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Abstract

Lie operator method of solving the spin motion equation in
mllidgf nonlinear fields is used. The matrix presentation of spin
Lie transformation for particle passing through collider elements
is obtained. The formulas for combined several spin turn
transformations are calculated in vector, matrix and operator
forms for zero, first and second powers component of dynamical
variable vector. The expressions for frequency precession vector
components in zero, first and second powers on orbit motion and
first ers on spin motion are obtained. The computer codes
algorithms for nonlinear spin motion calculation are discussed.

(c) Institute of Nuclear Physics

Introduction

calculation of spiﬁ motion 1in accelerators and
colliders is of interest in connection with the different
schemes of experiments with -pmlarized beams (naturally
including the longitudinal polarization). Various devices
are used in modern_accelerators'to improve beam parametars.-
These devices (sextupoles, octupoles etc.) strongly distort
the linear motion, making the linear methods for calculation
of orbital and spin motion insufficient. The Lie method,
which was developed by A.Dragt, E.Forest and others [1-3],
allows to take into account nonlinear corrections for
orbital motion. K.Yokoya [4] proposed to use this technique
in spin calculations. Unfortunately, no practical results
have been obtained (the calculation formulas and algorithms,
computer codes and etc.). This is due to two circumstances.
First, the method of Lie operators allows to write a
solution of the equation for spin moticon in the form of a

matrix operator, which acts on initial spin vector 8(o). But

this matrix operator depends on the synchrobetatron motion

of the charged particlex for each type of collider elements
in rather complicated manner. The second obstacle is to find
the rules for the addition of Lie roperﬁtcfs for two
successive collider elements. These formulas are necessary
for calculation of one-turn map of the entire ring and,
hence, the spin transformation operator for practically any

number of particle turns in the cellider.




This work makes an attempt to solve these problems. Its

plan is as follows. The first part contains a discussion of

the method of Lie operators applied to the equation of spin
motion. After that a matrix form of the spin transformation
operator is obtained. In the next part formulas for addition
of turhs are deduced because the spin motion is just the
rotation around the precession vector W. Further the rules
for addition of constant, linear and quadratiec (in vector
Z2=(X,Px,2,Pz:0,Pg)) parts of the precession frequency vector
¥ are calculated in vector and operator forms. The next part
contains the formulas for W compcnents which are found using
the second (sextupcle) order in crbital and the first order
in spin component vector of dynamic variables ¥ = (&;8) =
=(8;Sy4,S2,5p). In the laét part the algorithm of using the
chtained %esults in order to create the computer code for

nonlinear spin motion in collider calculation is discussed.

1. The spin motion equation

As is known (for example [5]), the classical equation
of spin motion in the collider is:

' ds/ds = [W8], ' (113
where 8 is a spin vecﬁnr, S is an azimuth and the precession
frequency vector W is defined by BMT's equation [6]. The
equation (1.1) is written in the frame (ey,e;,T), fixed
relative to the collider.

The usual "classical" appreoach to the solution of this
equation is as follows. The precession freguency vector W is
written for each type of collider elements, after that by
the method of sequential approximations a system of
differential egquations for 8 is integrated. ﬁowever, after
taking into account synchrobetatron motion (SBM) the vector
W depends on parameters of this motion in rather complicated
manner. That is why the analytical solution of the system
[ bt L e pcssiﬁle in linear approximation (in_ SBM) only.

The other approach is based on using the technigque of
Lie oper&tars+ The vectors 8 and W in the equation (1.1) arﬁ
considered as operators. Then for a particle with the
orbital Hamiltonian Hgyp and spin Hamiltonian W8 one can
find the sclution of this e_quéltiﬂn {the. semicolons (":1")

emphasize the operator nature of the esxpression):
{S
8(s)=exp(-:| ds'(HorptW8):)B(0). (1.2)
ol




Here, as usual, the exponential operator is understood as a

series:

Each term of this series is the differential operator of
n-th power, which action on an arbitrary function f is
defined with a help of Poisson brackets:

dF df dF df

:F:f=(F,f} = . = 3 &
dzj dpzi dpzji dzj

)

The operator, which is introduced in this manner is referred
to as a Lie operator and exponential series - Lie
transformation.

For the total Hamiltonian HorptW8, which does not
depend on azimuth explicitly, one can find instead of (1.2):

8(s). = exp(-:s(HoyptWB):) 8(0) = M B(0), (L -3
where M is .a total exponential operator. According to the
Hamilton equations this operator satisfies. an equation
dﬁfd5=H:—{Horb+ws}:. et us present this operator as a
product of three exponential operators ([3]: M=M;M;Mg. To
this end expand the +total Hamiltonian in a sum of
homogeneous polynomials in powers of Z:

HorptW8 = Ho+H3+H4+Wo8+W18+W,8,

where subscripts show pnwérs of polynomials. It is important

that operators :Hs: and :WpB: do not change the power of

dependence on % for any operands, but operators :H3:

*) As is known, Poisson brackets for components of a vector
%2 are: (qj,dx)={pPi,Px}=0, {(di,Px}=-(Pi,dkx}=6jk, where q,p -
is a conjugate dynamical variables pair (X,pyx)., (2,Pz),
{o,pg) and &jx - is the Kroneker symbol. For vector
components one can find: (S5j,S5j}=ejjxSk, where ejjx - is the
tree-size completely antisymmé%ric tensor. Besides that for
any qr) the following expression takes place:

(Zi,Sk)={Si,Zx)=0.

increase it by one. Let us consider the operator tW18:
action on spin operand, which can be always presented as
B-f(Z). We have:
:W18:8-£(2) = W1(8,8-£(Z)}+8({W,8-£(2)) =
= W1 -£(2):8:8+8%:Wy:£(3).

Since the spin vector value is proportional to Planck
constant h, Pne can cmiﬁ the second term as compared with
the first one. Hence the operator :W;8: increases the power
of operand dependence on Z also by one. Similarly the
operators :Hg: and :W9B: increase it by two. Therefore it is
convenient to introduce the following operators:
Hy = :H3z + W38: and Hy = :Hy + W3B:. Let us separate the
total Hamiltonian  :Hgpyp+WS: operator into operators
Hp = :Hp + WpB8: (which does not increase the operand power)
and Hy = Hld; Hy, and M on My and My. Then on one hand

5 = H:-{Horb'l'ws:r :=Hr-Hﬂ (‘Hﬂ‘Hr]z
= 4

=MyMg (-Hg) +MMp (-Hy) =

dMg
=My —— +MyMg(-Hy),
ds
and on the other hand:
B it e T o
ds ds ds
so that:
dM;-
Mg = MyMg(-Hy) .
ds y :
Hence
dMy- ey
— = MpMp(-Hy)¥Mp -,
ds

or, using the Lie transformations property

Mg:g(Z,8) :Mg~l=:g(MyZ,Mp8) | s:, (1.4)

S




one obtains

am,. A simple criterion for this series to break exists

—— = My (~Hy(MpZ,Mp8) |s) - : : ; ;

de e =t Mod. Mo }|5 assoclated with the the order of its terms in powers of 3.
Integrating both parts of this expression one can find ( J Indeed, the operator Hr exp(-:wgB:) increases the operand

{5 a unit eperator) ¢ power by unit as minimum. Restricting to the terms with a

power not higher than two one can omit the terms which

3

and break the series:

s
& ] ") (-Hy (M2, Mp8 :
My o +DJ ds'My-(s') (-Hy(MpZ,Mp ]ls'} contain Hyp

; =
ie 1 equation solution is easily cobtained in series [ : .
This integral equ 4 s ds'{HHr(Hﬂz,Hﬂs}|s.] )

form if one substitutes in the integrand the right part step 5 ) 0 (1.5)
by step: o : + [ ds' { ds" (=Hy (M2 ,Mg8) | gn) (-Hp (MgZ,Mg8) [g1) -
s s! : 0 0
= J;JdS'EJEEdE"Hr{S"}('Hrfmﬂzruﬂﬂ}is"]]{er{HDE'HGS}IS'}Z_ Since M, is a product of two exponential operators M, and
S My, let us choose their powers as operators, which increase
=J +nJ ds' (-Hy(MgZ,Mo8) |s1) + g : the operand power bf one (-:fy:) and two (-:fs:). Then

' Lo expand the exponents into series and omit the third and

= s
+ [ ds' [ ds"My(s") (-Hy (Mg3,Mo8) |sv) (-Hy(MoZ,MoS) |s1)= higher power terms. In this way one obtains:

ol 0 .
. My = MaMy = exp{-;fz:}-exp{—:fl:} =
=J + |. dsl{-Hr{Hﬂz,HGB}lsl} + r; :fz:E :f1=2 ;
_Gj - a e (i e e B — el {J e s F i
s s! s¥ ' 2 2
v [ ds' [ ds" [T + [ ds" "My (s"') (-Hr (MoZ,Mo8) [gn 1) ]- - ' t£q:2
oJ oJ 0J : i ; e S SRR o e a s
: 2
* (=Hy (MgZ,M8) | gn) (~Hy (Mo3,MoB) |51)=
- Comparing this expression with (1.5) one can find:
=T + [ ds'{—Hr[HQE,HQB]lsr] + ! (E
0 : :fy: = - | ds'(-Hy(Mo3,Mg8) |s!) i LY
s s! ¢ ol :
; and
+ I ds! [ ds"{—Hr{Huﬁans}is"][—HeruE,MuE]|s'] + ;f1:2 : {5 :
ol ol ' ' 2fp: = - | ds'(-Hz(MpZ,Mg8) |gr) -
s s! sh % 2 oJ
+ [ ds’ [ ds" [ ds™ 'Mp(s" ') (=Hp (Mg2,Mg8) | gn1) - e [s [s' ;
ol ol oJ - | ds' | ds"(-H(MoZ,Mg8) |gn) (-Hy (MgZ,Mg8) |g1) -

ol ol
« (=Hp (MgZ,Mg8) | sv) (-Hy (MgZ,MgB) |g1)=... .




= =] :
:fj_iz = [ ds! J iis"{'qil[ligﬁ,lﬁuﬂ] ts"] {-i{lflﬁuﬁ,l{gS] |51] .
ol 0

hence separating the second integration over s" in intervals
from 0 to s' and from s' to s and changing the variable for

the second interval, one can obtain

1= 5!
:fl:2 = [ ds' j dE"[—Hliﬂgz,HgE,s“]}(-Hl[HQZ,HDE,S'}} +
o) 0

s s'
at J ds!' [ ds" (=Hj (MgZ,MgB,s')) (-Hy (Mo2,Mp8,s")) .
o 0
Thus for =-:f,;: one finally finds:

s
Ehnl == [ ds' (-Hy(MpZ,MpB,s5'")) -

ol s

L [ast | asvrony o3, Mos, "), 11 (8,408,823,
2 ol ol

where [ , ] is an operator commutator.
S0, the operator M, which determines the solution (1.3)
of the spin motion equatioﬁ (1.1), is equal to

M = M;M1Mg =exp(—:fp:) *exp(-:£1:) -exp(-:fp:) =

5 (1.8)

oy [

=l v s = B ) Mp-

g 4

In some cases it is convenient to separate the
expression (1.8) in successive pure spin and orbital
operators. For this substitute f£; and f; in (1.8) as
A; + w18 and hyg + wy8 respectively. The operators zhaz,
:h3:2 and :wy8::h3: contribution in (1.8) can be neglected:
they acﬁ on an operand, which contains the first power of 2

as a minimum, and increase this power by two. But operators

tWoB:, :wls:2 and :hj::wy8:, can act on the operand with a

=10-

zero power in 2 and they must be taken into account.
Besides, let us take into account that one can omit the

operator :w;B::hj: for the same reasons and hence

:hy::w18:=:(:h3:w;8):. Finally one obtajins:
iwWqB: thy::wy8:

M=(J - thy: = :w8: = :wy8: + + ) Mg =
2 2
i (:h3z:wy)
=exp(-:[wy - ——*-;*ﬁﬂ]s:}'exp{—:wls:}-exp{-:h3:]-Hﬂ.

Let us note that :wp8: commute with :hs: and :hj:, hence one
can finally write: .
(:hz:wy)
M. =exp(—:[wy - ————;———]S:]-exp(—:wlﬂ:]-exp(—:wﬂs:}'
(1.9)
-exp(—:h3zi)exp(-:ths:i},

Sometimes it is necessary to represent the spin part of
the expression (1.9) as one exponent with the precession
frequency W* which detefﬁines spin rotation for each
element:

M =exp(-:W'8:)-exp(~:hy:)-exp(=-:hst). . (1.10)

Let us obtain tﬁe "convolution" of three exponents
operators:

exﬁ{—:sf:}=exp{-:5f2:]-exp{-:sf1:)-exp{—:sfﬂ:].
Differentiating both parts with respect to s one obtains:
ekp[-:sf:}-:-f:=exp{-:sf2:}-:—f2:-exp[—:sfl:}-exp{—:sfﬂ:] +
+ expfwzsfz:}-exp{—:sfl:]-:—fl:-exp[-:sfﬂ:} +
+ exp(-:s5f5:)exp(—:sfy:)-exp(-:isfg:):1—fg:=
= exp{-:ﬁfz:}-exp[—:sflﬁj-{exp[:sfl:}:*fz:*exp{—:sfl:]}'
-exp(=-:sfg:) + exp(-:sfy:)-exp({-isfy:)-exp(i-sfp:)"*
{exp(isfgs)-i-f1:+exp(-—:s5fy:)) +

+ exp(-:s5fo:) *exp(-:s5fy:)exp(-:sfg:):-Ip:.




But
s s
:fl:2 = [ ds' J dE“[4H1{H93.Hﬂ51|s"](‘H1fHu3;HUB}1s'l:
oJ 0

hence separating the second integration over s" in intervals
from 0 to s' and from s' to s and changing the variable for

the second interval, one can obtain

s s!
:f1:2 = J. ds! ‘J[ ds" (-Hy (Mg3,Mg8,s")) (-Hy (MgZ,Mp8,s')) +
(1] ]

s s!
+ [ ds!' j ds“{—Hlfﬁgﬁ,Hgs,s'})[-Hlfﬂgzgmgs,s“}].
ol 0

Thus for -:f;: one finally finds:

s
:fz: = = [ ds.(_HZEMﬂerDSIE‘JJ =
o) (1.7)

1 s =
il [ ds’ [ ds"[-Hq (MgZ,Mg8,s") , -Hy (MgZ,Mg8,s')1,
2 ol ol

where [ , ] is an operator commutator.
- 8o, the operator M, which determines the solution (1.3)
of the spin motion equatioﬁ (L.1), is equal to

M = MaMiMg =exp(-:fa:)-exp(-:fy:)-exp(-:fp:) =

3 (1.8)

sy

} Mgp.
2

In some cases it is convenient to separate the
expression (1.8) in successive pure spin and orbital
operators. For this substitute f; and f; in (1.8) as
ﬂ; + w18 and hyg + wpB respectively. The operators that;
:h3:2 and :wy8::hy: contribution in (1.8) can be neglected:
they acf on an operand, which contains the first power of 2

as a minimum, and increase this power by two. But operators

sWoB:, :wlﬂ:2 and :h3::w;8:, can act on the operand with a

-10-

zero power in 2 and they must be taken into account.
Besides, let us take into account that one can omit the

operator :wj;S::thj: for the same reasons and hence

thy::wy8:=:(:h3:w18):. Finally one cbta%ns:
+

1wWq8: thy::wy8:
M=(J - thy: - :wj8: - :wo8: + ) Mg =
2 2
(:h3:w;)
=exp(—-:[wy - “———;"_“]5:}'Exp[—:ﬂls:}*Exp{“:hj:]'ﬂg.

Let us note that :wpS: commute with :hp: and :h3:, hence one
can finally write:
(+hz:wy)
M. =exp(-:[Wy - ————;———]B:]-expf—:wls:]-exp{—:wﬂsz}-
, (1.9)
-exXxp(=:th3:) -exp(-:ths:),

Sometimes it is necessary to represent the spin part of
the expression (1.9) as one exponent with the precession
frequency W* which deterﬁines spin rotation for each
element:

M =exp[-:w*s:}-exp{-:h3:}-exp{-:hz:J. {1.10)

Let us obtain tﬁe "convolution" of three  exponents
operators:

exp(—:sf:)=exp(-isfy:)-exXp(-:5fj:)exp(-:sfg:).
Differentiating both parts with respect to s one obtains:
ekp{—:sf:}-:-f:zexp{—:sfg:}-:—fz:-exp{—:sfl:}-exp[—:sfn:} +
+ exp(—-:sfy:) -exp(-:sfy:)+:-f1:-exp(-:2fy:) +
+ exp(-:sfy:)rexp(-:sfq:)-exp(-:sfp:):1-fg5:=
= exp[-:sfz:}-exp[—:sflﬁ]-{exp[:sfl:}:-f;:-exp[—:sfl:}}-
-exp(-isfg:) + exp(-:sfy:)-exp(-:sf,y:)-exp(:-sfp:)-
{exp(:sfpi)~i-E1:exp(-isfg:)) +

+ exp(-:sfa:)-exp(-:sfy:)-exp(-:sfg:)-:-fp:.




The factor exp(-:sf:) evidently arises in second and third
terms. Besides that, the expressions in figﬁre brackets can
be grouped with the help of the rule (1.4). Then:
exp(-:sf:):-fi=exp(-:isfy:)exp(-:isfy:):-exp(:sfy:)fay:-
-exXp(:-sfp:)texp(-:s8f:):-exp(:sfg:) f1stexp(-:isf:):-£fg:.
Repeating in the first terms similar action with operator
exp(-:sfg:), one can obtain:
exp{«:sf:]':-f:=exp{-:sf3:]ﬂexp(-:sflzj-exp{:-sfg:]-
«:1=edp(isfpg:) cexp(isfi:)fttexp(-:af:)-t-exp(:sfg:)fy: +
+exp(=:sf:)-:=fp:=exp(-:sf:)-:t-exp(:sfp:)-exp(:2fy:)fy: +
+ exp{—:sf:}-:—exp{:éfg:}f1:+exp{—:sf:}~:-fg:.
The required equation for f can be found after that:
£f = fg + exp(:sfp:)fy + exp(isfp:)-exp(:sfi:)fs - @ R T
The cuntributiﬁn of the operator exp(:sfj:) is not lower
than the third power. Then for W one finally obtains:
2 thyiwq
W = wp + exp(:wpB:)w) + exp(:wg8:)(Wgy -~ ——) . (1.12)
2
The operator exp(-:wgE:) as shown beln# can be represented
in a matrix form. .

Thus using the technique of Lie .operators it is
necessary to substitute in (1.6) and (1.7) the expression
for Horp and W from BMT-formula (for each type of collider
elements) and to find the transformed precession frequency w
components and Hamiltonian hgyp. The obtained results should
be substituted inte (1.8) or {lﬁg}. The operators exp(-:hs:)
and eXp(-:wg8:) are calculated by'éxpanding to series. The

equation (1.1) is indeed solved!

17

2. Matrix form for cperator of spin transformation
The spin exponential operator, which was cbtained in
(1.9) and (1.12), has the form exp(-:8W:), where W is some
precession frequency. If the expression for W is known, one
can calculate the value of expf—:sw:} successively finding
the low-order terms of this series. For zero order, by
definition, it is
(-:8W:) 955 =5). (21
The first order (taking -into account the independence
of spin vector components Sk on orbital variables %):
{—:BW:]15k=-Wi{Si,Sk}-Si[Wi,sk}=~EiijjWi=[w,E]k,
where [,] is the vector product. Thus:
(-:8W:) 1Sy=[W,8] - (2.2)
Then for the second order one has:
{—:sw:}25k=(-:sw:j1{—:sw:;1sk=[+:sw:11[w,s]k=:snwh:Eiijjwi=
EEijkwiWn{Sanj}+Eijksj5n{wnrWi}+Eijk5jWn{5ani}+
+Ej§kWiSn{Wn,S5)}=[W, [W,8] )+ [Sn{¥Wn, W}, 8].
The. second term, which is proportional to the Planck
constant hg, can be omitted ( it is rather small compared to
the first one). Hence, one finally has: \
(-:8W:)%Sy=[W, [¥,8] k- ' (25
Further, for the third order (omitting the terms, which
are again proportional to hzj: |
(=:8W:)35y=:1-5n¥ni [W, [W,8] 1x=:=SnWn: (WkSiW;-SxWiWi)=

E“ankwi{Snrsi}+aniwi{SnrﬁkrE_ankwienijSj+WnﬁiWienkj5jr




that is {W is an absolute value of the vector W):
| (-:8W:)3s) = -W?[W,B]k.- (2.4)

Thus we have the possibility to deduce any term of this
series :

(:-8w:)2D*1lg, = (-1)"W2"[W,8]x n=0,1,2,...}

(:-BW:)2M+2g, = (-1)"w2"(w, (W,8]1x n=0,1,2,...
Dividing the exponential series into two - even and odd
degree - we can sum it completely:

o (-:8W:)"

exp(-:8W:)Sk = B ———— Sk=
n. p

:=BW: " S+ T [ + . 15k=
n=0"  (2n+1)! (2n+2) !

=Sy + [W,B1x sin(W)/W + [W,[W,8]]x {1-cos(W))/W-.
Hence the exponential operator exp(-:8%W:) has a matrix form:

Sy = exp{-:ﬂw:]ij'5j= Tij'sj -
where
sin(W) 1-cos (W) °

T+ . — N + e -W ot AURLREE ok & e i a

This representation for the solution of the spin motion
equation is exact, but the accuracy is determined by that of
W calculation. Let us confine to the second order over
synchro-betatron motion in this work. Then

Wi = W°; + Wlin"%m + Woimn'Zn Zn. (2.6)

so, for the absolute value of the spin angle turn W we have:

2 W3
W= [(W;)2)% = Wo'[1 + —"Whin'Zn +
(2.7)
& 2 . & 1 = u - - x
Wi Winn Wiin Wiges o WS W5 Wlin len
+ f 2 + 2 o 4 ]'Zm'Zn].
Wo 2°Wo 2°Wo

-14-

_ Substituting (2.6) and (2.7) into (2.5) (the sin and cos

functions, which one must decompose relative to
Woz[fﬁﬂijz]%}, one receives for the zero order of % after
some simpie transformations:
T°j4 = Ejj-cos(We) + eijk WOk’ sin(Wp)/Wo +
+ WO WO (1-cos(Wo) }/Wo?; (2.8)
for the first order:
T 4m = [ - sin(Wo)/Wo'Ejj - sin(Wo) /Mo @ik Wikm +
+ {1 - cos(Wg))/Wo2* (Wip Woi + Whip-woy) - i
- {cos(Wg) - sin{WD];Wb};HDE'eijk‘wlnm*wgk'wun + ¥
+ (sin(We) - 2°(1 - cos(Wp)/Wo)/Wo> Wiy WOi *Woy W]
and at last for the second order: |
T2 4nn = sin(Wo) /o[ - Eij" (Woymn Wk + /2 Win Wikn) +
+ ejjk Wokmnl + (1 - cos (Wo) ) /Wo?* (W05 W25mn + W3 Woippy +
+ Winwlyn) + (cos(Wo) - sin(Wg) /Wo) /Wo2" _ (2.10)
'[Eijk'(wzpmn'wok'ﬁop & 1!2'W1pmfwlpn'wok + Wlkm'wlpn'wnp] i
-Ej 4 WOk WO Wiy Wlpn1+[sin (Wo) /Wo -2 (1-cos (Wg) } /Wg21/Wo2"
'[Woi'WDj'{Wzkmn'W°k+1fz'Wlpm'Wlan + (lem'wﬂi + Wlim'woj]'
“Wlin  WOK ]~ [8in(Wo) /W =3° (Cos(Wo) = sin(Wo)/Wo)/Wo2]/Wo?/2"
'eijk'Wok'WDP'Woﬁ'Wlpm'wlqn + LE'{l—cos[Wn}}fﬂﬂz + cos(Wg) -

< 5-sin(W¢}KWnl]an¢f2'Wni'woj'WGP‘“Gq'“lpm'“lqn‘.

-15-




3. The combination of "rotations"®
As itiwas already mentioned above, the spin motion,
which is dgtermined by the precession frequency W, is simply
a rotation around an axis along W by the angle W. The
equation (2.5) describes this spin transformation for such

rotation. From (2.5) one can obviously find:

1 o 1 ej5k T4k
cos(W)= =*(Sp T -1 ) (3.1) and W= - . (3.2)
2 2 sin(wW)

-

These equations allow to find the rules for combining two
and more successive spin rotations. Really, if matrixes TV
and T" describe two successive  rotations, then the total
rotation is characterized by a matrix TY, which egquals:
Twij=Tuik'Tvkj, Hence, calculating the matrix T¥ trace, we
obtain

cos (W)= 1};'[c051v}'cns{U}+ccs{vj+ccs{U} -

(V) 2

+ > 2'{l~c05[v}}'{1-c05{U}] - (3.3)
veu

(vu)

- 2 *sin(V) 'sin(U) =1 ].

v u
This expression can have a simpler form, if it is rewritten
: ] i w V U s
using "half-angles o s Anas sy

(Vo)

cos(W/3)=cos(V/3) “cos (Y/z) - sin(V/2) "sin(Y/5) . (3.4)

To determine vector Wi it is necessary to calculate first
the value of Eikj'ijk' Using the total angle W value (found

above) we receive the following:

-16-

Wi 1
W 2sin(wW)
vy i v
=L *{sin(V)* (1+cos(U)) - *sin(U) * (1-cos(V)) )} +
' U v
(3.5)
=) ' Uj (V)
+ —*{82in(U) *(1+cos(V}) - *sin(V) * (1=cos(U) ) }+
U U'v
[V,U]{ (U* V)
4 + - (sin(V) *sin(U) - * (L=cos (V) * (1=cos (U)))].
urv u-v

. Passing to half-angles let us find a simpler variant of this
fﬂrmulh:

Wi 1 Vi
— = ———( ==*sin(Y/2) cos(Y/2) +
i L
W sin("/2) (3:8)
Uj [er]i !
+ —=-sin(Y/y) ‘cos(V/2) + sin(V/2) *sin(Y/2) ).
u uv

Thus the pairs of expressions (3.3) and (3.4) sclve the

problem of combining two successive spin rotations.

g




4. Formulas of "addition™
To combine the successive spin transformations during

the beam passing of the magnetic system let us deduce the

formulas for addition of transformations in the form (1.10), -

i.e. let us define operators, which Dbef the equation:

exp(-:8W:) *exp(-:h3¥:) ~exp(-:hy¥:)=

=exp(-:80:) -exp(-thy¥:) rexp(-:hy%: )~ (4.1)

-exp{—:sv:]-exﬁ[—:hgvzj-exp{-:hg“:].
In other words, let us find Lie operators, which transform
spin vector from azimuth s® to azimuth s" equivalent to
sequential Lie operators, transforming the spin from s0 to
s' (the operaturs exp{-:sv:]-exp(—:h3v:}-exp{-:hgv:]} and
then from s! to s" {ﬁhe operators
exp(-:EU:}-exp{-:h3u:}-exp{-:hzu:}}. Acting similarly to the
calculation of formula (1.11) for "merging" of exponential
operators product one can easily obtain the following
result:

exp{-:ﬂﬁ:}=exp{-:sﬂ:}-exp(—:sv*:],

v*=exp(-:h3%:) -exp(-:hy%:) ¥V,

W u v {42)
hs =h3u + exp(-:ha":)h3",

exp(-:ha%:)=exp(-:hy%:) sexp(-:hyV:).

One has now the equation exp(-:8W:)=exp(-:8U:)-exp(-:8V:) (a
subscript "*" near V is omitted for simplicity). If the
operators by matrixes of the form (2.5) this equation takes
tﬁe form:

™35 = TVik T kj- (4.3)
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Since one is interested in a result in the series form in 2
powers:
Twij = ngij +_TW1ijm'Zm + Twzijmn'zm'zn: (4.4)

substitute to (4.3) the series for TYjx and Tvkj,-which are

like (4.4). After rewriting the result in powers of Z, one
obtains: .
Twﬂij L Tunik'Tvokj-
Twlijm i Tunik'Tvlkjm i Tulikm'Tvﬂkjf (4.5)

Twzijmn el Tuuik'Tvzkjmn + Tu;ikm.Tvlkjn & Tuzikmn'TVij*
In several cases it seems preferably to add directly
the frequency preceésion vectors. To this end let us
substitute the expansion (2.5) for W and similar to it for V¥V
and U into (3.3) and (3.4). After a simple transfbrmation
one obtains that for independent (in Z) parts of W, V and U
the expression are equivalent to (3.3) and (3.4):

(v°u°)
ccs(wcf2}=cos{vnj2}-cos(ucfg} - 'sin(vajz]*sin{unjz},
VoUg :
Woj_ 1 ?Di
= { sin(Vo/3) rcos (Yo/3) + (4.6)
Wo. sin(Wo/3) ~ Vo

o
+ Eii sin(Y i AL
(Tofa)rcos("0/2) +
Ug : UoVo

sin(vule-sin{uofzj}.

The first of these formulae determines the absolute value of
the total rotation angle and the second (using the first
result) - the direction of the "total" axis. For linear

parts (in 2) corresponding expressions are the following:
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e e e A R el




oy (voul)+(uovl)
*sin("o/3) = 2+— -sin{vufz}-sin{ucfzj +
WD vn'UO L
| 4,7
(Vovt) i i (v°u) m
4 —=———scos (T o/a) *SIin( "D/a) + -cos(vnf3}~sin{uaf2] +
Vo - Ug
(v°u°) (u°ul) 1 sin(Yoy
+ 2= = 5 'sin{vafz}*( - cas{“afgl = —-+————El]+
Vo Ug Uo 2 Ug
(vovl) 1 sin(Yo/5)
ti sl (e coa(lo/arie ==y
and .
| oy e w° (wowl) _
—-sin(Mo/,) = (2-sin(Mo/3) /W = cos(Mo/3)7 -

Wo 2 W2

u°(v°ot) ur  [u°,¥°].-(vOvl)
i T T S s

]'qas{vofz}-sinﬁuofg) -

- [.._.—3......._ eSS
v Vo 20W s 117

]*cas{uajz}*sin(vOXE} -+

(vO(uCul)  (vO(vovl) G

3 e | + -cos(" . u -
e e Jrcos("o/3) CGS{.sz}
A o, \ S i - -
S e (Ve } (0901 + (0¥ ly+ (ulvOy ).
2 ¥ : 2 e

sin(vble*siniﬂﬂfzi

VD‘UB
The last of these formulae determines the correction of the

direction of the "total" axis and valué {Wﬂwl}, which is

contained din it, is calculated :firstly in agreement with -

expression (4.7).

5. Spin precession freguency
As is known [6], the vector Wy of the spin precessian.
£requency~of-a charged particle (e,m are its charge, mass
and g, Y are velocity and relativistic factor) in

electromagnetic fields H and E is determined by the BMT

expression:
a aYE. R 4

Wo= - —{(l+a'Y)'H - — (B"H)'B - (a'¥ + —)[B,E]},(5.1)
Ymc 1+¥ 1+Y

where a.= 1.159...%10"° is the dimensionless part of the

electron anomalous magnetic momentum. This precession
frequency determines the known equation for the particle
spin 8 precession:
98/a¢ = [Wo,8]. (5.2)
Let us pass frcﬁ time t to other independent variable -
the azimuth s, which is calculéted along the_eQuilibrium
orbit. Then in the frame (ey,ez,T), which is connected with
this orbit, the radius-vector of particle position is equal
to:

r(x,z,8)=rgptxeytze,
and

Yar = Lrae Yar = 8 Va1 = o8 %%/a1 Yas = /11 Vas,
where 1 is the arc length along the orbit and prime means
differentiation over s. Further one has:

dr;ds = ro't+x'eytz'etxe,'tze,"
and usinj the Frene formulae for plane orbit (!} one can
obtain

7=9F/5. , yse=-kn , /g.=kr , By4.=0,
and hence

dr;ds =(1 + Ky + Kz)T + x'ey + 2'e;. (5.3)
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Let us assume here and further, that the equilibrium

orbit is bit-planar, since either radial curvature K, or
vertical K; is equal to zero (Ky,'K,=0). Let us retain in the
equation for 1'=|dr/ds| the terms not higher than second
order in deviation from the equilibrium orbit x, x', z, z'.
Then one obtains .

1' =1 + Kux + Kz2 + k%12 4+ 5212, . (5.4)
In this approximation it is eésy to find the expression for
velocity:
B="/c Frar = /11" ti= (1 + Ryx + Kyz # hx'2 4 yzv2y=1.

"[(1 + Ky + Kz)T + X'e, + z'e;],
or s pous 5 [ 55
B =A"[(1- %x = 52'°)T + (1-Kyx-Kzz) " (X'"ey + z'"e;)].

Let us express now the relativistic factor Y and velocity g
in terms of relativistic deviation p; of particle energy E

from its equilibrium value E,:

Y= e et (et s Wi (5.6)
mc mc me Eq
and
1 . 1
B = s ) = (5.7)
< "EE 2"1'2

Let us transform the equation (5.2). Substituting the
expression for 8 in the introduced frame (ey,ez,T) in the
form

8 = Syey +S,e, + ST
one can obtain :

8' = [W,8], (5.8)
where the derivative in the left part refers to components
of vector & only (but not to vectors ey,e;,T !), and W:

W= l'fcﬁ Wo - Kgey + Kyey. (5.9)
=3

B i S

The expression (5.1) for Wy can be rewritten in arother form
(for E=0, that ﬁeans that only the magnetic system of
collider is considered whereas the cavities and other

elements with electrical fields are not taken into account):

Eg ecH Y ecE Eg _
Ma= (e s ) —= et B R )
mc Eo 1+Y Egq mC
or 1 b 4
Wo = - ¥oc [(a + */Y)B -a —F (FB)], (5.10)
. I+Y

where the "field" B =eH/E, and the ratio Yo = Enfmaz are
introduced. Let us express the values /y and Y/i4y and
velocity B, which are included in (5.10), in term of pg:
b Yu_l {1+Pn}_1 = Yo-l (1:='Py+ Fuzlr
Y/14Y = Y572 (1 - ¥o + DPg¥o + Yoo, (5.11)
pusrl = AV (1= Ppg ok 3?J2]-
Substituting the expressions (5.5) and (5.11) into (5.10)
and the obtained result together with (5.4) into (5.9) one
can find the expressions for W components. It is necessary
to substitute there the decompositions of B components in
the form of series .in powers of x, 2z (naturally not more
rthan seconﬁ order) :
BX?BQX+RqE%B'Ds]x+gz-%mz+qu+Kzg+E"nx]K2+%mzzz+mxxz,

2

(5.12)
Bg=BogtB' oxX+B' 572+ (Q' -5B"og) X2=) (q' +5B"og) 2%+

+(g'=KzB'gx—KyB'oz) X2.
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‘The following values, which characterize the magnetic field, -

are introduced there:

eHoz, ox
S el e
Ep
= de a de (=3 de dH =
g = emem g e ' q = '( g ]’ {5-13}
Eg d% . Ep 4z 2B, dx dz
: 2 2
e d°Hy,gp e d®Hz ¥

Bx,z = :

2E; dxdz 2By  dx?,dz?
and the values of all quantities in the right sides are
taken on the equilibriuﬁ orbit.

Thus, one obtains the final expressions for components

of Ww (including the zero, first and second orders on ¥,

Z,Pa and its derivatives Px=X'-%"C®/5o"Hos"2,
pz=zl+%.EKEo‘Hus'xr pg)=
Wy = = (Box + Kz) - Boy:(Yoa + %-a/¥ot 4/¥52%) +

+ (3°B'ogs=q) (1 + ¥g-a)+*x + Bgg-a*(¥g = 1) py +

+ {%'BQEE'a'{YG = 1] 5 o {Box'xz + g]“{l =+ Yo‘a}j'z -1 BDK'PG +
+ %.{g-KZ_q1KK+mZ+B"DX}.{Yﬂ-a + 1}'K2+B'ﬂx'¥0'a'x'px e

: (5.14)
- {g-Kx+q~Kz+mx}-{¥?-a + 1) x-2 = (%B'ge - g)*%X'pg +

+ %°Box(Yo'a = 1) -py®

+ B'ogz"Yo'@8'Px 2 + Bgz Y5 a Py Pz -
- {9-Kz + %-mz)-(Yora + 1)+2%2 + (Boy Kz + g)+2z-pg -

~ %+Boyx: (Yo-a + 1) *pz® - Box'Dg’i

Wz = = (Bgz— Kyx) -

Boz® (Yo2 + %ca/Yot %/Y¥g

2} o

o [%'Bc52+a‘(YD = l] + [Bcz'Kx + g]‘{l + Yu'a}]'x +

+ (4:B'geta) (Ll + ¥p-a)°2 + Bpg-as(¥p = 1):Pz + Boz'Pg -

- (g-Ky + 3°my)*(¥gra + 1) =X

2 4

(5.15)

+ (g-Ky-g-Kz-mg)-(¥g-2a + 1})+x-2 + Bigy ¥g'2a -X-pPz +

+ (Boz Ky +9) X PBg — %+Bog* (Vo-a+tl) *Px” + Boyx'¥o'a'Px Pz +

+ ke (g-Ky +q-Kg +my +B"sz)* (¥o'a + 1)z

2 +BIDZ.ED.a.z.Pz -

21
= (3*B'og.t g)eZz:pg t 4tBox* (¥o"a. 7 Q) *pz® - Boz'Po’i

WE = BGE.(I + a + %'KYG

=

— B'gy*(1 + a)*x = B'gz°(1 + a)~2z +

+ an'ﬂ'[!g o I}IPX 4 an'a“(Yc — 1}'pz + BGS.(I -+ a}

~Le[}-Bga3-(2-¥g-a + 1) + (g'—%-BUyg)]ex2+

+ (g-%-B'ge) *¥o-a'X'pPpx - g'°x%x-2 +

+ [g-¥g'a + Bog?~ (Yo'a + %)]+%-pz +

2

et EloxLX'pﬁ i %°30$‘(2'Yc'a + 1}°Px i

- [anz'(fn‘a £ S) = Yol m

— %-[3;-3053-&*‘!0-5 + l} — fq"i‘]-‘!“B“GE]]'Zz +

155.'3. -
(5.16)

2
- (g+i*B'gg)*¥p-arz-Pz = %*Bpg'(2:¥g'a + 1)+pz™ +

2
+ B'oz'zﬂpﬂ = Bpog'Pg -

g




6. nlgorithm of nonlinear spin motion calculation
In the practical calculation of spin motion different

approaches are possible. In one of them (A) the operators -
matrixes of spin transformation are calculated and then the
spin vector is successively "pulled" through each element of
the collider magnetic structure.. In the other one (B) for
calculation of une—turﬂ transformation of the spin vector
the addition of matrixes of all elements is performed after
determining each of them. One can calculate the one-turn
transformation only after this. In the last one (C); iﬁ is
possible to calculate and combine the vectors . of spin
frequency precession. Let us describe the succession of
actions for each of the approaches. It is necessary to note
that in all cases for each collider element one must:

= calculate the vector W in agreement with section 5:

= calculate the integrals (1.6) and (1.7) using the orbital
Hamiltonian for this element. .

Then the procedures are different.

(A) . The operator M of spin transformation is calculated
(formulas (1.8)) for a current element and the spin vector
at its entrance is "pulled" through this element. Then the-
operator M of the next element is valculated and so on.
(B) . The "total" frequency of spin precession in the current
element is calculated (formulas (1.12). Then its nrhitall
part is transformed and orbital transformations are added
- (formulas (4.2)). After this the matrixes of spin

transformation in this element are calculated with the help

o

of formulae (2.8) - (2.10). At last the "total" matrixes to
current collider azimuth are determined (formulas (4.5)).

{Ci; The "total" frequency of spin precession in current
element is calculated (formulas (1.12)). Then its urbitgl
part is transformed and orbital transformations are added
(formulas (4.2)). After this the absolute wvalues of the

"total" turn aﬁgle and direction of "total" axis are

determined (formulae(5.6) - (5.8)).

* % %

Thus, the obtained results allow to create the camppter
code for the nonlinear spin motion calculation in a collider
by the optimal method in each specific case (one- and many
turns spin dynamics, the dynamical and equilibrium degree of

polarization and so on).
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