repulsing each other with the.

interpretation. The
conditim%s for 3N—~1
N ( x7/2 - gx /3)
potential U = -

i

-Iog(xi—x_}z. The equilibrium distribution of such particles
J

have been discussed in [15]. In the method of paper [I15]

g Sy T

J/ EF— U(x]‘ et = N5 (5.1}

The authors of [10] have shown that E_ coincides exactly

with the bottom of the second well (the local minimum)

E =U : (5.2)

F min

Let us introduce the new scaling variables y,A and € instead
of x, g and E (3.7) [12]

this distribution describes the saddle point of the integral e
over matrix eigenvalues. But the saddle point approximation i iR i X
can be applied only at N - «. In our approach (4.7) are the g = T T e e
exact equations for zeros of the polynomials pi[x]. 23 N 2D
Equations (4.7) have N different solutions correspon- o 8 + . 22’/5-31&[] ¥ (5.3)
ding to different solutions of (4.2). At g < g, only one of 6g N2/®
the solutions of (4.7) (that of the maximum energy EN ]} o [ g ,/T] . S -
corresponds to the stable distribution of N-1 repulsing ; 144 g° 6 54/541/10
particles. The second solution corresponds to unstable g : ; |
equilibrium distribution of particles. In all solutions with The Hamiltonian (3.7) now takes the form |
lower energies E® some of the zeros x became complex. At o 32 yﬁ 1 y4
n k I-I=—-—--z—?ty+ + . : (5.4)
g < g all E  are real. The zeros of polynomials p. with dy 3 5548, 4075 L Ge s
c 1 :
largest numbers on the complex plane are shown schematically Last term here formally goes to zero at N - w, but it is
on fig. 1. Also we have shown on the figure the averaged one just the term which determines the phase of wave functions
particle field Vﬂff which is the external field (3.4) plus | at y » -o. At A > O it is convenient to shift the energy and
repulsion from another = particles averaged over the ! coordinate
. equilibrium distribution. | ¥ . e
At some point g = g the equilibrium distribution of : R Ok e T A ’
¥ !
§
N-1 particles with real coordinates proves to be impossible. § i 5% wel A
After that point some of the eigenvalues E® became also i ; 2 .
complex.
L 2 o 3 1 24
5. DOUBLE SCALING LIMIT | st g Rty - }
..-. 8z 3 2 3 /5 sz’s
Hamiltonian H (3.7) at small g describes the fermions 174
i h tential havi two minima. Fermi energy in WKB ’ whega s B
ML ¢ HRe pORSIElE o a vIng i : &) The semiclassical result of [10] - (5.1, 5.2) now can
approximation is defined by the integral . ;
10 11
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be written as:
EFEO;jpdz=Jf~U{z)dz=Nn. (5.6)

The following step is the calculation of individual energy
levels. The semiclassical values are given by the Bohr's

quantization rule:

;[pndz=IJEn—U{zfdz=[n+-é-]1r., (5-7)

This formula can be applied for upper levels if only A >> 1

(w > 1). In this case the energy interval E‘n— E 1 is a
o

slow function of number

1
[aEn] £ I-J dz= T , (5.8)

an 21 P 41

where T is the period of motion over the classical orbit.
The nice feature. of Hamiltonian (5.5) is that while the
orbit at N - « spreads to infinity, the period (twice the
time to escape to infinity) proves to be finite. From (S5.8)
one easily gets |

8E
2= 90 . | (5.9)
dn _
We have got the unexpected "result - energy levels in
bottomless potential U = ot . 33/3 are quantized.

Expression (5.9) shows the interval between nearest levels.
An absolute position of a level depends on the way we define

U at z> -o. That is why we keep the term ~ zq'/Nm in the
Hamiltonians (5.4, 5.5). Comparing (5.6), (5.7), (5.9) one
casily gets. : :

12

N-1 T
S e (5.10)
E: = - 5.

N-3

-------------

These expressions are correct at w>>1 and |N~n[<cm5. As we
shall see below at w>>] all the interesting nonperturbative

effects are 'sensitive to behavior of the upper (N-1) - th
fermion only.

At A ~ w ~ 1 semiclassical expression (5.10) fails.
Nevertheless in this case (just like at A < 0) the energy
levels are quantized E 5 el oL

n+ I

At large negative z the eigenfunctions of Hamiltonian
(5.5) take the form: |

. I ' 7 V
P~ 3/4005{ [a—z}aﬂ—ﬂ—[ )02 Y38 L E—} y 5 11)
2| V3" 33 VEs hee
where a = -3w° is the classical turning point at E = 0. The

expression (5.11) is correct at -z>>1, -z>>w~ for any w. We
see what at z»-« all the wave functions have the same phase.
The density of fermions is given by

2
pl(z) = E 07 (2) . | (5.12)
Within the semiciaﬂical limit at -z >> 1
: o - ;
Aol | Jv‘j e {mi{a_z}wz_ _4_&_{3_2}3,2} |
V3 am|z| 5v3 33 '

2

Ae = (5.13)

Here the first term is the usual semiclassical density found
in the early paper [I5]. The second oscillating term appears
due to wave functions coherence (5.11). S '

The explicit form of fermionic density may be found
numerically. Formula (5.11) gives the exact Dboundary

13




~ condition for , at z - -wo. The function p(z) at g = g

(iie. A = w = 0) is presented on the fig. 2. The p(z) was
found as a sum over 40 upper eigenfunctions of the
Hamiltonian (5.5). The small oscillations which appear due
to coherence of ¢, (5.11) are seen quite clearly on the

figure. The smooth part of p(z) is well approximated by the

semiclassical expression p(z) = (—z}yz/rr/v/?;_' &

All the properties of two dimensional surfaces are
encoded in the coefficients of the asymptotic series (2.3).
The only problem is the calculation of nonperturbative cor-
rections which cannot be interpreted in terms of surfaces.
In order to fix such effects it appears to be useful to
calculate only the difference between values of observables
for two approaches to 2d gravity.

Let us calculate, for example, the ground state energy
E Z E_(3.7) of the Hamiltonian H (3.5). The value of E
vanishes to any order of the coupling constant. It becomes
to @ be  nonzero . tie. 1o nonperturbative supersymmetry
violation. In section 4 we have introduced the polynomial

1l

solutions q:a?{4.2] of eq. (3.7). The functions xpal' are not
eigenfunctions of the Hamiltonian H (3.7), but the energies
E? satisfy the identity E® = Z E?E It is important that
solutions fp? decrease not at X > + o, but at x = iw. In the

double scaling limit there exist two types of boundary
conditions for Hamiltonian h (5.5) eigenfunctions.The first
type is: ¢ 0O at z > o and ¢, behave like (5.11) at z » -w.

That very wave functions determme the true averages in 2d
gravity. The second type is: rp behave like (5.11) at z5-«

but rp?ai) at Z—}im; The energies ot just these wave functions
E? satisfy the identity (4.3). We are to calculate only the
difference E'i-E? which determines the supersymmetpy viola-

tion.

14

At w>>1 the expression for E - E? may be found exp-
1

licitly. In this case the supersymmetry violation proves to
be sensitive only to the upper occupied level behavior.
At w >> 1 the wave function P is well described by

the WKB approximation everywhere except for z = a # -3w°
(the classical turning point) and z = O (the motion close to
the local minimum of the potential (5.5)). In the vicinity

of z = 0 @ Iis a golution of the Schrodinger equation
(S o Sl ) :
[ 8 nis
{-——+wz]¢)=—wgo. (5.14)
2
dz

Solutions of this equation P s and fp;_l are
Ao
Pra P 2 :

[nd}
-2 3
- wz / w o
¢ . = eXp [T] S5 I exp (- wy’) dy . | (5.15)
A

The first solution decreases at z-»im, .the second at z->+w. At

z << =1AVB

: 2
WZ
exp [- 5 ]
e : (5.16)
2V w  (-z)
Dn the other hand, near the classical turning point a %
“30} ;

@ ~ cos J.Ipl danitolt et (5.17)

Vo 0

at z < a and

15




Z z

o ~ exp |- [|p| ax|+ exp | [|plax| (518
2vp ' E 2Vp f

at z > a. We suppose that sin 8 = 8. Sewmgftogether (5.16)
and [5 18) at a<<z<<-1/¥w one may found the phase shift @ -

- 8" The slight modification of the quantization condition
(5.7) combined with (5.9) leads to:
a 2&&
Edisle = - {e - 87 . (5.19)
The final result is given by
G eml B
qu ¥ Eﬂ—l = 3/2 3/2 o)
12 w

Very similar calculation shows that for the second level

a (Em-z- E;J

(5.21)

Thus the supersymmetry violation far from the critical point
is saturated by the upper occupied level.The ground state
energy of the Hamiltonian H (3.5) below the phase transition
point is (see (5.3))

9 .
exp (_ 56 53 33/’1& Nig - }5/4
4/5 \ :

24 TIS,/E 251’8 35!’32[ N{g _ g
- C

E=N

.(5.22)
5743710

Near the critical point (w ~ A ~ 1) the value of E can
be found numerically. Results of numerical calculation of a
few upper energy levels E‘ (A) and Ea[?t} are shown on fig. 3.

In order to find r,ok, Ek we solve the Schrédinger equation

with complex boundary conditions. Therefore the values of E:

16

At some, value of A

are not necessary real. small enough,

two eigenvalues E‘: and E: , merge and became complex for

smaller A.

6. THE GREEN FUNCTIONS IN 2d GRAVITY

The correlators for 2d gravity can be found easily if
the model is defined by analytical continuation. One may add
source term J-tr(M) to the matrix action. The Green func-
tions can be found as derivative over J of the partition
function Z> (2.1). In the double scaling limit all the Green
functions are expressed through the derivatives of the
universal solution of Painleve equation (2.2) f with boun-
dary conditions (2.4, 2.5) {(see e.g. [17, 18])

: (n-2)
n.-,a n o flx)
[ D3z ] =< (tr M) > = = [ = ‘;5] = el
3J" /=0 3 N 6
Here the subscript ¢ means the connected part of the

average. The only parameter « in (6.1) depends on the choice
of the matrix action V(M). For the model (3.4)

3/5 9/20
o= e e !

= 4.9%5.419/20 475 {g = (6.2)

i

The first correlator in (6.1} is

- -3-: :
< - - Tza .[f{x} * .
aJ N 6 -
X
c
The integral diverges at large x (see (2.3)). In terms

of surfaces this divergence . reflects the fact that Green
function 8Z/8) is dominated by very small flat surfaces
consisting of only a few triangles. Small flat surfaces also
give an mfmmﬂ model dependent contribution to the second
correlator 38 27/8J°. Nevertheless the contribution of sur-
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faces which have at least one handle and nonperturbative
corrections to these correlators are well defined in the
limit of continuum theory. The simplest Green function which

is well defined in continuous 2d gravity is 8°2/81°. By the
way this correlator may be considered as an amplitude of a
‘real process - decay of one string into two.

For gravity defined by the method of Marmarl and
Parisi the first correlator is given by

N-1

i .

<tFM> — ..._._._........L |x| L> 2 [64]
]

i=0

Here bra and ket, vectors <i|, |i> are the single fermion
states (3.7). In terms of scaling variables (5.3)

2/5.,1/720 - £
<trM>=E{3+V’3‘+2 235 <1!y|:,>}'
' 68 N <i]i>

(6.5)

The second term here is formally small. : But all the
information about large surfaces, topology and nonperturba-
tive effects is contained in the term ~ N (6.5).

o : : -3/4
Fermionic wave functions at y-»>-o decrease like |y| :

The average value <i|y|i> comes from y~ - N ~. All the wave
functions at y--w differ only by the normalization constant
(5.11) and the value of <i|y|i> may be found in the WKB ap-
proximation. Thus the singular part of (6.5) is given by:

-1
-1r 1/5 13x20
<ipM> == 2

¢ dy] . (6.6)
_lea [ I

Here the wave functions ¢ are normalized by the condition
1

| (see (5.4, 5.11))

1 T
‘Fi = T cos[ B+ —— ] - (6.7)

(e =~ U) 4
¥ > —o

18
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This formula provides one of the boundary conditions for the
functions ¢ . As we have seen before all the difference of
i

the two formulations for 2d gravity reduces to the different
choice of the second boundary condition for the Hamiltonian.
h (5.4) eigenfunctions. The analytical continuatioil of the
matrix integral is associated with the condition P 0 at

y->iw, In this case <trM>® (6.6) should coincide with (6.3).
Thus we have found the new formula for the Painleve trans-
cendent which is realized in 2d gravity:

-1
Jf{x) dx = w 187 [ 0 dy] y (6.8)

X
c

R

C
Here f(x) is the solution of Painleve equation (2.2) Wl'l':h
boundary conditions (2.4, 2.5). Right hand side of (6.8) is
a function of A (5.3, 5.4). Both right and left hand sides

of (6.8) diverge. But the second derivative of (6.8) over X

is well defined. .
Formula (5.8) allows to calculate the sum in (6. 8&,
A>>1. Up to nonsingular constant r.h.s of (6.8) is 18

B paniteo/s v e (compare with (2.3)). We have also
<

calculated the imaginary part of (6.8) at X A>>1.

e

Expression (6.8) allows us to define the new function f
which may substitute the Painleve transcendent in the new
definition of 2d gravity. One should only r:hange the
boundary condition for ¢ (f,o 5> 0 at y - « instead of {p - 0

at y > iw). It seems very attractive to get all the Gre_er}
functions for gravity defined via_ Marinari and Parisi
suggestion by the formula (6.1) with f used instead Gl AS
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we have seen (6.6) this is really so for the simplest
correlator <tr M>. ;

For new formulation of gravity one may also add source
term J-tr(M) to the matrix action. The matrix Hamiltonian
(3.2) also should be complemented with source term. The
formulas like (6.1} allow one to define only the
correlators, not the partition function. One may consider
the formula

i
aﬁz = <tr M> , (6.9)
as a definition of the partition function for' 2d gravity.
Now all the Green functions should be given by (6.1) with
J replaced by f. Unfortunately we do not know whether the
Green functions defined as derivatives of ¥ are the con-
nected averages of any operator.

1. UNIVERSALITY

Up te now we have discussed only the model where random
surfaces are .generated by the simplest action (3.4) (the
surfaces are glued from triangles). For gravity defined by
the analytical continuation of = integral (2.1) all the
observables in double scaling limit do not depend on the
specific = choice  of ' the matrix 'action VM) [7]. It is
interesting to understand whether such an universality takes
place in gravity defined via the Marinari and Parisi
suggestion [10]. ' /

Let us for example instead of (3.4) discuss the action
with stronger anharmonicity

: 2
e (7.1)
The generalization for arbitrary V(M) should be evident. Now
the fermionic Hamiltonian (3.7) takes the form:

' a” z‘“{xih gx;jz ] “
H:,Z‘g;z*”[ 3 .+gx1---2-] ¥ (72)
J-
2
+N€(in)(§xj)-
i
20

We are faced with the problem of interacting fermions. The
natural way to handle this problem is the mean field
approximation [13]. For the specific action (5.21) the
fermion - fermion interaction leads to an additional term in

single particle effective potential at high N

A RN (s B ' (7.3)
eff |

where A, B ~ 1. _
At g < g the semiclassical fermionic density may be
c

found by the method of paper [15]. The authors of [15] have
used the steepest descent method to calculate the integral
over the matrix eigenvalues. Saddle point for this integral
formally coincides with the equilibrium configuration of N

particles repulsing with the potential Uij= -*log[xi—xj) in

the external field (7.1). At large N it is natural to intro-

" duce the density of eigenvalues p(x). For the action (7.1)

the equilibrium density is given by

plx) = —PZJ-_E (e + Bx + ;rxz - gx3] \/[b + x)la - x)o (7.4)

The constants «, B, ¥, b, a can be found algebraically.
In the matrix quantum mechanics the density of eigen-
values p(x) should be interpreted as a semiclassical fer-

mionic density:

p (x)

F 1 "
A =2 15 4 ; 5
plx) = = v B (705

Here EF, p_ are the Fermi energy and Fermi momentum. The

points a, - b are the classical turning points for upper
fermion level.

The function P (x) has a zero at some point x  >a.

That means that the effective potential UEH has two minima

(at g<g ) and the Fermi energy EF at large N equals to U -
c

min

the local minimum of Ué”- Instead of (5.1,°5.2) for arbik=

rary V(M) we get
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: J. */Um - Ueﬁ_[x)‘ dx = Nm + 8(g) (7.6)

in

where 8 ~ 1 is a small correction to WKB result. The exp-
ression (7.6) is correct for any value of g < g . Of course
c f

8 = 8 (g) is a function of the coupling. But there -are now
reasons for & to varies fast with A ~ (g - g \N""".
c

~ The double scaling limit corresponds to the motion of
the fermions in a potential (compare with (5.5))
3 4 ' '
[ e zzzaF( 5 ]
N i N 275

(7.7)

Here all the information about the action V(M) is stored in
the function F. Instead of (7.6) one has:

j p dz = J v-U(z) dz = Nm + S(gc} ; (7.8)

and S{gc} is a constant ~ 1. In order to fix the phase of

wave functions at z - ~o and to quantize the energy it is
enough to know the value of 6{gc]. In the model with the

action V = M%/2+ gM’/3 (3.4) we had & = 0 (5.6). To prove
the universality it‘s enough to prove that 8(g ) = O for any
C

matrix action. We know that at large enough w the fermionic
density differs very slightly, by the correction of the
order ~ exp (-cw), from the universal density of eigenva-
lues of the integral (2.1) defined by the analytical
continuation. If a{gc) in (7.8) really doesn‘t depend on

then for arbitrary V(M) there must be S{gc} = Q.

Thus the only, very natural, assumption that phase
shift 8(g) (7.6) does not depend on the scaling variable A ~

o {gﬁ-g}Nﬂfﬁ seems to be enough to prove the universality of

Marinari and Parisi model.
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* Fig. 2. The density of fermions atg =g . The density was found as a sum over
1, 5, 10, 20, 30, and 40 upper fermions.

Fig. 1. The zeros on the complex plane for polynomialsp ., p , , Py5 and
P .- The effective one particle potential Vefg (x) is the external field
V' (x) (3.4) plus the averaged repulsion of the zeros < — log (x; -,rj)z 4
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