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ABSTRACT

The localized solutions for the Ishimori equation are
studied. Using the general formulae derived in paper 1
and the exact solutions of the inverse problem for the
modified Kadomtsev-Petviashvili equation we construct
the exponentially and rationally localized soliton type
solutions of the Ishimori equation with time-dependent
boundaries. Explicit examples of such solutions are
presented.
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1. INTRODUCTION

After the discovery in [l] the exponentially localized solutions
of soliton type for the 24 1—dimensional and multidimensional
nonlinear equations are studied very intensively [2—11]. The
analysis of the structure and properties of the localized exact soluti- -
ons of the 241 and multi-dimensional soliton equations is a very
important problem. Most results obtained are concerned to the

Davey — Stewartson (DS) or the nonlinear Schrodinger type equati-
ons.

Recently we have shown in [11] (hereafter refer as paper )
that the 24 1—dimensional Ishimori equation also possesses the
localized solitons of the similar type. This is the equation of the
form [11]
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where S(x, y, ) =(S:, Sz, S3) is the unit vector S?2=Si+ Si+
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+83=1, §:L2 (y+x), n=-;—(y——x} and wi(n, 1), us(E, ¢) are

arbitrary scalar functions. The functions w;(n, f) and us(E, ) are
the boundary values of the derivatives ¢, and . of the auxiliary
field ¢ at &> — oo and n—— oo respectivery [11].

In paper I [11] it has been shown that the problem of construc-
ting the localized solitons for equation (1.1) is closely connected
with the problem of the explicit solving the linear equation of the

type
2iX(2, t) + X224 2iu(z, ) X. =0 (1.2)

where u=u(n, t) (or u= —u(§, 1)) is given function.

In I the general formula for the localized solitons for equation
(1.1) has been derived. Then in I the case of the stationary bounda-
ries ui=u;(n), we=us(L) has been studied in detail. The four clas-
ses of the localized solutions of the breather type for equation have
been constructed explicitly.

In the present paper we study the general case of time-depen-
dent boundaries u;(n, ) and uz(&, {). Using recent exact results for
the inverse problem for the linear equation (1.2) (which is associa-
ted with the modified Kadomtsev — Petviashvili eguation) [12] we
will construct the exact localized soliton type solutions of the Ishi-
mori equation (1.1). The class of exact solutions of the linear equa-
tion (1.2) is a very rich one. It includes the decreasing and plane
lumps, plane solitons and breathers and so on [12]. As a consequ-
ence, the Ishimori equation (1.1) possesses a wide class of the loca-
lized soliton type solutions. The rationally localized, rationally-expo-
nentially and fully exponentially localized soliton type solutions are
among them. We present several explicit examples of such solutions.

The Ishimori equation (l.1) can be rewritten also as the single -
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cated than the DS equation. We will compare the localized solitons
fo that equation with those for the DS equation.

The paper is organized as follows. In section 2 the principal
results of the paper 1 are presented for convenience. Exact solutions
of eguation (1.2) are given is section 3. The localized soliton type
solutions of the Ishimori equation with the time-dependent boundari-
es are constructed in section 4. In section 5 we compare the results
obtained with those for the DS equation.
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equation for the complex variable g= which is more compli-

2. GENERAL FORMULA FOR THE EXACT SOLUTIONS
OF THE ISHIMORI EQUATION
WITH NONTRIVIAL BOUNDARIES

Here for convenience we present the main results of the paper 1
[11]. '
The Ishimori equation (1.1) with the nontrivial boundaries u, (n,

t) and u(E, t) is eguivalent to the compatibility condition for the
linear system [11]
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The Fourier transforms of the inverse problem data are defined
as follows

and
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are the solutions of the linear integral equations associated with the
first linear problem (2.1).

Using (2.1) and (2.2), one can show that [11] these functions
S(E n, f) and i‘(g, n, t) obey the linear partial differential eguati-
ons

Si(En. ) — g(sﬁ + 84 +usl®, ) 8 —wiln, 1) $,=0,

Te(E, n,t) + m + P + 12 8) Ty —wi(n, £) T,=0 (2.6)

where the boundary values u;(n, ) and us(E, ) play a role of vari-
able coefficients.

In the case of the real-valued S(x, y, f) one has

8¢E )= & . 1) (2.7)

where * denotes the complex conjugation. So in this case one can
consider only equation (2.6) for 8

The linear equation (2.6) is solvable by the method of separati-
on of variables. Its general solution can be represented in the form

S(%, 'it 2“2 Pij X ) ¥Yi(n, t) ; (2.8)

where p; are arbitrary constants and X;(, ), Y;(n, {) are solutions
of equations [11]

X+ _XEE. +ius(E, t) Xig =0, (2.9)
Y+ % Yim—iui(n, ) ¥, =0. (2.10)

The symbol £ in (2.8) may include also the integration over the
continuous indices.

Then using the formula for the exact solutions of the inverse
problem for the Ishimori equation [13, 11] with degenerated inverse
problem data one gets [11]
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The formulae (2.11) — (2.13) are the main result of the paper I
[11]. They allow us to construct explicit exact solutions of the Ishi-
mori equation (1.1) with the nontrivial boundaries u;(n, ¢) and
us(E, f) using the exact solutions of the linear equations (2.9) and
- (2.10).

The auxiliary field ¢ and the topological charge Q are also
given by the compact formulae

¢=2iIndet g+20; " usE’, t) +20, " wi(n’, 1) (2.14)

and
2 L 5-(3 PR L g (215
Q¥ — SdedyS (8:X S,) = Sgdgdq s indetg.  (215)

In the previous paper I we solved the case of the time-independent
boundaries u;(n) and u2(§) and constructed the corresponding
exponentially localized solitons for the Ishimori equation (1.1).

The results of the paper [12] allow us now to solve the general
case of the time-dependent boundaries. :

3. EXACT SOLUTIONS FOR THE MODIFIED
KADOMTSEV — PETVIASHVILI EQUATION

For the DS equation the analog of equations (2.9), (2.10) is of
the form i X;+X..+u(z, 1) X=0 [3, 5]. So the problem for con-
structing the localized solitons for the DS equation is closely con-
nected with the spectral theory for the Kadomtsev — Petviashvili
equation [3, 5]. :

In our case the problems (2.9), (2.10) or the problem

%W+ .. + 2iu(z, t) W.=0 @

is relevant for the application of the inverse spectral transiorm met-
hod for the modified Kadomtsev — Petviashvili (mKP) equation [11,
12]. Namely, the mKP-1 equation [14, 12]

ik e 60— 12057 upob 1208, a0 (3.2)

is equivalent to the compatibility condition for the linear system
(2i0,+ 02 + 2iud.) ¥V =0, (3.3)
[3: 4402 +12iud?+
4 (Biu, + 1208, u,) —6u%) 6, +a) ¥=0

where a is an arbitrary constant. The mKP equation (3.2) is the
2+ 1 —dimensional integrable generalization of the well-known
modified Korteweg-de Vries equation.

The mKP equation (3.2) has been solved by the IST method just
recently [I12]. Using the nonlocal Riemann—Hilbert problem met-
hod and the @ —dressing method the wide classes of the exact solu-
tions of the mKP—I equation (3.2) have been constructed [12].
They includes decaying and plane lumps, plane solitons and soluti-
ons of the breather type and others.

Here we present those solutions of the mKP equation and their
eigenfunctions, more preciessly, of the problem (3.1) which are rele-
vant for the construction of the localized soliton-type solutions of
the Ishimori equation (1.1).

The first class of solutions are the real plane lumps. They are of
the form [12]

u{z,y}:i%indet(m+3m—1; (3.4)
where
A=t (2= Ly )1 —b) 2 (35)
By =ik
and
Ve “‘“%M—i—ﬁk, Imee=0 (k=1,..,n)

where Je, c: are the sets of arbitrary real constants. The correspon-
ding eigenfunctions yo(2, y) =y%(2, ¥; =0) and y (k) where y (2, y;

Elegm -
Ay=%e are



Yol ) =14i ) hey(he) (3.6)
k=1 _

where y (he) are defined from the algebraic system [12]

s D) _
I{htj (z % _!_"I’:)"i" k;:i e s 1 {3?}
[E k=) on

The simplest plane lump is of the form

Wz, y) = b (3.8)

2
1

= grey+?

and the corresponding W (h,) is

3 i_iL)
e T

W) = s : (3.9)

The solution (3.8) describes the rational nonsingular lump tra-
velling with the velocity 1/A, along axis z. The general multi plane
lumps solutions describes the collision the plane lumps (3.8). Their
collision is completely trivial: the phase shift is absent.

The plane solitons form the second class of exact solutions of
the mKP—1. They are given by the formula [12]

u=2~;f—arg det A (3.10)
0z
where :
Afk=éfk_+2l: ﬂRkJ"l-f_ EF{:‘..;;}-—-F{;*.;:' [3‘11}
Mg = Ak
where

e e G SROiuS A
Fw)—a(h mer,)

and Ai,..., Ay are arbitrary complex paraméters and Ry are arbitrary
real parameters. The -corresponding eigenfunctions (&) =¥ X

=y
Xe " ™’ are given by [12]
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X(A=0)=1+2i ¥ Rux(hs) e~ ™ (3.12)
k=1 '

where y (Ax) are defined from the linear algebraic system

n e _ i
x(M) 20 T M FO—RE) g
=) Me— M

(k=1,...,n). (3.13)

The simplest one-soliton solution is

g=— 4%“5@ = . (3.14)
e+ (e —12 ¢ ;"—f{sgn R}e”g)
where
f= % (z— :'“}:T’; —l—zu), (h=Ag-k14,) (3.15)

and R— some real constant.
The corresponding eigenfunction is

AeH)
lp'(],u) = ————— {316]
R
14 Jj:ef

"he mKP-1 equation possesses also the exact solutions of the
breather type [12]. They have rather complicated form' and we will
not considered them in the present paper.

Tne mKP-I equation similar to the KP-1 equation has a decaying
at x’+y” »oo rational solutions [12]. But analogously to the KP
case these lumps are not the suitable boundaries «, and u » for the
Ishimori eguation. Indeed in the treatment of the exact solutions of
the mKP-I equation as the boundaries the variable y in (3.3) is rep-
laced by the time variable f in (2.9), (2.10) and hence these boun-
daries should have the character of the traveling alone the axis z
solitons.

It is easy to see that the decaying lumps do not satisfy this
requirement both for the mKP-1 and KP-I equations. But the plane
solitons of the mKP-I equation have the required character while for
the KP-1 equation the plane lumps are absent at all.

I1



Hence there is an essential difference between the DS and Ishi-

mori equations at this point. The latter may have the rationally
decaying boundary which give rise to the rationally localized soli-
tons.

4. LOCALIZED SOLITONS OF THE ISHIMORI EQUATION

The use of the formulae presented in the previous section allows
us to construct exact solutions of the Ishimori' equation via the
general formulae (2.11) — (2.13). One should only take in account
the difference in sings in (2.9), (2.10) and make the substitution
y—t, z—&, u—us(E, t) for Xi(E, t) and y—i, z—n, u——u(n, t) for
Yi(n, 8).

2
For the boundaries u(n,{)= —ﬁ/[(n—— —;— <+ ¢ ) + ﬁT] and

s
uz(§, f) =a/[(E— é—kcz}f” -+ %] , both given by the rational lump
(3.8), one gets the rationally localized solition of the Ishimori equa-

tion:

rr Ir o A A 1 1 1 oA
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= %'ﬂ—i—m}—l— (E+c2)
®,(E, 1) = arctg ﬁ : (4.2)

E+ o) libo) =2+ —

The auxiliary function ¢ (§, n, #) is given by

Z(ite) — T E+e)

©"(E, , {) =4 arc tg —> +
E4co)(hye)+ 28 +miﬂ
—|—4arctg2{ﬂi o) —4arclg—€——-|—4drgtg (E4c2) +

+4arctg— (r]—I—C|}—|—21 gna-+4 Sgnf) (4.3)
and the density of the topological charge is

%[ﬁ‘i—ﬁl] — -g-(’:f—l— Ca)
0z 0y In det g = — 2id:a, {arc tg — . 5%

(E4+e) (4 + chfi S
af

p o
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The soliton (4.1) decays as 1/(&4}'.) at E24-n*>o00 and moves
with the velocity V=(V,V,) = (a~', p~'). Emphasize that the ratio-
naly localized soliton (4.1) is the novel phenomena which has been
absent in the DS case [l —6].

The next example corresponds to the choise of the boundaries
t1(n, ) and u2(E, f) as the plane solitons (3.14):

13
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) + (e (k) + Rsen R e (1))
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¥

exp (

| |*‘ Sgn R

(4

o () + (o0 (—25) + e o (35

where

n=n— |;:’|‘;I+nn. E=t— BR 41 g,

ln IEr
The corresponding soliton of the Ishimori equation is of form:
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The soliton (4.5) decays exponentially in all directions on the
14

plane &, n similar to the localized soliton of the DS equation [1 —6]
and moves with the velocity V=(V,,V,) = ( iuTE' Iﬁz ) In the case
I

of time independent boundaries, when i, pz—0, the soliton (4.5)
coincides with corresponding soliton obtained in the paper 1.

Our last example here corresponds to the choice of the rational
lump (3.8) as the boundary u:(vn, {) and of the plane soliton (3.14)
as the boundary us(E, {):

uy(n, f) = — = P e
(M+¢)* + &
LL Sgn R
usls, 1) = — = i ;\ —
o () (o0 22) - om0 (20)
where

i e e l-lR't
= E=¢ 5 1+Eo.

In this case one has for the soliton of the Ishimori equation:

S0 (6, 0) = ST (6 ) cos [+ L5 4 - (ﬁ ||2)+muén]

Si* (& n, t) = ST (€. 7) sin [ iy
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e e =
ST (6 i) =25 exp { ME } )

and
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The formula (4.7) present the mixed rational-exponential decrea-
sing soliton of the Ishimori equation.

In fact the family of the localized solitons for the Ishimori equa-
tion is much richer since the mKP-1 equation in addition to the
exact solutions mentioned above has other classes of exact solutions
which correspond to the multiple-poles plane lumps and plane soli-
tons and so on. The corresponding coherent structures of the Ishi-
mori equation will be considered elsewhere.

5. THE LOCALIZED SOLITONS IN THE TERMS OF THE
STEREOGRAPHIC PROJECTION FIELD VARIABLL
& _ Si+iS
|+ 5a

The Ishimori equation (1.1) which is in fact the system »>f the
three (non-independent) nonlinear equations can be rewritten as the

simple equation for the stereographic projection g= Sllif: The
straightforward but lengthy calculations give:
ige— %[qﬁé + ) + T—_ﬁw(-ﬂ?gﬁ—ff%} e
o 5 o
+ufor! S i, o) | (5.1)

In the case of the trivial boundaries u;=us=0 equation (5.1) has
been derived in [15].

It is not difficult to see, that the equation is invariant under the
following changes oi the dependent variable ¢——gq, ¢—§=41/q.
So if the g is the solution of the eguation of (5.1), then the —g,
+ ¢~ ' are also the solutions of (5.1). In terms of the spin variable
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S—= (S, Sz, S3) this means that if the S= (S, Sz, Ss) is the soluti-
on of the Ishimori equation then the S=(— 8\, — Sz, S3), S= (S,
— 8y, —83) and S=(—Si, S;, —S3) are also the solutions of the
Ishimori equation.

The last remark leads us to the conclusion that the two types of
solutions. of equation (5.1) correspond to the obtained localized
solutions (4.1), (4.5) and (4.7) of the Ishimori equation (1.1). The
first type is given by the increasing in all directions on the plane E,
n (polinomially, exponentially, or polynomially-exponentially) soluti-
ons of (5.1). The second type is formed by the localized solutions of
(5.1), which are decreasing rationally, exponentially or rationally-
-exponentially in all directions on the plane.

The increasing in all directions of the plane solutions of eg.
S14iS:
14 83
the localized solutions of Ishimori equation are of the following
form:

1. The polynomially increasing solution which corresponds to (4.1)

to

(5.1) which correspond via stereographic projection g=

is
: : | LA R g
qta,n,r}=[(ﬁ+c.+f§)(é+c2+‘—;‘i)+fﬁ]e[“ )] (59
where

2. The exponentially increasing solution which corresponds to (4.5)
is

T (T IO )
'} !

mr‘_}l{_f\_ Ly . Hep & ;'"R A i | | 5.3
D { TYEALERE e+ [wg ThEN T (W S )]}{ i
where

M SR Sy S
§=¢ ME +E, m=n e

£+ Mo

3. The polinomially-exponentially increasing solution which corres-
ponds to (4.7) is

Wm0 =[(i+e+2) (w%ﬂ ok

17
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where

I
e Mk

The localized solutions of eq. (5.1) which correspond to the
localized solutions of Ishimori equation via the formula j=¢ '=
14+8  8i—iS

SR T are of the form:

. The rationally localized soliton of (5.1) which .r:ﬂrrespnnds to

(4.1) is
e (] +ﬁ_+i(%+'ﬁ%)]},

(i+e+ )(§+c+ )eriti

2. The exponentially localized soliton of (5.1) which corresponds to
(4.5) is

(5.5)

g(E m, ) =
= J:{%"ﬂﬁ;} g
(B (A
e {(_" [| et ﬁﬂn 3 ( T |u|ﬂ )]} o

3. The rationally-exponentially localized soliton of (5.1) which cor-
responds to (4.7) is

exp( F"}E)
GEm, 1) = 2
(TH-E—i— tﬁ)(|_|_ﬁuexp(::r2))+m
corfifd+ it g)) e

In conclusion remind that the DS équatiun is of the form [I —6]

ipi~+Pgg -+ Pan—
18

E T
% ] r i k" i
-p[g | ami—ulm.w;_g dn ipté—ue(;,ﬂ]—o. (5.8)

The simplest exponentially localized soliton of the DS equation
is [1—6]:

p(E. 1. 1) =49V hgiig X

exp | —Agdn—1) —ugb— & ) +i —AA+pb+ (Irl>+141%)¢t + arg(im)] (59
(14+e PRIy (] 4 o~ =By 4 |p|?

X

where
n¥nt2nt, Ee42u,

1 | |

f=tin L
?L'E _\[2.:1}? Hg 2”’!@

The solution (5.9) corresponds to the boundaries u;(n,¢) and
us(E, t) of the form

232, 24
: i t i
hEh B —7) ul® ) = G =D
1

ui(n, t) = (5.10)

Comparing (5.9) and (5.6) we see that they are very similar in
form. Thus the Ishimori equation (1.1) on the one hand is more
complicated in its form than DS equation but on the other hand it
is more rich as far as concerning the localized coherent structures.
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