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1. The anomaly of the photonic chiral current in an ex-
ternal gravitational field was found independently in Refs.
[1, 2]. In Ref. [1] it was obtained by means of the infrared
regularization in dispersion-relation approach of Ref. [3]
and was formulated as
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rerni, ﬂ“ is a covariant derivative, brackets <...> denote

wherse kM = - is the photonic chiral cur-

the expectation value over the photon vacuum in an external
gra- vitational field, R is the Riemann tensor.
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Anomaly (1) is not the first bosonic chiral anomaly in
the four-dimensional space discussed in literature. In Ref.
[4] the chiral anomaly of an antisymmetric tensor field in
an eXternal gravitational one was considered. This anomaly

however cancels out completely by the anomaly of the vector
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ghosts [5], their introduction being necessary for the
tensor field quantization. This result is quite natural from
the physical point of view since a massless antisymmetric
tensor field on-mass-shell is equivalent to a scalar one.
And the latter cannot possess neither anomaly, nor the thi-
ral current itself.

One more bosonic chiral anomaly discussed in literature
[6] refers to gluons in a gluon background. However, as it
has been demonstrated by a direct calculation in Ref. [7],
the corresponding triangle diagram contains logarithms, so
here as well the situation in essence is not anomalous (see
also Ref. [8]). _

This fact as well has a simple physical explanation. It
is convenient to start from the well-known case of the Adler
anomaly of the fermion axial current in an external vector
field. Let us consider, following Ref. [3], the‘imaginar'y
part of Fig. 1. Its left block corresponds to the creation

H of a pair, massless

by the scalar operator Bpa

fermion and antifermion. Due to the angular mo-

mentum conservation, the fermion and antifermion

Etg. - L are of the same chiralities in the centre-of-
mass frame. But then the right block of the diagram turns to
zero by a dynamical reason: méssless fermion and antifermion
of the same chirality do not annihilate. The exception is

the point pzz 0, p béing the total momentum, where there is

no centre-of-mass frame, particle and antiparticle have

parallel momenta and, due to the same angular momentum
conservation, opposite chiralities.. In result the imaginary
part of the amplitude, divided by pz, turns out proportional
to 5[}32] which leads to the anomaly in the amplitude itself
(for more detailed discussion see Ref. [3]).

However, when we deal with internal Yang - Mills quanta
of the same chirality, there are no reasons preventing their
transition into external quanta, 1i.e., their rescattering.
Therefore, the imaginary part of the triangle diagram dif-
fers from zero at- all p2 > 0. As a result, the amplitude
turns out in essence nonanomalous one. (However, it has
certainly an anomalous contribution as well which is due to
the spin-flip rescattering of the quanta whose Iinitial
chiralities were of the opposite signs. Just this, anomalous
part of the amplitude was calculated in Ref. [6].)

Just the same arguments demonstrate that the case of
the gravitons in an external gravitational field as well is
nonanomalous one. Thus, if one abstracts from the exotic
case of higher spin theories, a photon (or gluon) in an
external gravitational field is the only clean case of the
bosonic chiral anomaly in the four-dimensional space.

2. Due to this fact an alternative derivation of this
anomaly is of a certain interest. Previously relation (1)
was confirmed in various ways in Refs. [9, 10]. Here we wish
to present the derivation of the photonic chiral anomaly by

means of the customary Pauli - Villars regularization. To



simplify the calculations we use the technique of Green's
functions in an external field.
The Lagrangian of photons in an external gravitational

field is in the Feynman gauge
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where o = '{Ir'”?“is the covariant Dalembert operator. The term
o

with the Ricci tensor R = R is omitted here and
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below since it certainly does not contribute to the anomaly.
Neither do we consider the scalar ghosts that also do not
contribute to the chiral current and its anomaly.
The chiral photonic current is constructed as
1
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It has been shown in Refs. [10, 11] that the chirality of
photons is conserved in an external gravitational field. It
would lead to the vanishing of the vacuum expectation value

in a gravitational field of the operator: V kM.
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However, the current kM(x) is a singular one and should be
regularized. According to the Pauli - Villars prescription,

we introduce the regulator vector field with the mass M (it

will finally tend to infinity) and the Lagrangian
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The regularized current K" (x) is
reg

K" (x) = kM) - Kﬁfx) ,(6)
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where Kﬁ[xl is the chiral current of the regulator field ;1;.1'
The expectation value of interest to us of the regularized

chiral current in an external gravitational field is
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Here Dua(x, y) is the Green function of the field }i“ which

satisfies the equation

(o + Mzi Dvcx{x’ y) = ig (x) 64[_1:: - y) . (8)
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Dvo:{x’ y) is a bivector, all the derivatives in eq. (8) act
on the coordinate x and on the first index of this bivector.

We shall solve eq. (8) by expansion in powers of the
gravitational field. Let us choose the frame which is local-
ly geodesic at the point x = 0. Near this point the metric
tensor can be expanded into series, its first two terms
being (see, e.g., Ref. [12])
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R =
iklim

= Riklm{o}. When calculating the anomaly, not only the terms

where nik is the metric tensor of the flat space,
are inessential that contain the Ricci tensor Ruv and the
scalar curvature R,but those as well that contain the
derivatives of the Riemann tensor. We can also omit the
quadratic term in the metric expansion proportional to
quﬁhR;vaxmxBx?xa’ since at the following contraction of the
Riemann tensors with EM—’&'B it will certainly wvanish. With
these considerations taken into account equ. (8) for the
Green’s function, to be more exact, for that its part which

contributes to the anomaly, reads as
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the contractions are made by means of nt.
We shall go over to the momentum representation (s -
= v 5 B ip ) and solve Eq. (10) by iterations in
ap.U- a5t M
the Riemann tensor up to the second order included:
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Now we substitute D:_p[p, y) found in this way into Eq.
(7), differentiate in x" and };D: (that is multiply by —ipu
and ipa respectively) and put finally y=0. Then,
anticipating the integration over dﬂ'p, we average over the
directions of the momentum p. As a result, we get
; 2
=M P R PR (12)
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We come back now to the coordinate representation and take

off the regularization by means of the limiting transition

M 4+ o,
Finally,
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in complete agreement with expression (1) for the anomaly.
3. We present now shortly the analogous derivation of

the chiral anomaly for a spin 172 particle in an external



gravitational field. In the momentum representation the
contribution of the second order in the external field to

the Green’s function of the Dirac equation constitutes
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Here ;t} T P07, are the Dirac matrices in the flat space,
all the contractions are performed by means of n“u.
We regularize the chiral current
- 5
a =y My (15)
i
according to Pauli-Villars:
a"%(x)'= a _(x) - a (x) (16)
u p i
where a" is the chiral current of the regulator particle
with the mass M. Due to the motion equations, the vacuum
expectation value for the divergence of the regularized
chiral current in an external gravitational field is -
<3 a” (x)> = - <8 au(x}‘;* =
H reg H M
-
= - 2Mi Sp [?SSF(x}] : (17)
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Substituting into this formula expression (14) and
taking off the regularization by means of the limiting

transition M » ®», we come to the following result for the

fermion chiral anomaly:

<8 a'u[{}]b- = lim -<8 a'(0) > =
M pM
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It is in agreement with the known results of Refs [13 - 15].
The presented parallel derivation by means of the
ultraviolet regularization of the chiral anomaly for the
spins 1/2 and 1, together with the parallel consideration of
these effects at the infrared regularization [12<10],

elucidates the close nature of both anomalies.
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