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ABSTRACT :

The controversial phenomenon of gquantum (wave)
chaos is reviewed using a simple analogy with classi-
cal linear waves in cavities. Estimates for the main ¢
statistical properties of wave dynamics are evaluated
and discussed. The transient nature of wave chaos is
emphasized and explained in detail.
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The main purpose of my talk is to present a fairly new concep-
tion of the so-called quantum chaos. Formally, it is a part of quan-
tum dynamics, rather surprising but not at all exotic. On the con-
trary, the quantum chaos turns out to be a typical phenomenon
which was overlooked until recently. The understanding is now gra-
dually coming from the classical mechanics where the phenomenon
of dynamical chaos was well ascertained and studied in great detail
(see, e. g. Ref. [1]). For this reason I am going first to remind you
of the classical dynamical chaos (Section 2).

In what follows I restrict myseli to the conservative (energy-
-preserving) Hamiltonian (nondissipative) dynamics as a more fun-
damental one. To illustrate the general theory I will use simple
models of classical and quantum billiards as well as waveguides
and cavities.

1. SIMPLE MODELS

Consider iree motion of a particle in the domain of d dimensions
surrounded by a (d—1)-dimensional perfectly reflecting wall. For
d=2 the model is called billiard, and it was extensively studied by
many authors (see, e. g. Refs [2, 3]). For special shapes of the
wall the motion is completely integrable, or regular, which means
that there is ‘the full set of d motion integrals in involution (see,
e. g. Ref. [4]). The simplest example is a rectangular parallele-
piped with sides a;. Then motion integrals are momenta |p;| or the
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actions

P a; | pil 1 (1)

i
L

The corresponding Hamiltonian H(6;, n;) in action-angle variables is
given by

Ho =Y 5w (2)
Y 2 , |

i

where m is particle’s mass, and we put the speed of Hght c=1.

The completely integrable motion is quasi-periodic, i.e. it has dis-
crete Fourier spectrum with d basic frequences wi=rn’n;/Haf (for
model (2)). This is a nonlinear oscillation since dw;/dni=
—n?/Ha?=0. Being regular (by definition!) the motion is unstable
in phases 0; just because of nonlinearity: 80; ~tdn;. Yet, this unavoi-
dable instability is weak, only linear in time.

Now, introduce a small perturbation, that is deform the wall in
such a way to completely destroy integrability and to convert the
motion into chaotic one. This always can be done [2, 3], and we
shall characterize the perturbation strength by a small angle el
between two surfaces of the wall, unperturbed and corrugated.

In quantum mechanics the same model is described by the linear
Schrédinger equation. For boundary condition =0 (infinitely high
potential wall) the actions n; are now integers.

Instead of quantum W waves we may consider any classical
linear waves (sound, electromagnetic, etc.) inside a cavity with
appropriate boundary conditions. Then the classical problem (e. g.
Eg. (2)) corresponds, as is well known, to the limit of geometrical
optics with the rays as dynamical trajectories. The Hamiltonian is
now the local dispersion relation (see, e. g. Ref. [5]):

H= wlk:, x)) =o(n:, 6 , (3)

where x; are Cartesian coordinates, wave numbers k;i=py, and we
put i=1. Particularly, for electromagnetic waves in a medium with
refraction index n(x;) the Hamiltonian :

(e, Ry (4)

n(xi)

Finally, we consider a straight waveguide in vacuum with the
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perturbation independent of longitudinal coordinate x;. Then
ks=const, and the dispersion relation is the same as Hamiltonian

(2)
-l m?. (5)

mi

I

It describes «heavys photons with «mass» m=ks|.

2. NONLINEAR RAY CHAOS

As is well known the classical dynamical chaos is only possible
in nonlinear systems, that is those whose equations of motion are
nonlinear [1]. Such are, for example, the simple models described
above, but not a linear (harmonic) oscillator. On the other hand,
the main condition for chaos is linear (local) instability of motion
discribed by the linearized equations of motion [l]. Moreover, the
instability must be strong (exponential) and not a linear one cha-
racteristic for a regular motion (Section 1).

The rate of local instability is given by the Lyapunov exponent
A of the linearized equations of motion. In a billiard or cavity

A~In _a_,
R (6)

where R~a/e is the local curvature radius oi the wall corrugation
with characteristic linear size a. The quantity

h~Ad~d-In =
R (7)

is_ c;.alled metric entropy, or KS-entropy (alter Kolmogorov and
Sinai). It is the most important characteristic of chaotic motion in

the modern ergodic theory (see, e. g. Ref. [6]). Roughly, the condi-
tion

h=A=>0; %ﬁv%;}l (8)

is necessary for chaos to occur.

I will not go into details of this condition. Rigorous results can
be found in Refs [2, 3]. Exiensive studies of ray chaos in cavities
were performed by Abdullaev and Zaslavsky [7] (see also
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Refs [5, 8]). For my purposes the rough but transparent estimates
are sufficient to expose the nature of dynamical chaos.

Let me just mention that for a big perturbation parameter e=>1
the chaos occurs even for a~a. Such is a very popular billiard
model, the «stadium»: two semicircles connected by two straight
lines of arbitrary finite length [3]. Again, to simplily the presenta-
tion I consider small perturbation e—0, hence &a—0 (8). The pertur-
bation in this case is like tiny ripples.

Now, what is the role of nonlinearity in chaos? The point is that
instability (8) is necessary but not suificient condition for chaos.
The other condition is boundedness of the motion, at least in some
unstable variables. For example, unstable motion of a linear system
(the so-called hyperbolic motion) is unbounded and perfectly regu-
lar. Nonlinearity makes the energy surfaces closed and compact
even for an unstable motion. In a billiard, for example, the motion
is trivially restricted by the wall.

So, what is really required for chaos is the boundedness oi the
motion whatever the cause could be. As to the nonlinearity it
depends on the description chosen. As is well known there is an
equivalent description in terms of the phase space density, or distri-
bution function, f(x:, pi, {) which obeys linear Liouville equation

af _ of -
di ~ al o Bt ol ®)

where [, | are Poisson brackets. This form of dynamical equation
is especially convenient for comparison mith quantum mechanics. Of
course, Eq. (9) does not change the boundedness of the motion. The
density [ itself is even the motion integral (9).

How the local instability is described in this presentation? Consi-
der the characteristic function of a small domain that is the initial
density concentrated there. In case of the complete chaos the local
motion instability results in indefinite expansion of the domain over
some (d—1)-dimensional maniiold and, what is more important, in
also indefinite contraction on the complementary manifold, also of
d—1 dimensions. Notice the energy conservation and zero Lyapu-
nov exponent along a trajectory, which reduces the expan-
sion/contraction dimensions by 2

Now, ii the motion is bounded (in any representation) the
expanding manifold has eventually to mix up and to form the
so-called foliation with ever increasing number of sheets whose
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width is exponentially decreasing. This highly intricate structure of
the fine-grained (exact) phase density is necessary to provide the
time reversibility of density evolution in agreement with trajectory
reversibility. However, any coarse-graining (averaging) of the den-
sity results in the loss of this reversibility in apparent contradiction
with the reversible dynamics.

Note, that the evolution of the coarse- gramed density is the
same in both directions of time because the only dynamical diffe-
rence is interchange of the two manifolds, expanding and contract-
ing. Hence, there is no need for the conception of «time arrow».

The time evolution of some coarse-grained density, say, f(n;, f)
(usually averaged over phases 0;) is described by the kinetic equa-
tion which, in principle, can be completely derived from the equations
of motion or from Liouville equation (9) without any statistical
hypothesis. Note, that coarse-graining as well as the use of the
phase density are not hypotheses, but a particular method of ade-
quate description to reveal the essential features of the motion.

In case of small perturbation the kinetic equation takes the form
of the Focker —Planck — Kolmogorov (FPK) equation that is a dif-
fusion equation. In our examples of ray dynamics the diffusion rate
in spatial angles ¢; and in actions n; is

- A Faay il B
Dy~e*—;  Dy~{en)*

o

]

where we dropped sup i (ai~a, ¢:~@), and where

g Sl TR 1 8O (11)

arn a

are the velocity of a «particle» and its unperturbed oscillation fre-
quency, respectively.
The diffusion leads to the statistical relaxation

f(ni, 0)—Fs (n;) = 8(Ho(n) —E) =F.. (12)

Here f; is the steady-state, or statistical equilibrium density, E is the
energy, and Hp is unperturbed Hamiltonian of the mmpletely integ-
rable system. The latter relation (12) means that [, is microcanoni-
cal distribution f. on an energy surface. This is called ergodicity,
which is the weakest statistical property of motion.

In simple dynamical systems like our models density f.=4f. is
typically difierent from microcanonical one. The important statistical
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property is relaxation itself, no matter what would be the final state
fs. Loosely speaking, the relaxation is equivalent to a continuous
motion spectrum. The exponential instability is a suificient condition,
because the discrete spectrum can provide the linear instability at
most (see above). Yet, the exponential instability is much stronger a
property as compared with the mixing and relaxation. On the other
hand, the latter seems to be quite enough to develop a relevant sta-
tistical theory. The point is that relaxation, or correlation decay,
provides the property of statistical independence, which is the ulti-
mate basis of the probability theory. These considerations, not yet
completely understood, are most important in analyzing the concep-
tion of wave chaos below (Section 3).

Coming back to our simple models let me mention an obvious
estimate for the relaxation time {. in case of motion ergodicity.
From Eqs (10, 11) we have

2
I A el 22 (13)

Ul n

This is the principal result in classical, or ray, dynamics to compare
below with quantum, or wave, mechanics.

3. LINEAR WAVE CHAOS:
STATISTICAL RELAXATION IN DISCRETE SPECTRUM

The motion of a quantum particle in billiard is described by
Schrddinger equation. This and other quantum equations are linear
with respect to quantum dynamical variable, the W-function, which
represents the whole closed quantum system. Moreover, all those
equations have purely discrete spectrum for any bounded motion,
Hence, a common belief that dynamical chaos is impossible in quan-
tum mechanics. But this conclusion is in apparent contradiction with
the fundamental correspondence principle, which requires the com-
plete transition to the classical limit, chaos including.

The gquantum evolution equations are wave equations, and they
are formally equivalent {o any other (classical) wave equations like
sound, elastic, electromagnetic etc. ones. Of course, the latter must
be linear. For nonlinear wave equations there is no problem with
dynamical chaos (see, e. g. Ref. [1]). This is why the quantum
chaos is also called the wave chaos [9]. For classical waves it is
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especially clear that the ray dynamics contains nothing beyond the
wave equation, and the nonlinear ray chaos must be present some-
how in linear wave equations.

To the best of my knowledge, nobody considered so far how the
ray chaos is represented and/or modified in the classical wave
equations, for example, in cavities or waveguides.

Before discussing this central topic of my talk let us consider
first the following question: why the wave (particularly, quantum)
spectrum is discrete? The reference to linearity of the equations
would be superficial. Indeed, the linear Liouville equation can have
a continuous spectrum as well, which means that there are no non-
singular eigenfunctions. The latter is explained just by the arising
of indefinitely dense foliations described above, which is obviously
an aperiodic process.

[t would be more correct to say that linear equations may be
qualitatively different. But what is the nature of the difference, and
how to recognize it in a given equation seems still to remain an
open question.

A constructive solution of this problem could be the attempt
either to determine the type of spectrum (discrete or continuous) or
to find the ray approximation described by some ordinary differen-
tial equation.

The latter is apparently impossible for the Liouville equation. In
case of a wave equation the rays, or characteristics, are embedded
in the «phase space» of double dimensions as compared to the wave
space. In the limit of geometrical oplics or of classical mechanics

_ all variables of the former are independent whereas for the wave

equation each pair of variables is interconnected by a Fourier trans-
form, and, hence, is restricted by the uncertainty relation.

To describe this situation in a different way one can say that the
ray phase space (ki;, x;) is discrete, the size of a cell being of the
order of unity (Aki-Axi~1). This is true for any finite k&—oo and
qualitatively diiferent from the very ray limit with its continuous
phase space. Hence, the transition to the limit is singular and the
implementation of the correspondence principle is far from trivial.

Our solution of this problem [10] (see also review [l1]) i
based upon introducing characteristic time scales of the wave dyna-
mics on which the latter is close to the ray dynamics, the scales
increasing indefinitely towards the ray limit £#—>oo. Let me show
how this approach works in our simple models.

The most important relaxation time scale {, is determined by the
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mean density p of frequency (energy) eigenvalues

tp~p=A"", (14)

where A is the average eigenvalue spacing. This is a direct implica-
tion of the uncertainty relation Af{-Aw~1. Indeed, while (~AIp
the discreteness of spectrum is not resolved as Ao~(¢~'=A. Hence,
the perturbation can and actually does act as one with a continuous
spectrum. Particularly, this produces diffusion and relaxation in the
discrete spectrum!

Then, an important parameter of wave dynamics is the ratio
(see Eq. (13))

hos B (15)

which I call the ergodicity parameter. If A=1 the ergodic microca-
nonical steady state f. is reached (12) like in the ray limit. For
A<l we would expect a different steady state which will be dis-
cussed below.

Now, let us estimate parameter A for our models. To this end,

we observe that the total number of eigenvalues up to ni~n is
roughly N(w)~n". Hence, density p and relaxation time scale {, are

N i
~1

o |
it - i 2 (16)

an

tp~p=

In combination with Eq. (13), we obtain
=(en)?n""%. (17)

A~ein?!
Note, that & does not depend on dispersion relation w(n;) that is on
a particular mechanics of waves.

But the condition A>1 is still not sufficient for the wave ergodi-
city. The point is that the change in action n per collision with the
wall is Anj~en. Since in wave mechanics all n; are integer the
transitions between unperturbed states n; hence, any diffusion is
only possible if

Any~en>1 . (18)

This condition allows another simple interpretation if we com-
pare the scattering angle & of a ray with the minimal diffraction
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angle u~%/a~1/n, where X~a/n is the wave length. Then, condi-
tion (18) means that diffraction can be neglected: p<Ce. This is, of
course, the well-known condition for geometrical optics to hold. Yet,
this is also not sufficient, generally, because there is another condi-
tion (17). The relation between them depends on spatial dimensions.
i d=>=3, usual condition (18) is crucial for ergodicity. However, for
d=2 the ergodicity depends on A only while the difiraction parame-
ter en>n'/? must be very big for n>>1.

In any event the wave dynamics becomes ergodic for sufficiently
large n il ray dynamics is chaotic. This implies that wave eigen-
functions are also ergodic in agreement with Shnirelman theorem
announced in 1974 and proved in 1990 [12]. From Eqs (17) and
(18) the ergodicity border in n or in o is

Ne(0,) ,..,{ E_? : s

g TH N (19)

The transition to the ray limit depends on two parameters, wave
number n—oo and time interval {—oo. The complexity of transition
is in that the result depends on the order of two limits. Ii, first, we
take formally the limit n—oo, then for any finite {—oco the wave
dynamics becomes the ray dynamics. However, if we fix n, no mat-
ter how large, the wave behaviour remains close to the ray diffu-
sion while ¢t n) only. Hence, the ray limit is singular, indeed.

Above the ergodicity border (19), as n—oo, almost every eigen-
function, in Wigner’'s representation, approaches microcanonical dis-
tribution f. (12) [12]. Moreover, the fluctuations in chaotic eigen-
functions were shown to be Gaussian [20] (see also Ref. [10]).
Yet, they are not completely random. The most important elements
of their microstructure are so-called «scars», that is some enhance-
ments above the average microcanonical density along unstable
periodic rays. The scars had been discovered in quantum billiard
models by Heller [21] and were subsequently confirmed by many
others (see, e. g., Ref. [22]). The question how to reconcile scars
with Shnirelman theorem is not completely clear so far. Apparently,
all the scars are of the minimal width comparable with an elemen-
tary wave cell (Section 3). If so, the scars would not affect any
quasi-classical integral relation which is Shnirelman’s wave €rgodi-
city.
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4. WAVE CHAOS: DIFFUSION LOCALIZATION

A more interesting question is what happens if n<<n, or e<w.?
For d =3 the answer is very simple: nothing happens as all the
transitions are suppressed, so that the initial state of wave field
doesn’t change at all. It is also called perturbative localization,
because the wave perturbation theory is applicable just under condi-

tion en<Cl. In this case the eigenfunctions remain close to the
unperturbed ones.

For d=2 the problem is much more difficult. The first guess
could be as follows. The diffusion proceeds during time interval
tg~p, so that the angular size of the wave packet becomes
(Ap)* ~Dyt p~h 1.

However, there are at least two questions. First, would the dif-
fusion stop for {=¢,? This plausible conjecture was well confirmed
numerically, indeed [10, 11]. Second, would the density p remain
unchanged if Ap<C1? Apparently, it will not as now only a part of
the unperturbed states contributes to p. A plausible estimate for
new density and relaxation time scale is

ﬁ"*—f{]ﬁ[pﬁ-’?n, (20)

Then, from the diffusion law (Ag)*~D,l, we obtain

(Ag)s~e®n;  (An)s~Di~I;, (21)

which is much smaller than the first guess. In the second estimate
(21) Di~(en)® is the diffusion rate per collision with wall. This
estimate was also well confirmed numerically in somewhat different
but related models [10, 11].

The size I is called also the localization length as it characte-
rizes suppression, or localization, of the ray diffusion. Note, that
condition (18) must be satisfied, otherwise the perturbative localiza-
tion occurs with minimal

; . l
lf'“PJn"“‘Ti (An),~1. (22)

For en>=1 a very peculiar steady state is formed whose size is
given by estimate (21): As in the ray limit this steady state is a
result of statistical (diffusion) relaxation f(n, 0)—fs(n) but it dif-
fers from the limiting microcanonical distribution f.(n) in two
major ways.

12

First, the wave steady state depends on the initial state as the
former is a result of diffusion localization of the latter. Hence, the
steady state is always spread around the initial state. Second, the
steady state is composed of a finite number M of eigenfunctions
owing to the discreteness of the wave phase space. Roughly, M~I;
(21), hence, statistical fluctuations” are finite, ~M™'*~(en) "
One can say also that wave phase density f(n, ) represents always
a finite ensemble of ~M systems [11].

This remains true for an ergodic steady state as well, for any A
and d, when M~n“"'. This estimate is inferred from the only
restriction w(n;) =~ const for the ergodic steady state and eigenfunc-
tions. In turn, it implies a finite width Ae of the energy shell occu-
pied by an ergodic state. Using the last estimate and Eq. (16), we
obtain

Ao~Q . (23)

As n—>oo the relative width Ao/w—0 because w(n)—oo in our
units (A=1), and the energy shell becomes an energy surface of
the ray dynamics. Estimate (23) is also valid for nonergodic steady
states.

Even on the relaxation time scale t, the wave behaviour is quali-
tatively different from the limiting ray dynamics in that the former
is perfectly stable whereas the latter is strongly unstable. It was
proved in numerical (computer) experiments via time reversal in
both cases [13]. For the ray dynamics the diffusion is immediately
restored due to a fast growth of computation errors while for waves
the «antidiffusion» proceeds down to the initial state which is reco-
vered with surprisingly high accuracy.

At a first glance, it seems to contradict to the correspondence
principle. The resolution is in that there exists another characteristic
time scale f5, on which the wave dynamics is also unstable, yet

“tg; € tp It was discovered and explained by Berman and Zaslavsky

[14] (see also Refs [10, 11]). The instability manifests itsell in
rapid spreading of a narrow wave packet which follows for a while
the beam of rays according to the Ehrenfest theorem. In case oi
exponential instability the corresponding time scale is very short.

Roughly (see Eq. (7)),

*) Fluctuations of the classical electromagnetic field in wave-guides were dis-
cussed, e. g., in Ref. [16], without any relation to the wave chaos though.
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tpy ~—— Llp. (24)

Nevertheless, f5;—oc0 as n—oo in accordance with the correspon-
dence principle. Yet, this transition, as well as that for {, discussed
above, is singular, being also a double limit in n and ¢

A nice picture of the initially unstable wave evolution can be
found in Ref. [15] where the formation of the foliation in phase
space, described above in Section 2, is clearly seen.

5. THE NATURE OF WAVE AND QUANTUM CHAOS

The principal distinction of the wave chaos is its transient cha-
racter. In other words, the wave dynamics remains close to the ray
chaotic motion on a finite time scale only [10]. Moreover, particular
statistical properties of the wave evolution correspond to rather dif-
ferent time scales. The strongest ones related to the exponential
instability persist on the shortest time scale (24) which is almost
independent on integer wave numbers n. Yet, it is important that
such significant statistical behaviour as diffusion and relaxation
continues much longer, on time scale (16), thus providing a rele-
vant statistical description of wave dynamics. This is very important
in many applications as it allows for a fairly simple statistical re-
presentation of the essential features of otherwise highly complica-
ted phenomena.

From mathematical point of view the problem of wave chaos
requires a fundamental generalization of the contemporary ergodic
theory [6] which was developed for the ray chaos, and which is
essentially asymptotic in time (|f|—+o0). Note the considerable sim-
plification of the theory due to that asymptotic approach.

To emphasize the finite-time nature of the wave chaos we call it
pseudochaos as distinct from the true ray chaos. The ultimate origin
of wave chaos limitations is in the discrete phase space as explained
above (Section 3).

The same is true, by the way, for the computer simulation of
any dynamical systems. Moreover, in the digital computer any
quantity is «quantized»’that is represented by an integer number,
whereas in the wave mechanics only the product of each pair of
canonically conjugated variables does so. As a result any dynamical
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trajectory in computer eventually becomes periodic as compared
with almost periodic evolution of waves. Note, that it is the effect oi
round-off «errors» which are not random at all. This should be
taken into account in computer simulations of ray dynamics. The
shortest time scale (24) is of the order of length n, (the number oi
bits) of computer word (mantissa), and it is negligible in most
cases. Fortunately, the relaxation time scale (16) grows like some
power of the maximal computer number (~2") which is typically
not a serious restriction (for details see, e. g., Reis [10, 17]).

Coming back to wave dynamics I would like to stress that even
though from formal mathematical point of view all linear wave
equations have similar properties the physics of quantum waves is
fundamentally different. While most classical linear waves are
simply a low-amplitude approximation (an important exception is
electromagnetic waves) the linear quantum mechanics is as yet the
most fundamental and universal theory. Hence, the «irue» classical
chaos is but a limiting pattern, very important in the theory but
never realized, strictly speaking, in nature.

On the other hand, the evolution of ¥ wave is only a part, and
a simpler one, of the quantum dynamics as a physical theory. The
other part, much more difficult and vague, is the quantum measure-
ment with its misterious W collapse. It is not excluded that the
latter is the most spectacular example of the true quantum chaos
(for discussion see, e. g., Reis [I1, 18, 19]).
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