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ABSTRACT

It is shown that the infinite-dimensional Abelian
symmetries of the inverse spectral transform (IST)
generating problems (d-problem, Riemann— Hilbert
problem etc.) give rise to the nonlinear equations for
wave functions and potentials integrable by the IST -

method.
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1. The inverse spectral transform (IST) method is a very power-
ful and eifective method for solving nmonlinear equations (see e. g.
[1—3]). Linear problems which generate the correspending inverse
problem equations are the basic ingredients of the IST method. In
the most known cases the Riemann—Hilbert problem (local or non-
local) and o-problem (local or quasi-local) play the role of such
generating problems (see e. g. [1 —6]). Structure of these generat-
ing- problems determines the whole structure and properties of the
IST integrable equations. They are also the basic equations in diffe-
rent versions of the dressing method [I, 5].

In the present paper we demonstrate the close interrelation be-
tween the symmetries of the linear generating problems (GP) and
nonlinear integrable equations. Symmetry of GP is a consistent evo-
lution of the wave function and the inverse problem data. The com-
muting set of symmetries of GP gives rise to the nonlinear equa-
tions for the wave functions and potentials. The infinite-dimensional
Abelian symmetry algebra determines the infinite hierarchy of integ-
rable equations. We will discuss several concrete examples.

2. We will consider here the nonlocal 6-problem as the represen-
tative of GP. This is rather general GP [5]. It is defined by the
equation
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and the canonical normalization y—1. Here ¥ and R are the mat-

A—= oo
rix-valued functions of the complex variable A (bar means the com-
plex conjugation). The adjoint GP is of the form
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where also Y—1. We assume that the problems (1) and (2) are

A—oo
uniquelly solvable.

In the d-dressing method it is assumed that R depends linearly
on some additional variables and then the auxiliary linear problems
are constructed which give rise to the integrable soliton equations
[5].

We propose a different way. Namely, let us ask a question
about symmetries of the problems (1), (2). This question is not tri-
vial since the linear equations (1) and (2) are integral one. But the
wide class of the infinitesimal symmetries
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of the problems (1) and (2) can be found rather easily. Indeed,
equations (1) and (2} imply that the infinitesimal symmetry
transformations of %, ¥ and R are related as
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where t is the symmetry group parameter.
Here we will consider the symmetry transformations of R of the
form
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where the operator D is of the form
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where U ,ft,A,A) are matrix-valued functions, D% is the operator
formally adjoint to D:
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and A (A, A) is a matrix-valued function.
Substituting (5) into (3), combining the result with (1) and (2)
and assuming that R(A, A; A, LJT»O, one obtains
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The relation (8) gives rise to the following
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where B(M\/, 1’) is an arbitrary matrix-valued function which obeys
the constraint

§ anAdi B, &)=
C
and Anal®(A, A) means the analytic part of the function ®@
a def
In a similar manner one obtains
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where B(A, 1) is an arbitrary matrix-valued function such that
§S dh A\ dAB(A, X) =

: dR oy a¥ ;

The fprmulae (5), (9) and (10) give us g and 7 which,
by construction, satisiy equations (3) and (4).

Thus, the formulae (5), (9) and (10) define the class of
symmetries of the linear problems (1) and (2). This class of
symmetry transformations is characterized by an arbitrary differen-
tial operator D(A), an arbitrary function A and by almost arbitrary
«constants of integration» B, B and Anal(3D%-}%), Anal(xD¥).
These symmetry transformations are linear for the «inverse problem
data» R and, in general, nonlinear and nonlocal for the «wave fun-
ctions» ¥ and j. Emphasize that the symmetry transformations (9)
and (10) are the joint transformations of the function 3 and adjoint
function %.

The nonlocal d-problem, as it is well known [5], is reduced to
the nonlocal Riemann —Hilbert (RH) problem if

RV A5 A, &) =8(T(M)) Ro(h, A7) 8(T(L)) ,

where the equation I'(A) =0 defines the curve on the complex plane
A. The corresponding symmetry transformation of the nonlocal RH
problem in the particular case n=0, (D=Y(A)), A=0, is of the
form
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where U(A) is an arbitrary rational function on A. Under the fur-
ther reduction to the local RH problem Ro(A, ') =08(A—A")Ro(}A)
one has ¥=%""' and the symmetry transformation converts into the
well-known spectral problem [1—3]
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Note that for the local RH problem the RH transformations of
the form similar to the discussed here have been considered in
[7, 8] within the completely diiferent approach.

Another particular case of (1) is the local d-problem which arise
if R(V, &; &, A) =8(A—A)8(A—N)Ro(), X). In this case B=B=0
and one can identify ¥=%"'. In the particular case n=0 (i. e.
when D (}) is the multiplication operator) the formula (9) is reduc-
ed to that found in [9] and [10] within the different approaches. In
[9] the analog of equation (9) for y has been used for study of the
forced integrable equations. In [10] the same equation has been
independently treated as the nonlinear integrable equation for .

Equations (9) and (10) can be treated in the same manner as
the nonlinear nonlocal (2- 1)-dimensional equations solvable with
the help of the d-problem (1). A simple example corresponds to the

2
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The system (13) represents itself the (24 1)-dimensional integ-
rable generalization of the nonlinear Schrodinger equation different
from the Davey—Stewartson equation. In general, equations (9),
(10) form a wide class of the (24 1)-dimensional nonlinear nonlo-
cal integrable equations.

Now let us consider the infinite set of symmetries of the problem
(1) of the form (5), (9) (10) which parametrized by =i, T2 73, ...
This infinite-dimensional symmetry algebra may have different
structures. Here we will consider the Abelian infinite-dimensional
symmetry algebras of the problem (1). The commutativity of the
symmetry transformations (5) implies (at A=0)

a -
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that is equivalent to certain nonlinear differential equations for the
coefficients Uiap(Ti, .. ; A, A).
The commutativity of the flows
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where A; and A; are the nonlinear in ¥, % expressions defined by (9)
and (10), in general case, gives rise to more complicated nonlinear
equations. Equations (15) contain the wave functions ¥, % and
potentials (the «constants oi integrations» B, B, Anal(xD*-%),
Anal(%xD¥)). The elimination of the wave functions from (15) gives
rise to the nonlinear integrable equations for potentials. An alterna-
tive procedure of the elimination of potentials («constants of integ-
rations») leads to the nonlinear integrable equations for the wave
functions %, %. Many concrete examples of the wave (eigen-) func-
tions equations and their properties have been considered earlier
in [11]. '

Thus, the nonlinear integrable equations associated with the
d-problem (1) express, in fact, the symmetry property of the prob-
lem (1). The following is the simple illustrative example. Let us
consider the 2X2 local é-problem and its infinite-dimensional

; ”)) A=0. In this
0 —1
case the symmetry transformations of wave function in terms of
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symmetry algebra with D:=M\a3 (53:(

are of the form
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where P, are the 2X2 matrix-valued functions on T, 7o, .. and
Po=o05. The commutativity of the transiormations (16) gives rise to
the well-known AKNS hierarchy [12, 3]. In fact, the infinite system
(16) completely coincides with that discusses in [12] within the
Lie-algebraic approach. This coincidence demonstrates also that the
infinite-dimensional algebra considered in (12) is, in fact, the
symmetry algebra (in a sence we discussed here) of the 2X2 local
d-problem. Within such a treatment the AKNS hierarchy becomes
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completely analogous to the Kadomtsev—Petviashvili (KP)
hierarchy in Sato approach (see e. g. [13]). The difference is that
in the last case the infinitesimal transformations

aw

0Tn
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are the symmetry transformations of the pseudodiiferential linear
problem LW =AY where [13]

L=ax+f Uiaz"

i=1

The AKNS hierarchy (16) contains as the reduction the Korte-
weg-de Vries hierarchy which corresponds to the wave fuction W of
the form

| Sl congl—ay |
ag{l) op(— A) ‘
v | aT; I

In a similar manner one can treat also the KP-hierarchy and
Davey — Stewartson hierarchy.

At last, the symmetries of the generating problem are also the
symmetries of the corresponding integrable equations for the poten-
tials and wave functions. Hence, the transiormations (9), (10) give
us the class of hidden symmetries of these integrable equations.
This problem will be discussed in a separate paper.

The author is grateful to S.V. Manakov for the useful discus-
sion. |
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