MHCTHTYT SIAEPHOW ®UM3UKH CO AH CCCP

B.G. Konopelchenko, V.G. Dubrovsky

INVERSE
SPECTRAL TRANSFORM FOR THE MODIFIED
KADOMTSEV —PETVIASHVILI EQUATION

PREPRINT 90-149

A=

HOBOCHBHUPCK




Inverse
Spectral Transform for the Modified
Kadomtsev — Petviashvili Equation

B.G. Konopelchenko

Institute of Nuclear Physics
630090, Novosibirsk, USSR

V.G. Dubrovsky

Institute of Electrical Engineering
630092, Novosibirsk, USSR

ABSTRACT

The 24 l-dimensional modified Kadomtsev — Petviash-
vili (mKP) equation is studied by the inverse spectral
transform method. The initial-value problems for the
mKP-1 and mKP-11 equations are solved by the nonlo-
cal Riemann—Hilbert and d-problems technique for
the initial data decaying sufficiently rapidly at infinity.
The lump solutions for the mKP-I equation are found
explicitly. Wide classes of the exact solutions for the
mKP equation, namely, the rational solutions, inclu-
ding the plane lumps for the mKP-I equation, solu-
tions with [unctional parameters, the plane solitons
and breathers are constructed by the use of the
d-dressing method based on the nonlocal d-problem.
The Miura transformation between the mKP and KP
equations is discussed.
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I. INTRODUCTION

Wide classes of partial differential equations have been studied
in detail by the inverse spectral (scattering) transform (IST) me-
thod (see, eq. [1—6]). The Korteweg de Vries (KdV) equation, the
modified Korteweg de Vries (mKdV) equation, the nonlinear Schro-
dinger (NLS) equation and the Heisenberg ferromagnet model equ-
ation are one of the most important and interesting representatives
of the 1+ 1-dimensional IST integrable equations both from the
physical and mathematical points of view [1—6].

All these four equations have the 2+ l-dimensional (two spatial
and one temporal coordinates) integrable generalizations. They are
the Kadomtsev — Petviashvili (KP) equation, the modified Kadom-
tsev — Petviashvili (mKP) equation, the Davey— Stewartson (DS)
equation and the Ishimori equation respectively. Actual integration
of the KP equation has been connected with the essential generali-
zation of the IST method, namely, with the introducing the nonlocal
Riemann — Hilbert problem and @-problem into the method [7—9].
Then the DS equation [10—13], the Ishimori equation [14—16]
and some other 2+ 1-dimensional equations have been solved. The
nonlocal Riemann— Hilbert and d-problems method now is basic
tool for solving the 2+ I-dimensional integrable equations (see e.q.
the reviews [17—19]). In parallel the very general d-dressing me-
thod has been proposed [20—22]. With the use of all these methods
the KP, DS, and Ishimori equations have been analyzed in detail.

The aim of the present paper is to study the last (or the second)
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equation from the quartet of the 2 1-dimensional equations
mentioned above, namely, the mKP equation. This equation is of the
form

ViV —i_ V2V, 430620, Vyy—30V.d, ' V,=0, (1.1)

where = 4 1. Equation (1.1) has been introduced in [23] within
the framework of the gauge —invariant description of the KP equa-
tion. In [24] it has appeared as the first member of the 1-st modi-
fied KP hierarchy. Equation (1.1) is equivalent to the compatibility
condition for the linear system [25].

oW, + Wt V¥, =0, (1.2a)

Wy AW+ 6V + (avr—:aaa;' V,+ % wﬂ)qrﬁaly:m (1.2b)

where a is an arbitrary constant.

Generally, solutions of equation (1.1) are the complex-valued
functions. But in the case 6°= —1 (o=i) it admits the reduction to
the pure imaginary V while at ¢’=1 (o0=1) there is an obvious
reduction to real V. In view of this it is natural to introduce a new
dependent variable u defined by V=ou. In terms of u equation
(1.1) looks like

i~ lgex— 30° (é uﬁux—a_:‘uyﬁu,fa;'uﬂ)in_ (1.3)

In what follows we will refer to equation (1.3) as the mKP equa-
tion, namely, as the mKP-I equation at 6=i (6°= —1) and as the
mKP-II equation at oc=1. Both the mKP-I and the mKP-II equa-
tions obviously admit the reduction to real u.

The mKP equation is of the great interest by several reasons.
Firstly this equation may be relevant for the description of the
water waves on the plane (x, y) in a situation when similar to the
mKdV case one should take into account the cubic nonlinearity.
Secondly there is a close algebraic interrelation between the mKP
and KP equations similar the KdV case. In particular, they are
related by the two-dimensional Miura transformation [23, 25]

I

Aot 1 1 :
Uyp=— — ?cr(?x : ]r";r— ? Vx:"' —4— II""('z.
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Thirdly, the mKP equation, more exactly, the problem of finding the
exact solutions of the linear equation (1.2a) arises within the prob-
lem of construction of the exponentially localized solitons for the
Ishimori equation [26]. At last, the case ol the mKP equation is a
very interesting one from the point of view of the IST method itseli.
Indeed, the linear equation (1.2a) is not an appropriate reduction of
the good 22 matrix linear problem in contrast to the mKdV case.
So, one should apply the IST technique directly to the scalar linear
problem (1.2a) with the nonstandard normalization, i.e. with the
nontrivial coefficient in front of the first order derivative. Thus the
study of the mKP equation seems to be of an essential importance
for the development of the IST method.

In this paper we will consider both the initial-value problem and
the problem of constructing of classes of exact solutions for the
mKP equations (1.3). The general approach is the similar to that
for the KP equation [8, 9, 17—19]. But the mKP equation has
several important features. The first and main one is that in the
mKP case the adequate introduction of the spectral parameter 4 is
achieved by the transition to the function y via

AN : ol bl
W(x, y, £ 1) =x(x, y, 1 1) exp (.{ = ) (1.4)
The function y defined by (1.4) admits the canonical normalization
xr—1 and what is more important it obeys equations (1.2) for any

h—= o0

constraint free inverse problem data. Other features of the mKP
equation are discussed in the text.

We will solve the initial-value problem for the mKP equation for
the initial data u(x,y, 0) decreasing at (x*4y*)'/>>o0 and obeying

+ oo

the condition S dx u(x,y,0)=0. Similar to the KP case the inverse
prablem equations for the mKP-I equation is generated by the non-
local Riemann —Hilbert problem while for the mKP-II equation it is
generated by the d-problem. The constraints on the inverse problem
data which result to real u are found. For the mKP-I equation the
spectrum contains also the discrete part which corresponds to the
rational nonsingular lumps decreasing at all directions. The explicit
formula for the multi-lump solutions is found. The simplest,
one-lump solution of the mKP-I equation is of the form



Cﬁ-fﬂ -+ ﬁgE + Q?E‘E_ ﬁ'.'-l':z [ 1.5}
(R—ai) + b P+ ) +(ak+vi)*

u(x,y, ) =4

where #=x—3(a’+ b {+xo, j=y—6at+yo and where o, B, v, 4,
b, c, xo, yo are some real constants.

The scattering of the lumps is completely trivial. The explicit
exact solutions of the mKP-I equation which corresponds to the
degenerated inverse problem data are also found.

The use of the d-dressing method allows us to construct very
wide classes of solutions both of the mKP-I and mKP-I1 equation
which are not necessarily decreasing at infinity and bounded. They
include the rational solutions and the solutions with functional
parameters. General formula for the real rational solutions of the
mKP equation is

u{x,y,t}:—2n""§—lndet(l+ﬁd“1}, (1.6)
X
where
2y 12  iN ird .
App=20; = —_— — — — b , B=ih,
=a(x+ o+ g — 5+ = nshe RN s

where A and c; are constants. All real rational solutions of the
mKP-11 equation are singular. For the mKP-I equation the formula
(1.6) in addition to the lumps of the type (1.5), decreasing in all
directions gives also the plane bounded lumps which do not de-
crease in some directions. The simplest plane lump of the mKP-I
equation looks like

2)
i TE. Sy 5
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where A and & are arbitrary real parameters. Note that the exist-
ence of the plane lumps for the mKP-I equation is a novelty. Such
nonsingular plane lumps are absent in the KP, DS and Ishimori
cases.

General solutions of the mKP equation with functional parame-
ters are given by the following compact formula:

=20 Lin 3L 1.8
u(x, . 1) i ax ndet:‘% s

where

2
Apr=0u+ %S dx’ Epdx’, 4y, 1) m(X', 4, 1) ,

ﬁk.f:ﬁki- %S dx’ gk{xrt Y, f) Tl.l’x’{xr=y: '.:}

and &/(x, y, 1), ne(x, y, {) are arbitrary complex valued solutions of
the linearized mKP equation u;4 txx— 30%35 'uyy=0. The solutions
(1.8) are real-valued if &,= — Rem: for the mKP-I equation where
R, are arbitrary real constants and if Ee= —Er, NMe=mnr for the
mKP-II equation.

The class of solutions (1.8) contains as the particular cases the
plane soliton solutions and breather type solutions both for the
mKP-1 and mKP-1l equations. Explicit general formulae for such
solutions are presented. Plane solitons for the mKP equation corres-
pond to the choices &= —Rm=—2iR, expF(h) (mKP-I) and
£,= —2iR; expF(ia)), m=(—2/p) exp(—F(ip)) (mKP-II) in
(1.8) where |

=

Fo) & 2=+ 25 +H4is,

A

A are arbitrary complex parameters and o, B;, R; are arbitrary real
parameters. They are bounded and do not decrease at some direc-
tions. General breather solutions of the mKP equation are not boun-
ded but the singularities of some of them are integrable, i.e. u<L,.
Particular exact solutions periodic in y and decaying at x— - oo
and periodic and moving in x and decaying in y are presented.

The Miura transformation between the mKP and KP equations
is discussed. This 2+ lI-dimensional Miura transformation converts
the real-valued solutions of the mKP-II equation into the real-valu-
ed solutions of the KP-II equation, and, in particular, it maps the
plane solitons of the mKP-II equation constructed in the paper into
the well-known plane solitons of the KP-1I equation.

2. INITIAL-VALUE PROBLEM FOR THE mKP-1 EQUATION

We start with the mKP-1 equation (o==1i). It is equivalent to th
compatibility condition for the linear system -
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W, 4 W iu(x, y, ¥, =0, (2.1a)

WA AW x+ 6l e+ (:5;.5.r.mL3.a:r uu—?u )qf +a¥=0. (2.1b)

General scheme is the same as for the KP-I equation [8, 9,
17 —19]. The first step is the introduction of the spectral parameter.
Here the first difference between the mKP and the KP equations
appears. For the problem (2.1a) it is more convenient and adequate
to introduce the spectral parameter by transiting to the function g
defined by

W=y(x,y, t; L) exp |i [ (%—%)] (2.2)

A
where A is a complex parameter. The function y obeys the equation

' 2i ; I
1%y + Hex + T‘['}{.t"'u(ffax- T)x:ﬂ . (2.3)

It is easy to see that the function y admits the canonical norma-
lization y—1 at A—oo. It is also bounded at A=0 and

? g s h=0)
ulx, uy, t)=2i A%, 0 L &

(2.4)

Such properties of the function y are the consequences of the defini-
tion (2.2). Alternative way of introducing the spectral parameter is
discussed in Appendix A.

So, we are looking for the solutions of the linear problem (2.3)
canonically normalized and bounded for all A except, may be, the
finite number of points. Such solutions of (2.3) can be found as the
solutions of the linear integral equation

w6 A) =1+

-+ oo

— DG

where G(x—x', o y’; A) is the Green function for the operator

Ly=iad, —I—{L—{-—&x where 61“; 0y= 9 The operator Lo and

0x ﬂ_u
the Green functmn G are exactly the same (up to the substitution

10

A—1/4) as for the KP equation [7, 8]. Hence, similar to the KP
case, one can construct the two Green functions Gt and G~ given
by the following formulae

+ oo

crwnin=g § wle(+( ) ow -
—e(i(%——;-))H(—y)]exp[m{x,y; w M, (2.6)
where ©(E) is the Heaviside (step) function (e(z;)z{:]' ig)
and :
o u(t -ty a(h-g)  en

The Green functions G* (x, y; A) are analytic and bounded in the
upper and lower hali-planes of A, respectively.

They allow us to define the two solutions of the problem (2.3)
via the integral equations

5 g ) =14 [ u() (10— )i Je) . (@8)

As far as the Green functions Gt and G~ the solutions ¥+ and
¥~ of equations (2.8) are bounded and analytic in the upper and
lower half-planes of A, respectively, except the points A where the
homogeneous equations (2.8) have nontrivial solutions. Further, sin-
ce Gt — G =0 at ImA=0, then y* —y =0 at Im A=0 too. Then,
one can define the function

xz{}{*‘ ImA=>0
SRR T

which is analytic and bounded on the entire complex plane (except
finite number of points) and has a jump across the real axis.

So, we arrive at the standard singular Riemann— Hilbert prob-
lem. The nature of this problem can be analyzed exactly in the
same manner as for the KP e Jquatmn [7, 9]. To do this one have to
express the jump A(x,y,f;A) (X, 4,8 A) —x " (x,y,t;A) at ImA=0
via ¥ - .
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Subtraction of equations (2.8) gives

xR —x () =(G*(W) — G~ () u(i0— - )1 W) +

+6G7(0) u(i0— - )W) —x (M) (2.9)

Using the expression for G* () —G~ (A) at ImA=0
Sigl
b et {Seaadd o ;
O+ =G )= | Lsen(--— - Jexplotryzmh)], 210)

= 0D

which follows from (2.6) and easily verified identity

(sag—' — ) (@& n) exp| (&, ni W) =

= expl o0& miw 1) (05— - ) D& M), (2.11)
o
one gets
+ oo
Alx, y; h) = S %T(h ) exp | o(x, y; u, A)] +
Jr[{;—(-;m u{-)(iﬂ——-i—)ﬂ{-;h] Joe.0. (2.12)
where

0= é:";sgn (':T“ {—) X

+ oo

x{ { dtdnu(io——)x*Eweplo@miml.  (@13)

— oo

Then we introduce the solution N(x, y; m, A) of the problem
(2.3) which is also the solution of the integral equation |

N(x, y; p, A) =exp | o(x, y; p, A)] +
+ [a+Cim ue) (9= - Ve ), (2.14)

where o is given by (2.7). Comparing the integral equations (2.12)
and (2.14) and assuming that the homogeneous equation (2.8) (and

12

(2.12)) has no nontrivial solution for real A, one concludes

Aty )= | i—-;'* T(h, ) Nx, g3 o ) . (2.15)

— oD

Now one needs to express N via . It follows from (2.8) and
(2.14) that

¥~ (%, y; k) exp [o(x, y; A)| —
—[6Cim ul) (9= 5 )a (i e[ W] [ 9) =expl d(x. 55 W] (216)

a
an—h

TR ; 1 AN, A)exp[al-;A)]) T, o
i : bl e =
[G (b ;'(“ A ) aa—h ]{x’y}

(N(x,y; n, &) exp| @(x, ;s A)]) —

—exp| @(x, y; A)] F(p, M), (217}

s A

(G~ D)(x,y) =exp [o(x,y; M) (G7(+; M) exp[ —@ (- 4)] O(+)) (x,4) (2.18)
and

where o(x, y; A) :i(i— _y_z_} the Green function G~ acts as

-+ oo

Flu, \) = -;; S S dE dn u(E, 1) (mg_ }L) N(E, m; 1, 1) - (2.19)

- 00

The comparison of equations (2.16) and (2.17) gives

3
a(a—")

(N(x, 43 p, 2) exp [ @(x, g5 M)]) =F(u, ) %~ (% 4 1) exp[ @(x, y; 3)] .(2.20)

Since N(x, y; A, A) =y (X, y; ) at ImA=0, equation (2.20) implies
N(x, g5 w, &) =x" (% y; 1) exp [o(x,y; p, A)| —

d - . T
— —S-F(p,, p)x (x,y; p) exp | o(x,y; p,A)]. {2.21)
4

1]

Substituting (2.21) into (2.15), one obtains the expression for the
jump x* —y~ via y~ we are interesting in:

13



+ oo
r (A —x (5 y ) = S i—‘; T(h, n) 1~ (%, y; n) exp| o(x, y; u, A)] —

— OO0

+ o0 h
& S % Tt w) S%%F{% p) x~(x. 45 p) exp| ox, 45 . V], (2.22)
et :

where the functions T(A, p) and F(p, A) are given by (2.13) and
(2.19) respectively. Changing the order of integration in the r.h.s.
of (2.22), one finally gets

: + o=
1Y g M) —yx (g M) = S %f(h w) x~(x,y; ) exp [ofx, y; 1, A)], (2.23)
~ (ImA=0)
where
4 oo

) =T, 1) B — 1) § Z3700,0) Flpy 1) +

+ oo
+6(u—2) | f:—’;"m. 0) Flp, ) (2.24)

and w(x, y; w, A) is given by (2.7).

The relation (2.23) demonstrates that the Riemann— Hilbert
problem we are dealing with is the nonlocal Riemann — Hilbert
problem. Similar to the KP equation the nonlocal Riemann — Hilbert
problem (2.23) generates the inverse problem equations for the
problem (2.3)

To obtain the complete set of the inverse problem equations one
has to take into account the possible singularities of the functions
++ and . In our case equations (2.3) and (2.8) are not seli-adjo-
int. As a result, the structure of singularities for the functions Yl
and Yy~ may be rather complicated. Here we will restrict ourselves
by the consideration of the simplest, the simple pole singularities,
i.e. we will consider the functions y* and x~ of the form

i o E
oy =1+ ) SIS (e yh), (2:25)
5 &

=

14

where y T and x~ are the functions analytic in the upper and lower
half planes, ci are normalization constants and as usual % (x, y)
are the solutions of the homogeneous equations (2.8)

wE(x, y) = [r_:t(- AE) u(+) (iﬂ— L)xg(-) ]{x, g, k=t ony. (226)

A

We will normalize the functions y& (x, y) as follows

lim ( = f_f)xf(x,yj=1. (2.27)

(') =00 i

In such normalization one has cf=-—ii§g (see Appendix B). For
the functions x& (x, y) the following important relations are also
hold:

; e (— ik 5 g (x, y) 2y - :
]' L] :;"-'\'I : = R S J i
lim (}: i S )— (x = TV )ﬁix, y). (2.28)

where yit (f) are some independent on x and y functions. The deri-
vation of (2.28) is similar to that in the KP case. We will present it
for completeness in the Appendix B.

Thus, we have the nonlocal Riemann—Hilbert problem with the
simple poles. Using (2.25), (2.23) and standard formulae from the
theory of complex variables, one gets

4 |"_j||__ e i : n _,'l"zl Fa
e ys h) =1+ Z - iji?‘x 9 4 Z S ;_*i:rlx‘y} -
k=1 E=1

+ oo 4 oo

' +-]—, S f—”' S %‘j—'f{u,m:a:‘(x‘y;p}explwtx.y;p-u}l- (2.29)

— — oo

Prgceéding in (2.29) to the limits Im A——0, T g ST
using (2.28), we obtain the system of equations

4 }._+2 4 " _]L,_E i

A e R e e e

x5y A+ }h__}vj+ g ogm
k=1 k=1

oo e

! d rdp g _ _ _
= Om S M_.='hiiéu] S %ﬂwﬂ}x (x,y; p) explo(x,y; p,n)| =1, (2.30)
(ImA=0)
15



A E
: he iai 1 Q dp S dp
L = — X
% Z AE—dp 2mi 1 p—Af p?

k=1 — Do — oo

X f(n,p) x " (p) exp [o(x, y;p,0)] =1, j=1l...n.. (2.31)

Together with the reconstruction formula for «potential» u

u(x, y,t) =2i(ln yo)«, (2.32)
where

M & M
vl y) L oxx,y; Aa=0)=14i Y Afw+i) Ay +
k=1 k=1

-+ o + oo

+50 02§ 2 o) n (o) expl otxip. )] (2.33)

— 0 — o

the system of equations (2.30), (2.31) form the inverse roblem
equations for the problem (2.3). The set ZF E{f(n,p),
— AT g P oo M, ¥ (R=Ll... i ): Ar,yi  (R=1..,1-}]
is the inverse problem data. The inverse problem equations (2.30),
(2.31) are uniquelly solvable at least for small data. Solving equa-
tions (2.30), (2.31) for given &, one reconstructs the potential
u(x, y) via (2.32). Note that this set of inverse data is not comple-
te, since we have restricted only by the simple pole contribution to
the discrete spectrum. Multiple poles will be considered elsewhere.
Emphasize one important point. The solution % (%) of the inverse
problem equations (2.30), (2.31) obeys the linear equation (2.3)
with u given by (2.32) for any data ¥ without any constraint. This
can be easily seen by the substitution of the asymptotic expansion

y;:l—i—-,l:x_,-i— %I _ot... at A=-o0 into (2.3). Such a property of

the inverse problem equations and data is the important advantage
of the way (2.2) of the.introduction of the spectral parameter.

To apply the inverse problem equations obtained for the lineari-
zation of the initial-value problem for the mKP-I equation one has
to find, as usual, the time dependence of the inverse problem data.

16

This can be done in a standard manner by consideration of the line-

=+ o0
ar equation (2.1b) with S dx u(x,y,0) =0 and a=4iA"° at the limit

—_—

x* 4 y*—>o0. One gets

Bfhawt) _ 4; (% = ;—3);(:&, w1,

at
ME oy _ 12 -
g it e M (2.34)
Hence
e - S W
b, ) =100 1, 0) exp [41 (5 —<5)1 ],
VE(D) = ;i’ FyE0),  AE() =AiE©0) (2.35)

where f(A, p, 0) and vy (0) are arbitrary function and constants
respectively. -

The formulae (2.35) and the inverse problem equations
(2.30) — (2.32) allow us to solve the initial value problem for the
mKP-1 equation by the standard IST procedure [l —6]

u(x, 4, 0)+F(0)=>F(t)—>ulx, y, 1) . (2.36)

The solution u(x, y, t) of the mKP-I equation reconstructed
from the generic inverse problem data & is the complex-valued one
in general. Of course, the reduction to the real valued u is of the
main interest. Unfortunately we are not able to describe such a
reduction as an involution for the function . The constraints on the
inverse problem data & which quarantee the reality of u can be
obtained in a different manner, namely, by the analysis of the weak
u limit of the inverse problem equations. Indeed, for small (in a
suitable sence) u(x, y, {) one has

y=~1, N~explo(x,y;pn, 1),
L

Flu, M) = — ==\ | dldn ug n, 0 expl (g, n;w. W] - (2.37)
2mn

Hence for small u

17



1 1 |
T L (___
fito ) = 5—Sgn (= u) X

]

x| dzdnuiz, m) exp [sg(% = ﬁ) - (ll - #)] .. (2.38)

—

Now it is easy to see that the condition #=u, where bar means the
complex conjugation, implies

f A) p=fAp) A, ImA=Imp=0. (2.39)

It is not diificult to show, using (2.28), (2.29) and (2.5), that the
constraint (2.29) guarantees the reality of u for not small u too.
The reality constraints can be derived also for the discrete part of

the inverse problem data: ny=n_, A=A, &= —iAE/2+6F,
8- =i .

3. EXACT SOLUTIONS OF THE mKP-1 EQUATION

Exact solutions of the mKP-1 equation can be found explicitly,
as usual, for the pure discrete data and for the degenerated pure
continuous data.

For the pure discrete inverse problem data (f(iA, p)=0) the
inverse problem equations (2.30) — (2.32) are reduced to the follo-
wing

[

2y 12¢ + T T
pams. 4 *00 ; ha Xk
(x Mt 25 :ufz+?f ( })x; 55 A —Ad t
k=1
k=]
5 e A "21{ ;
+¢ *'_f—,:zls i=1, .., ny (3.1)
hi——2,
k=]
LE]
and
u(x, y, f}=2£—£—1n (1 +iy At +i ¥ L;:;). (3.2)
5 Ro=] k=1

18

The algebraic system (3.1) can be readily solved and then (3.2)
gives us the explicit solutions of the mKP-I equation. They are the
rational function on x, y and ¢. The real-valued u(x, y, {) arises
only for the special choice of n,, n_, l;“,l; and y.~. It is not dif-
ficult to show that the function u(x, y, f) is real one if

ny=n_=n, A =21t ?j:—-éxg-jta;, (3.3)

where ﬁ;:gf are arbitrary constants.
In this case introducing the notations

Frvoe b AT o el et

(Vi1 (0)s - 74 (0), %1 (0), .., 7,7(0)) = (41(0), ... 7240)) . (3.4)

+

-4- = -
Bt i X 2 Mr v Xa ) =(X1, .-, x2n)

one can rewrite the system (3.1) in a more compact form

2n

2 12¢ N ;
(=00 )t Y22y (=i, o). (35)

i ;"-a' . —J'vw

k=]

Solving (3.5), one obtains
dﬂ't:q—f"-lz :‘n.ktqkli

. . ki
ulx, y, t)=2i—| - .
(x.9.0) t&x : ( det A ) )
where
2 12 (02
Ap= ( —*—H‘F._:“—F vi (0) )ﬁu () =T it o (3.7)

and Ay is the cofactor of the element A;. In virtue of (3.3), one
has

det A+i) AAu= detA. (3.8)
b i
Hence
wx, gy, =4—'llm in det A =4 - arct Ju det 3
(x4, 1) ax dx s Redet A’ 92

where A is given by (3.7). One can also show that under the con-
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straint (3.3) the function u(x, y, f) is bounded on the whole plane
(x, y). So, the formula (3.9) gives us the rational nonsingular solu-
tions, i.e. the lumps of the mKP-I equation. The simplest, one-lump
solution is of the form (n=1)

o+ 41AI2Re (1/4%) 52— 4|A12 Re (1/A) R G — ~& | A"

435
u(x, ¥, t) =4 (3.10)
o Dhgo\TL AN e MY o ‘
4 L =2 ] Lt 2 2 9
((x mﬂ*’) LTV Cl vy )+(er 2(%|*Re(1/2%) §)
where
7 12t A ” 125 pf A2
=_ g e B el 3.11
ki T R T L e

and 87 =8 46,
The lump (3.10) moves with the velocity V=(V: V,)=

i (%ll—i%@) and decays as (¥*4y°) ' in all directions on the

plane (x, y).
The general solution (3.9) describes the scattering of n lumps of
the form (3.10). It follows from (3.9) and (3.7) that at {— 4= oo:

u(x,y, )= Y da(x—Vart, y— Vayt), (3.12)

o= |

where u, are the one-lump solutions (3.10). Hence, thee scattering
of the lumps is completely trivial similar to the KP-I case: the pha-
se shift is absent.

The lump solutions (3.9) are the transparent «potentials» for the
problem (2.1a).

Another class of explicit solutions corresponds to the degenera-
ted pure continuous data, i.e. :

}"fe:l::ﬂ? Hl’k_t :0
and

P p,0)= ) guh) he(n) (3.13)

k=1

where g, and h, are arbitrary functions.
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In this case the inverse problem equations, i.e. the equation

+ oo + oo
- il dp dp - X, 4,
e oo | — { SHe @ e =1 314

is reduced also to the algebraic system.
Here we will consider directly the real-valued solutions u(x, y,

t). For the functions f(A, p, 0) of the form (3.13) the reality condi-
tion (2.39) is satisfied if

he(p) =Rege(n) n. (3.15)

Where R, are arbitrary real constants. So

f{;"'r K, D) =

| D=

Rege(h) ge(n) n. (3.16)
I

Substitution of the function f(A, p, 0) of the form (3.16) into (3.14)
give rise to the algebraic system '

ZAIkEk:hI, [=1,..,n, (3.17)
]
where
-+ oo
def R dh . 41
) L | Sra) exp[a({—%ﬁ;)], (3.18)
+ oo
X, !I g{ Re E‘.E'l}h = i i__y._. ﬂ
Exl(x, 4, 1) \/ﬂ _Sm Y ge(h) %~ () exp L(L . + 1,3)]’ (3.19)
a +m
Auli .0 S g0 0 [-_*’__iﬂ
u%, 4, t) = Sut o S 7 Qi(A) exp 1(1 H+M-‘)]X
-+ oo
dp I 4t
X g—u—(m—m) gx(p) exp[ -,(H F+F)]' (3.20)
21



For given arbitrary functions ge(A) (k=I1, .., n), solving the
system (3.17)

E=) (A" ") ha (3.21)

k

and taking into account (2.29), one finds
1 (A=0)=1—iY R, "m(A Y uhe=1+tr M (3.22)

Lk

where %
M — iR (A Y he. (3.23)

Matrix M has rank one. Hence, det(l4+M)=1+4trM and
¥~ (0) =det (1 +M). Then using the identity

1 ] 1

Mp—(—i0) . pA—(u+i0) (3.24)
one can show that
RiAu(x,y,t) —(AT )i (x, 4, ) Re=ihi(x,y,1) ha(x, 9, 1) . (3.25)
As a result one has
yo=det (1 +M)=det(ATA~ ") = det A (3.26)

det A

Thus, the solutions of the mKP-I equation which correspond to
the data (3.16) are representable in the form

: il Im det A
g ,f :4 ‘— ‘t o 327
u(x, 4. 1) ax e Re det A ( )

where matrix A is given (3.20). Solutions (3.27) depend on the n
arbitrary complex-valued functions of one variables.

The solutions (3.27) can be rewritten also in the terms of the
functions A only. Indeed, using the identity

0

i 1 o | .
= — dex exp |—i [—— — —i0 : 3.28
TR ST R xﬂp[ l(:u m E}X] o
one gets
A:k{x.ysn‘f):ﬁm‘i'iﬂk_] de;mgj;’—;‘ti’-ﬂﬁk(f,y.f}. (3.29)
+ oo
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The functions hu(x, y, t) are evidently the solutions of the linea-
rized mKP-1 equation

(At +Pexs)s — 3hyy=0. sy

So, the solutions (3.27) of the mKP-I eqﬁatiun are parametrized by
the n arbitrary complex (2n real-valued) solutions of its lineariza-
tion (3.30) of the form (3.18) decreasing at infinity.
The simplest solution of this type is
u(x,y, 1) =4 —ﬂ—alrctg hix.y. ) I'/2 ; (3.31)

dx

R+ Re ( i { X ) Ry, )

oo

where h(x, y, t) is an arbitrary solution of equation (3.30) of the
form (3.18) decreasing at infinity.

-

4. INITIAL VALUE PROBLEM FOR THE mKP-11 EQUATION

For the mKP-II equation (1.3) (0=1) the corresponding linear
problem is of the form

Wb W, =0, (4.1)
Similar to the KP case [8] the properties of the solutions of the

problem (4.1) are cardinally different from those for the mKP-I
equation.

Spectral parameter A is introduced similar to the mKP-I case:

Wk, g, ) =x(e.y, ;1) exp iS4 L] (4.2)

Thie function y(x, y, t; 1) (4.2) obeys the equation

o -
Yo+ Xoes+ Tm+u(ax+ -i—)x=0. (4.3)

The solutions of (4.3) admit the canonical normalization

x—r 14+ 2= 4 (4.4)

A o A
and
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ulx, y, ) = —Q%In %o, (4.5)

where xgﬂx(x, y; A=0).
So, we will looking for the solutions of the problem (4.3) boun-
ded on the whole complex plane A and normalized as x—> 1. Such

A—+ 0o

solutions can be constructed as the solutions of the integral equa-
tion

g : =
Ky ) =14 [6C:0u(0+ - )x0) v (4.6)
where G(x, y; A) is the bounded Green function of the operator

Lo=3d,+ 8%+ (2i/A) 0x. It is exactly the same Green function (up to
the change A—~>A"") as for the KP-II equation [9]:

G(x,y; b) =
oo 0 - [N
1 d d d
- Lfevafo—n ([2+ | %)-ew [ <]+
It 1} . 13 T
0 =y — oo
0 — 1Al /20 + o .
d d
ro—rofo—n( [L+ | B)-ew | L]}x
3 :
— oo 0 -—|i‘u|jfﬁlg
G (1= A (47)
M hp
This Green function is non-analytic everywhere:
0Gx. i) _ 1 * o g ipx i 48
P gn (hp) exp (ipx+iqy) , (4.8)
where
O L oL el
o5 2 (61R+I63,)
and
_ Atd P L el 19
=T E= (4.9)

Hence, the solutions of equation (4.6) is non-analytic everywhere
too. Following to the standard d-method, one has to calculate now
dy/dA. Using (4.8), one gets

24

ay(x, y; A, A)
ar
where

= F(.7) exp (ipx+igy) + [G(-: 0. B)u(-) (9 +f)-§-})]{x,m (4.10)

2

BT
2n| Al

F(h, 2) Sgn (hg) X

+ oo
X | { dxdnexp(—ipt—ign) ue.n) (04 )x&min 5.

- O

Introducing the function N(x, y; A, &) which obeys the integral
equation

N(x, y; h, &) = exp (ipx +iqy) + [G{-;x_r:} u{-)(a+ %)N(-:L 7 ]{x_m (4.12)

and assuming that homogeneous equation (4.6) has no nontrivial
solutions, one gets

9% _ FA, &) N(x, y; M, 1) - (4.13)

g

The interrelation between N(x, y; A, A) and x(x, y; A A) follows
from (4.12), (4.6) and the symmetry property of the Green function
(4.7)

G(x, y; b, A) = G(x, y; —A, —M) exp (ipx +iqy) (4.14)

and the identity

(ax—i— %)[exp{ipx—l—z’qy} ®(x, y)) =exp (ipx +igy) (Bx— %)‘{D{xt y), (4.19)

where @(x, y) is an arbitrary function. Indeed, multiplying (4.12)
by.exp(—ipx—iqy), comparing the obtained equation with equation
(4.6) with the change A—»—A and taking into account (4.14) and
(4.15), one finds

N(x,y; AA) =exp (ipx+iqy) x(x, y; —A, —A). (4.16)

So, we have the following d-problem

Ayx, y: A A)

2= Fb, A) exp (ipx+igy) x(x,4; —h, —1), (4.17)
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where the function F(A, A) is given by (4.10). The d-equation
(4.17) generates the integral equation

1[-‘?: Y, A, I}':l +

I

G i SS dp AR £y 7 exp (iPx+igy) y(x, v, — i, —w) , (4.18)
T n—A I

R O s W8 S RN
s (u+ ;I)' 9 E(LTJ pﬂ)

via the generalized Cauchy formula.

Equation (4.18) is the inverse problem equation for the problem
(4.3) and the function F(A, X) is the inverse problem data. Equa-
tion (4.18) is uniquely solvable at least for small F(A, A). Similar
to the mKP-I case the solution x of the inverse problem equations
(4.18) obeys equation (4.3) for any constraint iree inverse problem
data F(A, X).

The time dependence of the function F(A, A) is defined similar to
the mKP-I case. One has

where

F(h, &: ) = F(\, & 0) exp [ 4i (}q +L,3)r] (4.19)
where F(A, A; 0) is an arbitrary function.
The formulae (4.19), (4.18) and (4.5) linearize the initial value
problem for the mKP-II equation via the standard IST scheme.

For the real-valued «potential» u(x, y, {) equation (4.6) with the
use of (4.11) and (4.15) gives

w(x ys MR =x(x,y; — R, —1). (4.20)
So, for the real-valued u(x, y, {) the d-problem (4.17) is of the

form

dy(x, y; A, L)

Yik2) — F(0,R) exp (ipx+iqy) 2(x,y: 1. D) (4.21)

In the terms of W(x, y, ) (4.2) one has

aW(x, y; h, &)
ah

= F(A, ) W(x, ¢; M A) (4.22)

Thus, for the real valued u(x, y, {) the bounded solution of the
26

problem (4.1) is nothing but the pseudo (generalized)-analytical
function in a sence of L. Bers [27] and 1. Vekua [28]. The proper-
ties of the pseudo-analytic functions [27, 28] guarantee the solvabi-
lity of equation (4.22) and hence, the inverse problem equations for
the mKP-II equation with real u(x, y, {) for any smooth data F(A,
A). Note that the similar situation takes place for the KP-II equa-
tion too (see e.g. [19]).

Emphasize that the inverse problem for (4.1) can be solved in a
manner when one starts from the very beginning by the looking for
its solutions within the class of pseudo (generalized)-analytic func-
tions.

5. -DRESSING METHOD FOR THE mKP EQUATION

In the previous sections we solved the initial-value problem for
the mKP equation and constructed exact selutmns for the class of
u(x, y, t) which decrease as O((£+y°) ") at (¥*+4°)'/*>o0.
Much wider classes of exact solutions can be constructed by the
d-dressing method [20—22, 19]

The d-dressing method is based on the use of the nonlocal
d-problem [20—22]

E“{;—f —(xR) O, ) L\ aw Adi x0, 7) R, R0 R) (5.1)
o

where in our case y and R are the scalar complex —valued functi-

ons. We assume that the function y has the canonical normalization

(x—+1) and the problem (5.1) is uniguelly solvable. The nonlocal

d-problem is a significant generalization of the nonlocal Rie-
mann — Hilbert problem and quasi-local d-problem which have ap-
peared in sections 2 and 4.

A dependence on the variables x, y and ¢ is introduced via the
following dependence of R on x, y, {

IR(V, M3 hhix g f) . (L

5 i)e(w Voakxu ),
ax A L

AR AL B el B ( ] 1
ay 1]

b ﬁ)w, Mohhox, g b) (5.2)
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IR AR o)t 1 e
S = i (:L’E" )R(JL Wik b,
i.e. :
R(l’,if;?»,i.;x,yf}=exp(fi+ g +£)><
r l.r nlrﬂ }u.r::I
oo ix y 4it
X Ro (W, 5 A, &) exp (_T—Fﬁ_?ﬂ)‘ : (5.3)

where Ro(A\, A’; A, &) is an arbitrary function and o*= +1. With
the use of the «long» derivatives

: ; &
D.=0d,+ % Dy=0,+—5, ﬂf=a¢+h—; (5.4)
equations (5.2) can be rewritten as
[Dx,R]=0, [D,R]|=0, [D,R]=0. (5.9)

A main problem consist in construction of operators L of the
form

L= ) tun(x,4,0) D{D,D[", (5.6)

a,l,m

where um(x, y, f) are some function, which obey the condition [20,
21]

|2 L]=0 (5.7)

oA

i.e. which have no singularities on A. For such operator L the func-
tion Ly obeys the same d-equation as the function y. If there are
several operators of this type then in virtue of the unigue solvability
of equation (5.1), one has

Liy=0. (5.8)

The system (5.8) is just the linear system which generates the
corresponding integrable equation [20—22].

In our case one can construct, as it is not difficult to show the
two operators L, and L; which obey the condition (5.7), namely,

L] :(TD[;_I_ D%—I_‘juDI ¥
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— -

Lo=D,+4D% 4 60uD?+ (3nu,,+ _35 o*ut—3¢% ! uy) Do (B

where .
w(x,y,t) = —20""! i %0 (5.10)
dx

and yoZy(A, A;x,4,8)| ,—o The corresponding linear system (5.8) is
nothing but the system (1.2) with V=ou, the compatibility of which
is equivalent to the mKP equation.

Emphasize that the absence of the term of the form p(x, y)y in
(5.9) for any Ru[l’ A; A, A) is the consequence of the x, y, { depen-
dence (5.3) of R via l/l

The formula (5.10) is, in fact, the dressing formula for the mKP
equation. Indeed, starting with arbitrary given function Ro(%/, Al A
A) one firstly finds the solution x of the d-problem (5.1) whlch is
equivalent to the integral equatiun

dN A di
i

XA x g ) =14 — Sg (xxR) (W, X , (5.11)

C

where R(M, &'; A, A; x, y, {) is given by (5.3) and then the formula
(5.10) with

o l d) AdV ,
xo=1+ 5= (| =55 (xeR) W, 1) (5.12)

gives us the solution of the mKP equation.

Emphasize that within d-dressing method nothing is assumed
about the behaviour of u(x, y, ¢) at x, y—oo.

Constraints on the data Ro(A/, A’; A, A) which give rise to the
decreasing at infinity solutions u(x, y, f) of the mKP equation can
be found by the consideration of small u similar to the KP equation
[29]. In this case one has x~1 and hence,

wasef i B H_zjm; g§ d}u’,:;d}? SS dag,;fi %
cren 0y e~ L)oo (= (G hy o

From (5.10) and (5.13) it follows that the necessary conditions for
decreasing of u at x, y—oo are
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(=)0, m(i(h-)=0 e

At o=i the constraints (5.14) give ImA’=ImA=0 while at o=1
one has A"= —A. So, the decreasing solutions of the mKP equation

correspond to the kernels R of the problem (5.1) of the form:
for mKP-I

Ro=Ti(M, ) 8(W —W)8(h—A) (5.15)
and for mKP-II

RD=T“{:‘|¢, .?'.) 6{1:_‘_}") " {516)

where T, and T, are arbitrary functions.

It is easy to see that for the kernels R of the form (5.15),
(5.16) the nonlocal d-problem (5.1) is reduced to the nonlocal Rie-
mann —Hilbert problem (2.23) and the quasi-local @-problem
(4.16), respectively.

The consideration of the small u allows us also to find the con-
straints on R which guarantee the reality of u(x, y, {). For the rea-
lity of u given by (5.10) it is sufficient that (for general u)

i ] =1 (5.17)
at o=i and

K0 =="%0 (5.18)
ato=1.

For small u the constraint (5.17) implies
A=—A, (5.19)

where A is defined in (5.13), while the constraint (5.18) gives
A=A. (5.20)
Changing the order of integration in (5.19) and (5.20), we ob-

tain the following reality constraints:
for mKP-I

Ro(W,M; A K) M = Ro(k, A; &, A7) A (5.21)
and for mKP-II

Ro(M WA h) = Ro(—N, —" —X, —2) . (5.22)

I_terating equation (5.11); it is not difficult to show that the condi-
tions (5.21), (5.22) are the reality conditions for nonsmall u(x, y,
t) too.
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In virtue of (5.3) the reality constraints (5.21) and (5.22) evi-
dently are preserved in time.

6. EXACT SOLUTIONS VIA 3-DRESSING

The d-dressing method allow us to construct several classes of
exact solutions of the mKP equation.

6.1. Rational Solutions. Plane Lumps

We start with the construction of solutions with the rational

"dependence on x, y and {.

Let us choose the kernel R of the d-problem in the form (see
e.g [19])

Ro(p, p; &, &) = Eﬂ; = 2 Sk, A) O(A—he) 8(n—Ae), (6.1)

1

ol
§ 1=

where 8(A—A:) is the complex Dirac function, S¢(p, A) are some
functions and Ai,..., Ay is the set of isolated points distinct from the
origin.

For the kernel Ry of the form (6.1), one has

N

UEL — —n Y x)e ™ TS 0, 1) SA— D), {9:2)
k=1

where
4it

Py E X ol L T
*) tl—l_ﬁlzr}_la

Then equation (5.11) gives at As=he(k=1, ..., N)

'3

N
e e (63)
k=1

while in the limits A—A;, using (6.2), one gets

o ) e AT
e S§ T
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N

% 5 Z x(lk:} EF{}-.;;}-F{?'"] Sk(-?'uk,}ur) G(Iﬁ."—hk) : i=1,..N. (6.4)
R
The term in (6.4) witn k=i is equal to

i ¥(hi) e =0 Si (i, 1) |
(A—2a)? A=

= x(M)(S"(h) — Sihi, M) F'(h)) ,  (6.5)
where :
F!{J‘,@) g aFl:}u} ix : 2y E
dr  Ia=a ook . A
and

! € asi"r‘,l
e o

As a result, equations (6.4) with different i give rise to system

x(a,-)(z+Ss(z,f)—sfff(1£-}}+Z fi_}%zl, ft: W (6.6)
k=i '

Sulviflg the system (6.6) with respect to y(A), one then finds the
solution of the mKP equation by the formula (5.10) with

N

T %) Sy :
xo kzl --—}uk g (6.7)

Since F’(M) is the linear function on x, y, ¢ then the solutions con-
structed are the rational functions on x, y and ¢. Note that the
system of the type (6.6) which define the rational solutions has
been derived for the first time in [20] within the dressing method
based on the nonlocal Riemann — Hilbert problem.

The rational solutions constructed above are representable in the
following compact form

i - Fy " Eﬂ; Indet(l+B8-4"") (6.8)

where the N X N matrices A and B are defined by

Aa:ﬁm(l+s;f—SfFf{af))—{1—6,-k}}_S“ f 69)
Bu=—Sp A (6.10)
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The reality condition of u implies certain constraints on A, ..., Ay
and Si, ..., S, We will consider these constraints for the particular
choice of S;, namely, Si= —iAf which is motivated by the form of
the lump solutions (3.9), (3.7) of the mKP-I equation. In this case

.
ihk

{7 rulp

) (I—I—i%i—]—l—?+?;)+(l—-5m} Biaily. AGID

where we denote ?;ﬁl—i—SE,
For the mKP-1I equation (o=i) the solutions (6.8) are real and

bounded in the two cases.
The first case: N=2n and

Appi=hi, w=—f;i+c;,' Vugii i 5 e p) 2 (GED)

where A; (i=1, ..., n) are arbitrary isolated points outside the real
axis and ¢; are arbitrary constants. In this case the solutions (6.8)
are nothing but the multilump solutions (3.9) of the mKP-I equa-
tion found in section 3.
The second case: arbitrary N and
ik

ImA=0, «f‘-=—;+c,-, Im ¢;=0. (6.13)

The corresponding solutions (6.8) are bounded but they do not
decay in some directions. The simplest solution of this type is

(N=1)

u(x, y, ) = B - (6.14)

Gy - 19 A
(I_Tf+_ﬁ+ﬁ]) b e
This solution does not decrease at the direction x—(2y/\,) = const,

i.e. it is the plane lump of the mKP-I equation.
The next solution of this type is of the form (N=2)

= i s D
Q;lulX%—l—E?ng?—l— Arhe (M -l"'.?-.z)

2 Ay — Ao

wx,y,t) =— (6.15)

e AN
[X..xg—ﬂ ("“ d ) I+T(11X2+MX.}J

4 M —ha

where
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2y 12¢ ,
XI:J_I e EY) A<l fi=d 2)

and 6; are arbitrary real constants. It is easy to see that the solu-
tion (6.15) describes the scattering of the two lumps of the form
(6.14). This solution is nonsingular at A; 4 As540.

General solution (6.8) in the case (6.13) is bounded if all A= 0
(=1, ..., n), does not decrease at the directions x — (2y/%) =const
and describes the scattering of N plane lumps (6.14). It is easy to
see that the scattering of the plane lumps is completely trivial: the
phase shift is absent.

Emphasize that the plane lumps have not been found for the
KP, DS .and Ishimori equations. So their existence for the mKP-I
equation is the novelty for the 24 1-dimensional soiiton equations.

In addition to the pure cases (6.12) and (6.13) one can consider
also the general mixed case in which one has 2n points of the
type (6.12) and N points of the type (6.13). Such solutions of the
mKP-1 equation are given by the formula (6.8), (6.11) where 4 is
the (2n+N) X (2n+N) matrix of the form (6.11) with
(l|,...,lgn+H)E{l|, s Rty by s Al BhY = Cl;,,.-), (II’H L'I.k=0). ThE}"
describe the scattering of n decaying lumps (3.10) and N plane
lumps (6.14).

For the mKP-II equation the situation is completely different.
Similar to the mKP-I case the real-valued u arises into the two
Cases:

1} - N=2n:; lk+”——n}:k‘ Ta+a=%m, (kR=1,...0);
2) arbitrary N, =iax (Imar=0); vi=v: (k=1,...,N). (6.16)

But, as it not difficult to see, all these rational solutions of the

mKP-11 equation are singular. For instance, the analog of solution
(6.14) looks like

20.'-;
)= ; 6.17
ux, y ) i 2y 12142 ( )
T_( +rx_l_T?)

This solution describes the uniform motion of the two simple
pole, plane, opposite sign singularities (located alone the lines
X+ (2y/a1) =const) which parallel to each other (with the distance
ai) and move with the same velocity 12ai 2. The mKP equation has
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also rational solutions which correspond to the multiple pole singu-
larities of the eigenfunction x. They will be considered elsewhere.

6.2. Solutions with Functional Parameters

Another general class of exact solutions corresponds to the
degenerated kernel Ro(M, A'; A, A), i.e.

i e L
Ro(M, M3 My=mn ) [uM, 1) ge (A A) . (6.18)

k==

For the kernel Ry of this type equation (5.11) gives

- S dn A di ¢ Ty 5 —FO :
= R g : 6.19)
xh B=1tn ) Adz) SS Db ;
k=1 C
where 2 2 G
he () L da Adhy(r, &) e ™, &) (6.20)
iy
and F(h)zi—x—l—% % The quantities he are calculated from
¥ 4] :
the algebraic system
1
Y Aty D=l (6.21)
k=1
where Fes :
By, t) L daAdhe™ fi(a, R (6.22)
- if di’ e™TMEGL D Bl A7)
def . N MAdET 27 U RURA) E i, i 6.23)
A”"éﬁﬁdngg 85 £y SS i LY (

E [}

The system (6.21) arises from (6.19) after multiplication by
e "™f,(A, 1) and integration over A. _ .

Solving the system (6.21) for arbitrary given functions f; and g,
one finds the solution of the mKP equation by the formula (5.10)
with

=1+ Y m@m® =1+ T nd uk, (6.24)

k=1 k.l
where
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da A\ dA T
nx) = ‘:‘d’“ g e, (6.25)
ic

The compact formula for such solutions is of the form

iif

U= —20""' —
ax

Indet(l1+B-4""), (6.26)

where A is given by (6.23) and Bu= (1/2i) £

The solutions (6.26) are parametrized by the 2n arbitrary com-
plex-valued functions [, gr (k=1, ..., n).

Similar to the section 3 the matrices A and A4 B can be re-
written in the term of & and n, only. Namely, one has

g =90 L \ndet(d.4~1. (6.27)

X
where

1 s = . &
Apy=0p— Erﬂx Mebe),  Auw=08u+ éﬁx "M &) | (6.28)

where ng, & are arbitrary functions of the form (6.25) and (6.22).
The integration a5 ' tn (6.28) is choosen in a way which quarantees
the existence of A and A.

The functions & and mn, are the solutions of the linearized mKP
equation. So, the formula (6.27) presents the class of solutions of
the mKP equation which is parametrized by 2n arbitrary complex
valued solution (not necessarily decreasing) of the linearized mKP
equation.

The reality conditions (5.21) and (5.22) imply certain constra-
ints on the functions f, and g (=1, ..., n). They are satisfied, in
particular, if :

Rege(hA) =fe(A, 1) A (6.29)

for the mKP-I equation where R, are arbitrary real constants and

flr,2) =Fe(—A, —1), g A) =gu(—h —1), (6.30)
for the mKP-II equation. The condition (6.29) implies
Ev= —RyM: (6.31)

and, hence, as one can show from (6.27), the real-valued solutions
(6.27) of the mKP-I equation can be represented as
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u=42 argdetC, (6.32)
dx

where Cu =AuRi =Ribu + (1/2i)05 ' (Exx&:). These solutions
generalize the decaying solutions (3.27), (3.29). .
Correspondingly, the condition (6.30) for the mKP-1I equation

means
Ee=—Er, MW=ne. (6.33)

6.3. Plane Soliton and Breathers

The class of exact solutions with functional parameters cunstrug-
ted in section (6.2) contains as the particular cases the plane soli-

tons and breathers of the mKP equation. _
The real-valued plane solitons of the mKP-I equation correspond

to the choice
e M) =Ri8(A—he), ge(MA)=h8(A—Me), (6.34)

where R are arbitrary real constants, i.e.
Ei(x, y, 1) =—2iRiexp(F(M)), mdx, y.0)= —2iexp(— F(he)) . (6.35)

In this case the solutions are of the form

(% o f):4i arg det A, (6.36)
X :
where
Appes il 01 f*l}; exp (F(h) — F (b)) (6.37)
= vk A
and

F(h) ﬂﬁ(;i4i+f‘—§).

i r¥: A

The simplest soliton looks like (n=1, Ai=Ag+ik)

Q%Sgn& :
ulx,y,t)=—4 — s (6.39)
e+ (e "4 ZE(Sgn Ry) ef)
h.r /

where
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e 2; 4(0.7—3)% *
f= Lo (xﬂﬂgh et~ 1M InIRul). (6.40)

= 2 e g
| Ll [a)? Fig A

This solution evidently regular in x and y and is a constant alo-

. ; 2h g
ne the direction x — I”"‘Ly=const, i.e. it is the plane soliton. Gene-

ral solution (6.31) describes the scattering of n plane solitons of

the form (6.33). At A,=0 the solution (6.33) is reduced to the
mKdV soliton (see e. g. [2]).

The plane soliton's eigenfunctions in the points 4. can be found
from the system

_ 2 Riki  Fip—tii
y(he) +2i :Q“_L:»*-- lllbam] = Baali (6.41)
T |

which follows from (6.19).

For the mKP-11 equation the real plane solitons in virtue of
(6.30), correspond to the kernel Ry of the form

Ro= ) Re8(h—ias) 8 (u—iPs) (6.42)
s

where Ry, ax and B are arbitrary real constants, i.e.

§r=—2iRiexp(Fliay)), n=—2B;"exp(— F(ip)) (6.43)

in (6.27) and (6.28). These solutions of the mKP-II equation are

u(x,y,!}:—?% Indet(I1+B.-41 (6.44)
where
Akm =6Fzm + EQTJ exp {F'{ﬁam} E F':‘iﬁrrr” {645]
and
Bin=2Rn P exp(Flictm) — FliBm)) . (6.46)

The simplest plane soliton of the mKP-II equation is (n=1)
_ 2a—p)" e
B (\e‘f—%ae")[e'_f—eeﬁ '

T (e (o e
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wx, y,t)=

(6.47)

where

and e=Sgn(R/(Bp—a)). The solution (6.47) is nonsingular at £¢<<0
and ap~'> 0. Note that the general formula for the mKP-II plane
solitons different from (6.44) has been derived in [24] within the
t-iunction approach.

The real-valued solutions of the mKP equation of the breather
type correspond to the kernel Ry, with the even number of del-
ta-function contributions. For the mKP-1 equation in virtue of
(5.21), the suitable kernel Ry is

Ro(AM' A5 A, A 0) =

=ar ¥ [ R —4d) 8A—Ai) + R 8(W —Ai ) 8(A—AF )] . (648)
k=1
where Ry, A and A (k=1,..., n) are arbitrary complex parame-

ters. The corresponding real solutions of the mKP-1 equation are of
the form

_ 0 g getA
(X, Y, 1) =24 - In Frer =4 —-arg det A, (6.49)

where A is the 2n <X 2n matrix:

A =84p+2i R'“:‘“; exp (F(hm) — F(hw)) (R, m=1,..,27)  (6.50)

jl-k g -m:

where

R ALY R Tl T T (6.51)

The solutions (6.49) are rather complicated. But it is not diffi-
cult to see that they are of the breather type. For instance, in the
simplest case n=1 the detA looks like

2
detA=1+4¢ ¥ apet% L pe?, (6.52)

k=]

where a,, as, b are certain constants and

o (P — ) g (b k)
f(u..ﬁ To7) Sl W R T L
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So, the solution (6.51) contains both oscillations and decreasing
terms. This simplest solution at A" = —A; is reduced to the
well-known breather of the mKdV equation (see e. g. [2]).

6.4. Other Exact Solutions

Here we present the two particular cases of the solutions (6.43)
of the mKP-I equation. The first one corresponds to Ai" =ivy,
A~ =ivy where wv; and vy are arbitrary real constants and
Ri=Ry=>b. It is of the form

e_fcosnp(l—(z'—l__?) egf)

. 1 | :
ux, y,t) =8| — — —-—) % 5 . (6.54)
L . (e' = 24::1_:;'] sin ¢ +(f:i::) e’) +4 cos’ ¢
where
:r(xff]=(L—L)x—4(%— -l;')f—l—ln 151,
Vi Va2 Vi Vi
t;:(y}z(:—?——:—%)y—l—ﬁ, b=1ble®. (6.55)

The solution (6.54) is periodic in y and has a soliton behaviour
along the coordinate x.

Another special breather type solution corresponds to
At=—A" =A R =Ry=>b and looks like

G
4hpe sing (] — %EE-')
L
ulx, y,t) = = s - e -,  (6.56)
(1_’_":;3-'“@05{1;_& e ILIEEEJ) —|—4(;€2-f—elcc-5{|:)
.l‘hR ’""H}"-r :III,.R}-,.}-
where

f{y}=—4%y+ln|b|,

40

[ 3 L 2 :
¢(x, )= %"’;H 3“"*{7_3'";*?”” Rl Ep e (6.57)
A

This solution decreases exponentially at |y|—oo. It is periodic in
3n]—Aa%
Al

In a similar manner one can construct the breathers for the
mKP-II equation. So, the structure of the breather type solutions of
the mKP equation is rather rich.

Note that the solutions (6.54) and (6.56) are not bounded on
the whole plane (x, y). The singularity of the solution (6.56), as it
is not difficult to see, is of the type ¢ '/* (e—0) at the discrete
points, i.e. it is integrable (ueL)).

In addition to the solutions of the mKP equation enumerated
above one can construct also the general solutions of the mixed
type which «contains» the solutions of the diiferent type (lumps,
plane solitons etc.). For instance, the solutions of the mKP-1 equa-
tion which contains both plane lumps and plane solitons correspond
to the kernel

x and move along the axis x with the velocity 4

= Z Se(h, )8 (A —aw) S(n—ou) +rp ) RISA—r)8(n—n), (6.58)

k=1 f=1

where o, (k=1,..., n;) are real constants, R, are real constants and

Se(h, p) = Sup, 1) .
These solutions are of the form

uix, y, 1) =4ﬁiarg det A, (6.59)
X

where A is the (n;4n2) X (n1+n2) matrix with elements

A = ( .“1&_{. Abll.,-' ) ['ﬁﬁl[]'}l
A.‘-!f- "q.-tf.'n."
where
: 12 ] = . - : :
=t (s 24 - rn )it bt
Awy= im-’“? exp (Fihy) —F(hy), B=1,..m, N=l..n0s; (6.61)
ke Ay
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AM}'z_ g .|'F'|r'f=l1I fla f=]* i
Ay—0aj
%R 7 p
A st lRﬁ; exp(Fhy) — F(k,)), M, N=1,...ns
M™ YN

The simplest solution of this type describes the scattering of the pla-
ne lump (6.17) and plane soliton (6.33):

2a+4RD e*®
A*+ B?

ux, y, t) =

L]

where

A aR |A1? fe®: X % *
Do S0 a2 AEEE | g i T
A * -y T T L R ¥ | L A £

Az(xﬁ ifi) Re* 4+ Z, B=Xa(l ¥ ezﬂ)_ aR e%
. 2 A -
2‘ A
a= E‘»+ﬂ|! B R 43.;.;:
e Ay |:'L-“-!'I-|l,
, XM 2yhgh; | 4 (3hph,—AT)
g[\"t!yvf.]: { — RO ke !
AR ik 52 L

. 2 1
Xomix— S0 88 1y,
v 2 oL

7. THE MIURA TRANSFORMATION BETWEEN THE mKP
AND KP EQUATIONS

The Miura transformation
1 =] | W
i —— _Uax ]_.r" —_— —_—— 2 1

which maps the solutions V of the mKP equation (1.1) into the
solutions ugp of the KP equation

Ukpr + U kpecx + Bukp tikp, +3U2ﬁx_] Hgpyy =0 v
has b_eer_l found in [23] within the framework of the gauge invariant
description of the KP equation and in [24] in the ©-function method.

The 2+-1-dimensional Miura transformation (7.1) is similar, in
general, to the well-known Miura transformation between the mKdV
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and KdV equations but in some respects, as we will show, there are
the essential differences between them.

Similar to the 1+ 1-dimensional case the Miura transformation
(7.1) deeply interrelates the algebraic structures associated with the
mKP and KP equations (see e. g. [30]).

As for as concerning the interrelation between the classes of
solutions the situation is quite different and more interesting in the
2 + 1-dimensional case. Indeed, the real-valued solutions U ,kp; of
the mKP-I equation give rise to the following solutions of the KP-I
equation

1 " ' ] -
Ugp.] = ?ax "Ukpay — %Hmﬁp-u = —4-!41311{1:.1- (7.3)

So, the Miura transformation even does not convert the real solu-
tions of the mKP-I equation into the real solutions of the KP-I
equation. :

On the other hand, for the mKP-II case one has

1 i l SR
Higpll = — ?fh Uykp-1ly — E‘umI{P-IEx ans TumKP-II- (7.4)

So the Miura transformation interrelates the real solutions of the .
mKP-1I and KP-II equations. Moreover, since uxp;=—2(Inyo)x
where yo is the mKP-II eigenfunction at A=0, one gets

= &
Ugp.qi(x, 4, t) = — (Xo s —i__{lxﬂ Jus (7.5)
X
4 | 1 |
(o Dy +(Xo )ex +uxpnre =0. (7.6)

Equation (7.6) evidently indicates that uypy is the solution of
the KP-1I equation while the formula (7.5) allows us to construct
the solutions of the KP-1I equation using yo found for mKP-II equa-
tion.

Let us consider at first the simplest one soliton solution (6.47)

of the mKP-II equation. For this solution

xn == w (7.7)

Substituting this expression into (7.5), one obtains
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g -
Hgp.11 £ ap’ (r:. —i/2 %HE,IJJ
=42~ (ﬁ—%)ich_z(fﬂ]* (7.8)
where
F(x,y,f)=x(é—%) 5 b e e e ﬁ(i‘i’_“m_

The solution (7.8) is nothing but the well-known plane soliton of
the mKP-II equation (see, e. g. [1]). The function (7.8) is nonsin-
gular one not only for the same values ol parameters a, B, ¢ (&<<0,
a/p=> 0) as the mKP-II plane soliton (6.47) but also for £>0,
a/p<C0 for which the soliton (6.47) is the singular one. The proper-
ties of the KP-II plane soliton (7.8) are quite different in these two
cases. Namely, the solution (7.8) at e=0, a/B<<0 (type I) is the
standard plane soliton of the KP-II equation which is reduced at
a= —f to the 14 1-dimensional KdV soliton
2 1

“av="+ 7 T ¢ =Flae_p (7.9)

while for e<<0, a/B=> 0 (type II) the solution (7.8) does not admit
the nontrivial one-dimensional limit (¢;4/,_;=0).

So we see that the Miura transformation (7.4) maps, the plane
soliton (6.47) of the mKP-II equation into the plane soliton (7.8) of
the KP-1I equation. More precisely, it maps the bounded plane soli-
ton of the mKP-II equation into the type II plane soliton of the
KP-1I equation and the singular plane soliton of the mKP-II into
the standard (type I) plane soliton of the KP-II equation.

Similar situation takes place for the general plane soliton solu-
tions. This can be proved directly by the substitution of the general

expression for %o given by (6.24), (6.45), (6.46) into (7.5). But it is
more convenient to use the relation

- _2
Aoy T+ Y owex— 2 J;l]x + 2%~ 2 Lox £1=0, (7.10)
Lo Lo

:where % (A) =%o+Axi+-.. which follows directly from (4.3). Taking
into account (7.10), one gets

44

.
qu_”=—2;a(i). (7.11)

Then for the plane soliton solutions of the mKP-II equation, we have
yo=det(1+BA™"), x=tr(BiA7)), (7.12)

where the matrices A and B are given by (6.45), (6.46) and from
(6.19), (6.43) one can obtain the following expression for matrix
B]'.

e %g; nax=20R: B 2exp (Fliou) — F(iBe)) - (7.13)

Substituting (7.12). (7.13) into (7.11), after some transiormations,
one gets

Wit =2£~51ndetAKp, (7.14)
where
" | l I | 1 1
{A K.F')ftm:ﬁnm T a 2R - [x (; - El;ly_([-;?j‘l_ _?: )-_4! (;E = ﬁ)]

that is the known general formula for the plane multisolitons of the
KP-II equation (see e. g. [1]). It represents the two types of plane
solitons. The type I admits the 1+ l-dimensional reduction while the
solutions of the type-II are pure 24 1-dimensional one.

Thus, the Miura transformation (7.4) maps the plane solitons of
the mKP-II equation into the plane solitons of the KP-II equation.
More precisely, it maps the pure 2+ 1-dimensional plane solitons of
the mKP-II equation into the pure 2+ 1-dimensional (type 1I) plane
solitons of the KP-II equation and the singular plane solitons of the
mKP-II equation into the standard (type 1) plane solitons of the
KP-II equation.

This last property of the Miura transformation is similar to the
property of the 1+ 1-dimensional Miura transformation uy. =
= —(1/2) t pmgavs — 1/4 upgey which, as it has been shown in [17],
does not interrelates the rapidly decaying smooth and, in particular,
the soliton solutions of the mKdV and KdV equations. This is quite
clear from the consideration of the 14 l1-dimensional limit of the
2+ |-dimensional case. Indeed, the one-dimensional limit of the
solution (6.47) (a= —p) looks like
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L s e (7.15)

that is the singular solution of the mKdV equation while the
I + 1-dimensional limit of the solution (7.8) (a= —B) is given by
(7.9). So the 1+ 1-dimensional Miura transformation maps the sin-
gular solutions of the mKdV-1I equation into the solitons of the
KdV equation.

All these indicate that the Miura transformation as the nonlinear

map has a rather complicated «singularity» structure. This problem
will be discussed elsewhere.

8. THE mKdV AND GARDNER EQUATIONS
AS THE ONE-DIMENSIONAL LIMIT

In the usual one-dimensional limit du/dy=0 the mKP equation
(1.3) is reduced to the well-known mKdV equation

uf—l—ux,,x——gunzuzux=0, (8.1)

where o°=+1. The mKdV equation has been solved by the IST
method in [32, 37] (see e. g. [2]) where solitons, breathers and
multiple poles solutions have been constructed. In the one-dimen-

sional limit oW,= —A"?¥ and the problem (1.2a) is reduced to the
one-dimensional one

Vo VW= —072W (8.2)

The scalar problem (8.2) is equivalent to the specialized Zakha-
rov— Shabat matrix problem

(7 L, )e=r"0. (8.3)
V, —id.

Just this circumstance has allowed to solve the mKdV equation by
the initial version of the IST method [32, 33].

The result of the previous sections give us a possibility to solve
the mKdV equation, using directly the scalar problem. To do this it
is sufficient to note that for the kernels Ry of the nonlocal d-prob-
lem of the form
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Ris=Ti 0.0 807 +1) (8.4)

the dependence on y disappears and the d-dressing described in sec-
tion 5 gives the solutions of the mKdV equation (8.1).
In this case the problem (5.1) is reduced to the following

____ax{x,{;;%l,l} = T (M A) 26t —h —4) exp (——?——— -

Wide class of solutions of the mKdV equation can be constructed
with the use of the d-problem (8.5).

As far as concerning the decreasing solutions and initial value
problem then the combination of the constraints (8.4) and (5.15),
(5.16) gives rise to the Riemann — Hilbert problem

x ) —x~ () =1~ (—h) R(A) exp(—%ﬁ—@), (ImA=0). (8.6)

All the solutions of the mKP equation compatible with the condi-
tion (8.4) are reduced under this constraint to the solutions of the
mKdV equation. In particular, the plane solitons and breathers dis-
cussing in section 6.3 convert into the solitons and breathers of the
mKdV equation [32, 33].

More general one-dimensional limit of the mKP equation arises
under the constraint

HHICI-MI y [B‘?}

where « is an arbitrary real constant.
In this case equation (1.3) converts into (E=x-+ay)

u;—l—uagg—?mﬂ(—a?ug—{-auuﬁ- —;-u? ug)z[l (8.8)

that is the 1 1-dimensional Gardner equation (see e. g. [1 —3]).
The constraint (8.7) is equivalent to the following constraint on
the kernel R of the nonlocal d-problem

(y,—ad)R=0, (8.9)
i.e.

ReTi ik (—i——l—-}l:—fmr). (8.10)

As a result, the Gardner equation (8.8) can be solved with the
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use of the d-problem

oxE AR = = iw(E, 1) 0
an Tlﬂ(hl}x(gjt'itxnﬁ.—l)e : 24
where
: 2 .2
(K, 1) = (_ %+iw)§+4s (— % £ 3‘;“ + 3“; = ia303)+ (8.12)

The initial value problem and corresponding inverse problem for

the Gardner-I equation (¢°= —1) can be solved by the Riemann—
Hilbert problem

HE LN = G BN =R x (B 6 — —2—=)e™*, Imr=0, (8.
wPE M —x (B HAN) =Ro(M) x (E.f, ]+tﬂ)e , Ima=0, (8.13)

which is the consequence of the constraints (8.4) and (5.15). Re-

spectively in the case =1 one has the Riemann— Hilbert problem
with the jump

ioh— 1
i 1 a 9 1 54 I
across the circle Im—=—or Ax+ A+ — | = —
A 2 o oL

Note that for the Gardner-l (o0=i) and the Gardner-I1 (oc=1)
equations we have the different Riemann— Hilbert problems (8.13)
and (8.14) in contrast to the unique Riemann—Hilbert problem
(8.6) for the mKdV-1 (o0=i) and mKdV-II (6=1) equations.

9. CONCLUSION

We see that the mKP equation is solvable, generally, by the
same IST method as the KP equation. These two equations are, in
fact, closely interrelated. As we discussed in section 7, they are con-
nected by the Miura transformation [23, 24].

The KP equation has the solutions with the functional parame-
ters which can be represented in the form [1]

62
> Indet A4, (9.1)

S Uugp=2—
KP e

where
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Anmﬂﬁnm '+_ S d-’ﬁjhn[f;y, t} gm (xr! y! t}

oo

and h. (x, y, t) and gn (x, y, t) are the complex-valued solutions of
the linearized KP equation.

The linearized KP and mKP equations coincide. So, the same set
of arbitrary solutions of the linear equation hi+hux+30"9x thyy=
=0 gives rise to the solutions both of the KP and mKP equations
via the formulae (9.1) and (1.7).

The §-dressing method reveals even more deep interrelation bet-
ween the KP and mKP equations. Indeed, the KP equation can be

“constructed with the use of the d-problem (5.1) — (5.3) but with the

normalization y—>A~! [22]. So within the framework of the
i~

-E":"-dressing method the only difference between the KP and mKP

equations consists in the different normalization of y. In_mnre detail
this interrelation between the KP and mKP equations will be consi-
dered elsewhere.

Appendix A
Alternative Way of Introducing the Spectral Parameter

As we have seen the introduction of the spectral parameter_ A
into the problem (2.1a) via (2.2) leads to the function x T_whlc._h
admits the canonical normalization x—1. Such a normalization is

crucial for the derivation of the inverse problem equations with the
constant inhomogeneous term 1.

But there exist, of course, another way of introducing the spec-
tral parameter A which is exactly the same as for the KP equation.
It is

Wx, y) =p(x, y; &) €' MY (A.1)
The corresponding equation for p is

ity - s+ 2iMpg (i —2) p =0 (A2)

The Green functions for equation (A.2) are differed from the Green
functions for (2.3) only by the substitution A—A~"'. Hence, again
one is able to construct the Green functions G and G~ for (A.2)
which are analytic in upper and lower half planes and, conse-
quently, define the solutions p* and p~ of (A.2) which have the
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same analytic properties. Then, repeating the construction of section
2, one arrives again at the singular nonlocal Riemann— Hilbert
problem.

The essential difference with section 2 is that now the functions
= do not admit the canonical normalizations. Indeed, the substitu-
tion of the asymptotic expansion p~p 4+ (1/A)p_i+... at A—>oo,
into (A.2) gives

2ip x=u(x, Y, 1) p o - (A.3)

So p is the functional on u(x, y, #). Hence, the corresponding
inverse problem equations will contain the inhomogeneous term p
which depends on «potential» u(x, y) itself. This makes the solvabi-
lity problem of the inverse problem equations very complicated.

One can bypass this problem by transiting to the new function I
defined by

fi(x, y; a) = HELD (A.4)
oo, )

The function p(x, y; A) has the canonical normalization and its
jump is given by the relation (2.23) with substitution p—f. For
such function p the inverse problem equations are of the form

(2.26), (2.27), i.e. they contains the constant inhomogeneous term.
So there is no problem with their solvability.
The reconstruction formula now is

ulx, y) = —zf%m i(x, y: 0) (A.5)

since one can choose [(x, y; 0) =1.

It is not difficult to see that the results one can obtain in this
approach are equivalent to those of section 2. Nevertheless, the
approach of section 2 is preferable and more adequate to the prob-
lem since it does not contain any intermediate functions, does not
required any constraint on the inverse problem data and reveals a
deep connection with the KP equation within the §-dressing method.

Appendix B
Identities for the Discrete Spectrum

To derive the relation (2.28) we, similar to the KP case, intro-
duce the functions
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A

£ (6, 0:0) 2 = (x,y; ) exp d(x, y; &) (B.1)

End A & =
% (x, y) E oy Ex, y) exp dlx, y; A5) . (B.2)

They obey the integral equations

ey h) =[G ) (10— ) £5C 0w =0 (B3

and

pin ) —[ 6510 u() (10— L) L) | mm=0, (B4

where
(GE(-; M) (%, y) = exp (o(x,y; A)) (GF(-; ) exp(—o(-; 4))f) (x,y)  (B.9)

and the functions G* are given by (2.6). _
Equations (B.3) and (B.4) imply that the function

Dy h) & (x* oy — LD expl(ryih)]  (B6)

s i
}w—.mk

obeys the following integral equation:

D (r 1) =[G 0 () (10— =) DN |y =

=-exp (@(x, y; &) — l—i%:[f? ~GH %) u(ri@’ = -;:-)f*] (x,4) - (B.7)

Proceeding in (B.7) to the limits A—Af", one obtains

b e,y —[ 6522 u() (10— o) DiE( 28 |r ) =

—exp(&(x, ¥; A5)) —'f’f[%( ot }")”('}("af_ L)) |;. e "’i(‘]](x‘y) o

) = AP

— G A7) al) (Ea’—i-iz %l}.:hf] (x,y) . (B.8)

- [ gy~
Lo g

It follows from (B.5) that
[aiﬁi{-;m{-ma’—lmj| H_)]{w}=

ah A=At

ol



+ o0
SS dnexp|o(x—E& y—mn;A5)] w& ) d:f(En). (B.I)

—

1
2nhi?

= F

In virtue of (B.9) equation (B.8) is equivalent to the following

[(1=6*Ca@ ue) (1= L)) (0] +er | Yo =

-+ oo

—exp| @(x, y; A 5] [1i 2—;:%,_—5 S dn u(E, ’ﬂ)(ﬂﬁ-f- ﬁ) g | 'ﬂ)] . (B.10)

We assume that the singular points for equation (2.8) are non-
degenerated. As a result, the Fredholm alternative implies

+ o
. :
12 0§ amugem) (04 o3) @ m =0 (B.11)
and
ax* A
&’fuwaf +Cki% lﬁut:?kx*i(x’y)’ (B.12)

where y, are some constants. It is easy to see that (B.12) is equiva-
lent to the relation

LS e o e

The constants ci~ are fixed by the normalization of y& (x, y).
Integral equations (B.3) and (B.4) imply that

I xi(-r,g; l}m 1 (B.14)

and

o a
Y] T (B.15)

where a is some constant. So the functions y& (x, y) admit the nor-
malization

lim (x— %‘:)xﬁt{x,y} = (B.16)

" X

Considering the relation (B.13) at (x*4y*®)'/*>o00 and taking into
account (B.14) and (B:16), one gets

C5F e | (B.17)

‘With such ¢~ the relation (B.13) coincides with (2.28).
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