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ABSTRACT

The small scale motion at low Reynolds number is
shown to -be excited through repeated nonlinear
interactions and have chaotic phases. The latter
property is used to derive the equations for the
amplitudes. Solutions similar to those derived
previously for turbulent fluctuations in the
dissipation range are obtained. Properties of the
short scale intermittency are analyzed. We show
that no coherence and intermittency can be built
up at the asymptotically high wavé numbers.

@ Institute of Nuclear Physics SO AN USSR

1. INTRODUCTION

The energy of the fully developed turbulence is excited
at some scale L, is transferred through the inertial range
to vortices of the Kolmogorov scale m, where it is finally
dissipated. Some portion of the turbulent energy penetrates
into the dissipation range k >> n_z and produce a rapidly
decreasing tail of the " turbulence spectrum. In the dissi-
pation range, the actual form of the turbulence spectrum is

determined by vortices at low Reynolds number. Nevertheless,

‘the pertinent nonlinearity of the small scale motions can

not be discarded.

The linear stability analysis gives the following
asymptote of the spectrum in the dissipation rangé (Townsend
1951, Novikov 1961)

F (k) « exp [~ (nk)?]. (1.1)

- In statistical theory it has been shown (Kraichnan 1959,
Kuz’min 1971, Kuz’min & Patashinskii 1979, Dubovikov &
Tatarskii 1986), that the energy transfer via a nonlinear
cascade gives the more slowly decaying spectrum

F (k) « exp (- nk). .2
An attempt to sclve the problem leads to difficulties, that
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are well known in theories with strong interactions. The
main one is the failure of the perturbation theory. On the
other hand, most of the additional difficulties, which are
known to be peculiar to the inertial range turbulence
theories, are absent at nk -» w. For example, the infrared
divergences were not manifested, and the time proved to be
a irrelevant variable in the dissipation range. Therefore
the dissipation range turbulence is not as hard obstacle for
the strong coupling techniques as one in the inertial range,
and the renormalized perturbation expansions as well as
renormalization group technique should be tested primarily
in this area.

A number of effects in the system of dissipative modes
have their own interest. In particular, in section 2, the
self induced phase chaos of dissipative harmonics in flows
of space dimensions d = 2 is considerred. This chaos is
shown to be occur, and it prevents from producing of marked
intermittency in the dissipation range. So the intermittency
effects, which break the scaling in the inertial range, are
of less and less importance at mk - . In this respect a
considerable difference of the fluid turbulence from the one
- dimensional systems should be : noticed. In the latter
problems Frisch & Morf 1981 revealed an enhanced influence
of the intermittency at mk-w. One may expect, that the sca-
ling properties appear,in a most pure fashion in fluid tur-

bulence at nk - w.

In section 3, a nonisotropic energy cascade to wave
numbers mk >> 1 is investigated, and a solution for the
spectral tensor is obtained. In section 4, the expansion
parameter of the renorxﬁalized diagram series is revealed.
This parameter proved to be the energy conversion parameter,
which is the nonlinear energy supply divided by the energy
dissipation. The similar parameter in the inertial range
(see Kuz'min & Patashinskii 1972) is equal to the squared
Reynolds number determined from the effective viscosity. In
the dissipation range, the Reynolds number is small, but the
energy conversion parameter appear to be of the order of
unity, because the nonlinear inflow of energy is equal
approximately to the dissipation at a given scale. Thus the
dissipation - range turbulence is a typical example of a
system with strong interaction. A reasonable theory can be
obtained by taking into account only the first few diagrams.
We believe, that other diagrams are of less importance in

the renormalized series.

2. THE PHASE CHAOS AT SHORT SCALES

Let wus consider the spatially periodic flow of
incompressible fluid at small Reynolds number. The velocity
field is represented as the Fourier series

-+ 3 = = - =
u (x, t) =) u (k, t) exp (ikx),

k

ikl ) = B I d% u (%, t) exp (- H—E;’],



where L is the spatial period, which is supposed to be very
large, and d is the dimension of space. From the
Navier-Stokes equations, one obtains the equations for the

complex amplitudes u (fc, t)

{a/atwkz]ul(i’c,t}=(+i/2]P__I(E] ) u (g, t}ul{E-E}, £) (2.1)
ij j
k
where P (k) = kA (k) + kA (k), A _U"Z} =8 = k_k_/kz,
ijl 3 11 . ij i} 1]
5 3 o
k-u {k, tl =0, (2.2)

We assume that the initial Fourier amplitudes v (k) =
FEn u‘i{, tu] differ from zero only when k < k0=l'1, where [<<
<< L is the main scale of the flow. Because the Reynolds
number R is small, the subsequent evolution of the Fourier
components at k = kn is correctly determined by the equati-
on (2.1) with the omitted right-hand side. The solution of
the equation is

u’ (k, t) = exp [-vk® (t - t )] v (k). - (2.3)

At wave numbers k > ku’ the right—hand side of the
equation (2.1) can not be discarded, because the nonlinear
interactions serve as.an energy source. In order to find
nonlinear corrections to (2.3), we rewrite (2.1) as the

integral equation
t

u (K ) = u (k1) + I dtexp-[E vk (Bt MK

t
o

x (i/2) P (K) Z i gt Yutkesg, T): (2.4)
9

This equation can be simplified. The nonlinear interactions
lead to cascade increasing of wave numbers k = vkn, and of
characteristic frequencies W=V w0=l/{vkz) being the cha-

A =0 g
racteristic frequency of u . At k >> kﬁ, the time dependence

r =3 I

of the velocities uj(a, o ulik - 5, t ) in the right hand

side of (2.8),is slaw .when compared to expl=wk>(t-t ). The-
refore, one can integrate over tfin (2.4) treating the velo-
cities as time independent. This conjecture is supported by
the detailed calculations performed by Kuz'min & Patashin-
skii, 1979. The simplified static equation for u(k) is then
u (k) = v (k) + Lz [- %] Pm{i} ¥ uJ(E}J u (k-q). (2.5)
vk -g

We use the graphic notations similar to those used by
Wyld 1961, Kuz’'min & Patashinskii, 1979. The function
{1.:3*:2,‘1-1 is represented by an arrow <«—. The vertex operator
(—E/ZJPUIIEJ Z is represented by a point -, and the large

9 >
scale component v is represented by a line ----- . Thus the

equation (2.5) can be written symbolically as

(2.6)

£E4 24

Iterating (2.5), (2.6), one obtains the velocity JIE] as

= 3
a - series in its large scale component v(k). The effective



small parameter of the expansion is the Reynolds number R.
The graphical form of the series is given by a sum of tree

diagrams

-
K

0. s RO W il + By e’ 5o 2.7
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At each vertex the wave vector is conserved. The sum of the
wave vectors of entering lines is equal to the wave vector
of exiting arrow, so the wave vector flows without any loss
-3
from the brunches -~ = v to the trunk of a tree.
The wave vector of a diagram of n™ order is equal to
- =
the sum of the wave vectors of all factors v (ki), where
K o« K
i 0
.-5
k =
i

k.7 R @KL (2.8)
11 i 0

nr—~—1-

: : h . 2
The analytic expression for the n" order diagram is of the

form
I =Z MG k., ..., KNk, k700, k), (2.9)
n 5 5 1 2 n 1 2 n
k +...+k =k
n
: n e - th
where T = i1:[1 ' {kl}, M is a vertex function of n  order,

which is composed of the functions (vkz}il, and of the

_}
vertex functions P(k). Indices are not shown for simplicity.

i
(2.8) as a result of 'a walk in the Fourier space. The sum

Let us treat each k in (2.8) as a step, and the sum

=3 -3

; =>
(2.9) over all k is thus a sum of contributions to u (k)
1

from different paths {Ei}. For k >> kﬂ, the first n < k/kﬂ
terms in the expansion (2.7) give no contribution to % [E).
because the condition (2.8) can be fulfilled only if n>k/kﬂ.

Contribution of terms, which order n exceeds kr’kn only
slightly, 1is still small, because the available volume,
which is restricted by (2.8), is small. On the other hand,
the contribution of terms of orders n >> k/ko is small in
the parameter R << 1. So there exist an optimal order n >
> }c/ko giving the maximal contribution to u (k). The optimal
order n is produced by a competition among the available
volume and the power of the effective expansion parameter.

It may be concluded, that the optimal n, correspends to
such paths, that almost every step leads in E—direction, SO
that the longitudinal projections of Ei are positive, and
are of order of kﬂ. The transversal components of El are of
the same order but have no preferred direction.

When estimating the expression (2.9), the phases of the
complex amplitudes have to be taken into account. Denoting
3m{fc)=]$m{3-;]! exp [i¢rm{}2]], one has T=|TI|{ exp (i®), where T=

n
= exp [): log I;(?ci}l], ® =i gbﬁci]. Let us suppose, _that
£ i=1
v(k) is an analytic function of k. For a small variation of
a path {§1+6fci}, the phase & changes additively

i
| Eki. (2.10)

50 = ) spk),  spk) = LK)
TEn gl




Thus at large n, a small variation of a path may lead to a
great variation of the total phase &% > m. Such a behavior
of & implies a strong interference of contributions from di-
fferent paths. Only variations inside a thin tube Iin
E-space are allowable without destroying the phase &.

Let us estimate the effective number of tubes with
different phases. The total shift of the phase (2.10) is
composed of a large number of small shifts 6¢.[Eil o« 3Ei/kﬂ
with arbitrary signs, so 8¢ is estimated as in the theory of
Brownian motion as 6% « (Sﬁi/kn}\/ﬁ. This value is less than
m if 8k < kn/\/ﬁ. Thus in (2.9) one may replace the sum over

ki, i=1,2,... by a sum over elementary cubes of volume

[5ki}d o (kufv"ﬁ]d cx (ki/’k}djz (note, that n « k/’}{u]. The vo-
lume 'in which the factors v[E] do not vanish is of order k:,
so the number of such cubes is equal to kud/{kua./k]djz x
« (k/k )%

Any two paths are considered as different only if they
pass through different sets of cubes in any sequence, so any
path occur in (2.9) n! =~ Znnmuz/exp (n) times. Thus, the
number of different paths N(k) is of the order of

d/2:n .n{d-2)/2

1 /n! (k/knj exp (n). {211}

N(k) « {{k/kn]

Atd =z 2, n « R/ko >> 1 this number is very large.

The expression (2.9) can be written as a sum of

contributions from the tubes {Ei}

10

I {k} = Z M{k ) Ti{k ). (2.12)
(k)

The phase of the contributions has been shown to be a sharp
and complicated function of the path {E}. Very often such a
complicated function with sharp and unpredictable behavior
is identified to a random function (see for example
Lichtenberg & Lieberman 1983). Summing up (2.12) of such
random contributions may be treated as a random walk in a
complex plane. Both the amplitude and the phase of I,
which are results of the random walk, are random. 3

From the above considerations, we suppose that only the
statistical properties of the complex Fourier amplitudes
u (k) do matter at large wave numbers. The memory about the
phases of v (k) is lost, when the energy transfers to wave
numbers k >> !”'. The same supposition seems reasonable for
the most of the characteristics of the amplitudes of v {E}.
However, some information about the orientation of the
initial vortex 1is conserved because the random walk in
E—space has the preferred direction k.

If the most of the information about the large scale
field v is lost, we may replace it by a random field with
suitable statistical characteristics. For the dissipation
range turbulent fluctuations, such a theory was studied
previously by Kraichnan 1959, Kuz’min 1971, Kuz’min &
Patashinskii 1979, Dubovikov & Tatarskii 1986 with the

result (1.2). We develop much the similar universal theory
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for the small scale motions in vortices at small Reynolds

number. The only complication is the loss of isotropy.

3. THE EXPONENTIAL SOLUTION TO THE EQUATION
FOR THE SPECTRAL TENSOR

In the previous section, we examined a short wave asymp-
tote of the Fourier transformed velocity at small Reynolds
number. We argued that all details but isotropy of the large
scale velocity do not affect the small scale component at
d = 2. So the initial dynamic problem may be replaced by a
more simple statistical one.

Let us consider the equation (2.5), where v(k) is now an
external random field, the source of the smali scale motion.
It is assumed, that the random field fr is homogeneous, has
normal distribution, but is not isotropic. Note, that this
assumption ié not valid in the theory of developed
turbulence at asymptotically high Reynolds numbers, because
of the intermittency at the Kolmogorov scale (Monin & Yaglom
1971). In particular, the local Kolmogorov scale m may
fluctuate, and averaging over the fluctuations generally
influence the spectrum (Kraichnan 1967, Keller & Yaglom
1970). On the other hand, our consideration is restricted by
the condition R<<l. Our choice of the ensemble is rather
related to the structure of an individuai vortex packet that
has the same <!;[E)|2>.

_}

For the Gaussian field v(Kk) any mean value of the type

12

<V (k)...v (k)
i 1 i I
1 n

can be represented by a sum of products of all possible
pairwise averages (the analog of the Wick theorem in the
quantum field theory). The average <HI(E] VJ[E’ )> is repre-
sented by the Hermitian spectral tensor

0
1]

F° (k) = (L/2n)° -::vi{iil} vj[—i;]}.

We assume that the spectral tensor differs from zero only
when k = 17\,

Any velocity function can be expanded in a formal
functional series in v(k). The example of such an expansion
is the diagram series (2.7). The diagram expansion for the

spectral tensor

FH{;’Z} = (L/zn}"cui(ic’)uj(-fm

is obtained after multiplying (2.7) by the similar expansion
for u_(—fc} and averaging over v(k). In the limit L - 0, any

J
sums over wavevectors are replaced by integrals according to

(2n/L)* ¥ = J‘ diq.
-3
: q
After partial summing up of the nonrenormalized diagram
series, one arrives at the complete system of diagram
equations for the spectral tensor F , the response tensor
; 1]
and for the vertex functions (Kuz’min & Patashinskii 1979).

The analysis of the equations is similar to that
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performed by Kuz'min & Patashinskii 1979 for isotropic

dissipation range. The response tensor and the vertices

describe - the external nonrandom perturbations which are
unaffected by the weak small scale component E(E), so these
functions are assumed to coincide with the nonrenormalized
ones. In other words, for k>>fl the nonlinearity should be
taken into account only so far as it is the only energy
source. Therefore, it remains to solve the equation for the
spectral tensor F_. This equation assumes the form (see eq.

i]
(8) of Kuz’min & Patashinskii 1979)

MAS .
AAAY i
MG = 2 —a sy 15 /‘1/ " B i
VWA :
YW "

where the spectral tensor is represented by a wavy line
MA5. We shall seek the solution to the equation (3.1) in

the form
Fu[;'h=@”(:2) exp {~In(e)k]¥). (3.2)

Here e = k/k is the unit vector in the direction of k. The
function n(é] is supposed to be determined by the condition
Fi]ﬁFTJ at k~l". We suppose, that n{$}=n{-§], ¥>1, iI!ij is a
Hermitian tensor that wvaries, when k})i“l, not more rapidly
than a power function.

Let us compute approximately the tensor Fij with the aid
of Eq. (3.1) on the right-hand side of which we retain only

the first diagram. The equation to be solved is

14

FiAR)=p R ja"q{fw (@k_ A (BF_(k-qa_(k) +

ij 1 Im =n nj

sk F (@A (k) & (KF (k-q)k l.
I Im mj is sn n

Substituting (3.2) into this equation, we have
3 o=y Pl -+ ) -3:_—} -
wi}(k)—u k J dg {kiwlm(qlkm ﬁistk)@m(k q}ﬂnj(k)+
- 3 - b S [33]
+k ¥ (g)A (k) A (RK)¥ (k-q)k ] exp (K),
1 Im mj is sn n
where K = [kn(R)1¥- [qn(@1?- [1k-gin(k-@)17.

dominant contribution to the integral is made by the region,

At mk>>1, the

where the index of the exponential function has its maximum
value. For ¥ > 1, n (;3}) = 1 = const, the maximum lies in the
region, where 3 = E—E} = k/2. It is clear, that this maximum
remains if nonisotropy is not too large. To define this con-
dition more precisely, let us expand the index of the

of the

exXpo-

nential function in the components wave vectors,

_}
which is transverse to k. If we denote the nondimensional

: n - - - 5> 5
longitudinal and transversal component of g as s = ele'q/k),

and w= A () g/k, then
¥ j

' az,nar
de de
m

n

P S o 1
' (q/q)=n° (e)+ —-—-—aem w /s + 5

w W /52, (3.4)
m n

v 2_
Yeid ¥ -a_-)Na’-!_BTJ & ia'ﬂ
7’ k-q)/ | k-q |} n°(e) e wm/(l s)+ TR R

m m n

m n

q¥x sk 1+gw?/(25D)),  1k-q1T20-9) kK g’ /12(1-5)%D),

and
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f = k%’*’f{é]{u-sa’-(1~s)”1+[(1-51?'1-53"1 b B, T (3.5)

1 -2 -2 “n?
—E[:s:'ar + (1-5)7 ]}[1 A + 73 ]WW-
mn m n
It is convenient to choose the special coordinate system in -
which the last axis is directed along k and the other axes
are directed along the eigenvectors of the matrix -

| (B 'n?
de 4d :
‘I]'a, em en

(3.6)

mn mn

In this coordinate system the matrix A4 looks like

2.0 0.5
Iazo....... 0
Ak 5
0 0 O...A 0
d-1
0 0 0..0 )

where 11’9‘2""’hd~1' ¥ are the eigenvalues of the matrix A.

have dif-

ferent signs, then the function K has a saddle point at 1:»'=0,

One sees, that if the eigenvalues PLI,...,PL

s=1/2. If all ?Lm are positive, the function K has a maximum

at this point. If any hm=0, the terms of higher order in

expansions (3.4) should be taken into account. g

From (3.6) it follows, that an eigenvalue A may be
m

negative if the second derivative of 1;-3'

direction is negative and is

sufficiently large in its

absolute value, that is

16

in the associated L

Z2
a°qn?

2

s e %
7

N~ Jde

m

In these cases the dominant contribution to the integral

(3.3) comes from the Fourier harmonics with strongly
noncollinear wave vectors. Therefore, a strong interactions
among the Fourier modes with different directions of their
wave vectors occur. These interactions tend to diminish the
strong initial nonisotropy while the energy is transferred
to high wave number region. One may suppose, that the strong
nonisotropy with negative eigenvalues does not occur at
nk— w, though it might take place at a moderate nk. On the
contrary, arbitrary nonisotropy with positive eigenvalues is
possible at any mk>>1. We shall not consider these cases in
more details.

For a moderate degree of nonisotropy, the eigenvalues are
positive and the dominant contribution to the integral (3.3)
comes from the region where E}xﬂxz. Thus, the right-hand side
of Eq. (3.3) is of order exp [mk)¥(1 - 2791, and is expo-
nentially large as compared to the left-hand side. So for
¥>1 the equation (3.3) can not be satisfied. For 0<y<l, the
index of the exponential function has a maximum, when c}«i
orlﬁ-—&lcﬁk. This corresponds to a case in which the dominant
role is played by interactions of the short-wave pulsations
directly with the pulsations of the principal scale. It was
however, been shown (Townsend 1951, Novikov 1961), that such

interactions lead to a solution with =2, and not with %<I.
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Therefore, the only ¥ value that is not at variance with the

equation is y=l. a¥ (q) 5
" % K. ot w o == L ¥ (sk) w_,
For =1, the expressions (3.5), (3.6) look like m qu - -] e ok
w=
g 1 nk
K. = 5 515} Amn Wow., (3.7) : 7 G
i a.¥ slag) i awim(q} ; :
2 sk v ww == - —— w w S
A — S +,.1__,,_a_n . (3.8) v ka aq Eq * i S 3(}'5 5 S m
mn fmn n de dJde O | w=0 V=
m n
The preexponential factor ¥ is obtained with the aid of the . a@im[};)‘ A _}
Laplace method (Erdelyi 1961). The exponent K contains the k_ T| W s @Im[il—s) kl w .
g -3
w=0

large factor mnk>>l, and the dominant contribution to the

integral in the right-hand side of Eq.(3.3) is made by the By inserting (3.7)-(3.12) into (3.3), one obtains

- -_1 -} -
region, where g and k are almost collinear. So one may ex-

= 1 d 1 = % 3 %
WUU{] = J dgqg {_E v n(sk) @ij [(1-5) K]

pand ¥ (q), ¥ (k-g) in (3.3) in powers of w ) g= "
Im 5N
= ; “ (3.13]
8y  (q) e 14g)
- - Im IR Im > 5 1 nk

k4 = +K —— o 1 & - = .

Im[qJ l];rirrl{ﬂk:!'_ k aqs a Ws+ 2 % aqsaqr 4 Wswr+  ell-s) "ijESk} 1}-‘_1“[[1 s) k]} menexp [ 2 s(l-s) Artwrwt]

w=0 w=0
+
(3.9) The integration over w gives
3 3 awlm{;)}! 2 azmlm(';} 1 Nk
= i . AT 4 i d-1 - 5
¥V pi=y [(-s)k)-k A Wis S ap_8p_ |, N e _[ d”w w w_ exp [ 2 5(1-5) Artwrwt] s
w=0 w=0
where ' 3 : .
! aigeires, & it L (d-1)72 I25{l-s}][d 1)/2
q = k(se + w), p = kl(l-sle-w], e = k/k. (3.10) 2 amn / : (d+1)/2
The solenoidality condition (2.2) implies that 5 29‘“ ?‘132‘“?‘-:1—1 kadsy)
@ij(c-})qj = ‘I’_j(;}pj =30 (3.11) By virtue of (3.14), Eq.(3.13) assumes the form
i
Substituting (3.9), (3.10) into (3.11) and equating the ' o) & (zﬁ]{d"“’i "y i st[s{l-s]]mﬂ}fz}(
terms with. equal powers of w, one finds, that i) F
q p pz/ }‘1 "P‘d_l [nk][d 1)/2
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d~1

X ¢ (sk -s)k] - . -

l{ o LRI [(-8)k] - =l (kv [(1 5};{]}_
= f Y | * J

m

This equation has the power solution

SR B R )
§ 302k IR S o Oes. .
U {k} - L2 d=-1 Z
: T — - -
i i g e SRS e 0..x,_ 0
-1
0 0 0...0 :

Therefore, in any coordinate system the spectral tensor

(3.2) can be written as

z {d+1),2
-3 - . -
F]j{k}:expﬁ-nfk/kljm” (nk) Vet A (KA A (K)

5(d4=3) /25, oy d-2_ (a-1r2 im' mn nj
{3.15)
where the matrix Amn=ﬂmn{§2/k:: is defined by the Eq.(3.8). If
?}(E/k} does not__ depend on the direction of }"; then flmn=6mn,

and (3.15) reduces to the solution obtained by Kuz’min &

Patashinskii 1979, Kuz’min 1979 in the same approximation.

4. EXPANSION PARAMETER AND INTERMITTENCY
FACTOR IN THE DISSIPATION RANGE

Let us consider diagrams of more high order. A diagram

o ; ; d
Fn, containing n integrations over d k, has n+! wavy lines,

2n vertices and 2n functions (vk“)™.
2.2 >

Fn o (P/vk“)™ F™'k/(n+1)] (Ri lkJ",
where k; 1is the size of the integration domain in the

transverse plane. The exponential factor restricts this size

20

and ki, can be estimated as

K_!_ x V RKD.

One sees, that the effective parameter of expansion (3.1}
has the same order of magnitude as the first diagram in the
right-hand side divided by the spectral function F. This

parameter can be written as

F2(k72)[P%/(vk*) 1k k

(oo -
F(k) (vk")

The numerator is the nonlinear supply of energy, and the
denominator is the viscous dissipation. In a quasi-steady
case, these factors have the same value, so u o 1.

Kuz’'min & Patashinskii 1972, 1978 revealed a similar
parameter in the inertial range. The turbulent medium was
regarded as been made of wave packets. The Kolmogorov sca-
ling was treated as a situation wherein the wave packets of
all scales are constructed in a similar fashion and lose an
equal amount of power when overcoming the turbulent viscosi-
ty. So in inertial range both the numerator and the denomi-
nator in p are constants separately. The factor p should be
naturally called the energy conversion parameter. The para-
meter u proved to be of the order of the Reynolds number of
the wave packets, determined from the effective viscosity.
The Kolmogorov scaling corresponds to a case wherein this
Reynolds number does not depend on scale and is an universal

constant.
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In the dissipation range the Reynolds number of the wave
packets is very small, but the energy conversion parameter u
does not. The actual role of high order diagrams is estima-
ted by a direct calculation, which is possible in the dissi-
pation range theory. The readers may be referred to our
analysis of isotropic dissipation range (Kuz’min & Patashin-
skii 1979), where it was shown, that the approximate soluti-
on changes little when the next term in the series (3.1) is
taken into account.

Similarly to Kuz'min 1979, let us consider the small
scale intermittency in the framework of the diagram
technique. The small scale component of the velocity field
in the usual space is defined as

u(x,6) = § dk u(k) exp (ikx).
. Q)
The sum is over the region Q(f) where k > ¢'. The intermit-
tency of the small scale velocity u [f:, £) is determined by

the flatness factor (Monin & Yaglom 1971)
k(@) = [<u e, % - 3<u (x,0%%)/<u (x, B3 (4.1)
Let us consider the Fourier expansion of the numerator a(l)

in (4.1)

I T T T - 3 = ¥
a(l)= f:xp[L[k1+kz+k3+k4]x}[<ul{kl]ui(kz]ui{ka}ui{k4}>-

= o[~
x 4~

1 4

> s - -3
-3 <ui{k1]u1{k2]> <u1{k3}ui(k4}>],

22

where the summing is performed over all El. -2 Ea in Q(&).
After substituting of (2.7) into (4.2), one obtains a(l) as
a series of all possible diagrams with four exiting lines.

One of the lowest order diagrams is

—— =M,

- '

Z
(v--;-<—f'\M->

The spectral tensor decreases rapidly as its wave number
increases. Therefore the dominant contribution to the sum
(4.2) comes from the region where the wave number of the

internal wavy line is of order of 7. When compared to the

denominator b({) in u

b(f)
a(f) contains an additional wavy line, two bare Green
functions ¢e— « (vkz}_l, two vertex operators - « Kk and one
summing over the wave vectors k « 7. Therefore the flat-

ness is of the order

k(8) = a(&)/b8) « (&/m) * << 1.
The similar conclusion follows from the analysis o_f the
diagrams of more high orders. So the diagram technique
reproduces the above conclusion concerning the intermittency
in the dissipation range, and the solution for the spectral

tensor is self-consistent.
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5. CONCLUSION

In this paper we have analyzed the energy cascade
process at asymptotically high wave numbers. We give general
arguments, that the small scale motions should have random
phases, so no intermittency can be built up in this region.
Some amount of nonisotropy is conserved, while the energy
cascades to high wave numbers. It may be supposed, that the
motion in the dissipation range is composed of two
components. The first one is produced by decaying coherent
vortices of Kolmogorov scale. The energy spectrum of this
component may be similar to (1.1), which may be modified by
intermittency effects. The second one is the wuniversal
incoherent component with the spectrum (1.2). Some
similarity of the present picture to that proposed by Benzi
et al 1986 from direct computer simulations of the
two-dimensional flows should be noted. The universal
analytical theory for the incoherent component is proposed

and the solution for the spectral tensor is obtained.
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