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ABSTRACT

The local order in a dense system of atoms is described on
the microscopical level. For a system where the local order
1s crystalline, models of the liquid state are discussed at
different space scales. A special attention is paid for the
definition of parameters and for the correspondence of the
parameters of the theory and the initial atomic configuration
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to those of finding that ideal figure I'x , which is nearest to the deformed
physical structure. Each fluctuating structure can be thought of as a deformed
(“excited”) state of any of the patterns I . In order to recognize and classify
the fluctuating structures one has to study the numerical characteristics of
these structures. Subsequently, the phase space of these characteristics should
be divided into domains representing the deformed states of patterns I'i. This
division has a probabilistic character (see below). In general, the domains can
overlap with each other.

Let us introduce local order-parameters—the irreducible multipole mo-
ments of the density [5, 6, 12]

Tap..on = (2) w (F(H)) t -:(:r‘?._.an ; (5)
where
f cxﬁ...an - tai...cxn(r(a)) ;
and

t(r)ay..cn =T Q1enslCy =T
(r)ai...cn 1 n dra, ... dre,

In + 1 d™ (I) (6)
denotes the irreducible part of the Cartesian tensor r&ﬁ) rSf‘l) . The sum-

mation in (5) extends over all the points r®) of the configuration. The
function w (r) defines the weight of the contributions to Te; ... from

different coordination shells. Quantities Ty ...« form the basis of the ir-
reducible representation of rank 1 of the 3-D rotation group O3.. The form
characteristics of the structure of a cluster have to be both rotationally and
translationally invariant. They can be obtained via the contractions of indices
of products of tensors Ty .. ey, { =0,1, ..., i .e. they are the independent
scalars that can be constructed from the set [Ta, .. a }. 1 =0,1,...

An equivalent sct of local order-parameters can be constructed with the
help of another basis of the irreducible representation of the O3 group, namely
that of spherical harmonics Yim, see e.g. in Ref. [12],

Ti =S o (O 0 (7)
(a)
where

D = yim (@@, (8)
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Q@ =1 o @ 6@ } denotes the polar and azimuthal angles that fix the
direction 7®/ |r™®| and w(r) is a new weight function. :é‘?ma. and

: Zpadher. a :
Tay ... arelinear combinations ¢ |(m) of and Tm, respectively.

The order-parameters (5), (8) have 2/+1 independent components from
which 2(/ -1) independent invariants can be constructed. In what follows these

invariants W |k (1 =0,1,..;k =1, ..., 2(l -1) will be referred to as structural

(k)

invariants and the phase space {W| ’} spanned by invariants W |(k) will be
referred to, as usually in problems of recognition, as the feature space.

For the description and the classification of local structures it is sufficient
to investigate a small number of low-rank invariants, i.c. the ones constructed
from the parameters (35), (8) with a few smallest values of n. The reason for
such a simplification is that the high-rank invariants are sensitive to the
small-scale fluctuations of the atom positions.

The fluctuating structure is represented in the feature space by the prob-
ability distribution of fluctuations of the invariants W, and can be described

in terms of the probability density p(t_l-'b) Let’s study a finite collection {T'j} of
initial ideal patterns. Each distribution p(¥) has at some distance in the
feature space “neighbours” pa(W) — the deformed states of ideal patterns I'y.
By definition, the quantity

dw = pa(@©); &) qw(0) 9)

is the probability of finding the values of invariants W) (! =0, 1, ...) I'E[(JTU*
senting the fluctuations of the ideal pattern Gn in the vicnity d¥W 0-

= 1] dlpj((ﬂ), of the point P The solutions of the set of inequalities
pn(W)<const (n =1, ...) are the domains in the feature space that represent
deformed states of ideal patterns I'n. For small values of £ the distributions
do not overlap each other; any point W representing the deformed state of some
pattern I'i cannot simultaneously correspond to some other pattern I'; (i =).
In this sense, the division of the feature space into domains has deterministic
character. When & increases the widths of the distributions increase, too; for

E >E* the two neighbouring distributions overlap each other. In such a case
the division of the feature space has a probabilistic character —some point W
can correspond to deformed states of two different patterns. For fluctuating
structures it is necessary to introduce quantitative characteristics for the
degree of overlap of the distributions. Let us assume that the fluctuating
structure is the deformed state of those two patterns I'1, 'z for which the value
of p(W) is the bigger one. The total error E of recognition is
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1. INTRODUCTION

Liquids (melts) and the melting transition have been intensively studied
both experimentally and theoretically; for carlier reviews of this study see the
books of Frenkel [1], Fisher [2], Ubeliode [3]. The ideas of local order
emphasized by Frenkel help to explain qualitatively the properties of liquids
without strict definition of terms. To make the theory more adequate one has
to define local order and describe it in terms of some order parameters. The
volume where the order is to be treated as local contains many atoms, so the
description in terms of order parameter fields is expected to be relatively
universal and independent on details of atomic interactions. The experimental
data rather support the concept of local order but give no unambiguous
information about the nature of the order and the size of the ordered volume.
In the theory, many figures where suggested for the part of the local structure
of a simple liquid.

In recent papers (Patashinskii and Shumilo [4], Mitus and Patashinskii
[5], Hess [6], Nelson and Toner [7]) it was assumed that the local structure
of the melt resembles that of a crystal. Sachdev and Nelson [8] and Stein-
hardt, Nelson and Ronchetti [9] suggested the icosahedron to be the main
structural unit of local order in metallic glasses and melts. Among other
models, the most popular ones are Bernal’s model of chaotic close-packing
{10] and Zachariasen’s model of a chaotic lattice [11]. Different models may,
in principle, correspond to different types of the matter.

The local order in melts manifests itself in the presence of thermal fluc-
tuations of atomic positions. These fluctuations are characterized by the
parameter § =&/ a, where §' denotes the mean-square-root thermal displace-
ment of atoms from their supposed ideal positions, and @ denotes the mean
interatomic distance. At the melting point § =4, =0.07+0.17 is the Lindemann
criterion. Every arrangement of N points can be treated as a fluctuation of any
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other N-points configuration. The first step towards of a theory is to define
the local order not only qualitatively, but quantitatively.

The melting temperatures Tm are high enough to allow a classical descrip-
tion of atomic positions exept for liquid He and probably H. One starts from
Gibbs probability distribution

dw=2_1¢xp{*m} dn , (1)

Z =] exp {~ i@—l} dn . 2)

: &

The whole set of quantities for a microscopic state is denoted by {n}. For
a classical system, the moments are distributed according to the universal
Maxwell law, so we only study the configurational part of the energy H.

We only deal with degrees of frecdom corresponding to the positions of
atoms. To avoid complications we deal with a simple (or relatively simple)
liquid. The model system with pair interaction of Lennard —Jones type

12 6 (3)
z=3 w,ei-m;  v=af(8) 28]

i#]

is an example of such a system studied in many computer experiments.

2. PARAMETERS OF LOCAL ORDER
A physical configuration of N atoms is a set of points with coordinates r@®,
a=j, ..., N. Adescription in terms of space order by definition means that the
configuration I’ {r(a } build of points r®) is to be represented as a deformed
state of some ideal figure " (r (a:') so that

F@ = rga) +679 )

For a given physical configuration the problem of finding an idecal con-
figuration may, in principal, have not a unigue solution. The set of related
ideal figures {I'n},n =1,2,..., is to be chosen on the basis of physical concepts.
For a system of interacting particles, one may expect that idecal configurations
are determined by minimal values of the interaction energy. For a close-pack-
ed system the clusters of CCF, HCP lattices and the icosahedon are possible
candidates for the local structure.

Once the set of ideal figures T, i =0, 1, ..., is chosen the problem reduces
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E = J min[pi(¥); pa(¥) ] d¥. (10)

The integration in (10) is carried out over the whole phase space of
invariants. The boundary @S of the critical domain S coincides with the
determinant surface that divides the feature space into two parts and consists
of points Wy such that p1(Wa) =p2(Va).

The crystal structure of most of the elements near their melting lines is a
close-packed structure. X-ray, electron and ncutron structural experiments
show that, as a rule, the local structure of liquids near the freezing line
resembles that of the parental crystal. In Ref. [12] three 13-atom clusters were
studied, namely the “crystallographic” ones corresponding to nuclei of fcc and
hep crystals and the icosahedron as candidates for the structural units of dense
liquids. Each cluster has N =12 “outer” atoms, equidistant from the central
one located at the origin of the coordinate frame of the 3-D space. The distance
from any of the atoms to the center is taken as a unit length. A computer
simulation of the fluctuations of the structures was performed as follows. Each
of the 12 atoms of the cluster was randomly displaced onto the surface of a
sphere with radius & and with its center located at the atomic position in the
ideal (i. e. nonfluctuating) cluster. No correlations of displacements of atoms
were accounted for. The most related result to the problems discused here is
the dependence of the probability of erroneous recognition E on Ez (see

formula (16)): E(’g‘z) is very small for EZ < 0.01 , it reaches a value of order

1072 at £ < 0.02 and then grows rapidly, and E(&p)=1 with & = 0.02.

Let us discuss the relation of the model to a physical system. The statistics
of the atom displacements of an elastic system gives the mean square inter-
atomic distance fluctuation in the form

2 (11
%,2: ﬂié."‘z }=AT. )

a

For temperatures higher than the Debye temperature as . g. ncar and
above melting of simple liquids thermal fluctuations of atomic positions are
essentialy due to independent motions of the atoms. Therefore the statistics
of cluster fluctuations used in simulations is as expected in real systems. The
main assumption here is the existence of such clusters of locally ordered
matter in the system. The assumpton is trivial for a crystal, but much less
trivial for a liquid or an amorphous state. Let me emphasize two important
facts about the dependance of E on E%. The first one is that for £< & = 0.02
short-range fluctuations do not destroy the existing local order. It is well

known from experiment that & 2(1"m) = £ % ~ 0.01 at the melting tempera-
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ture Tm. The inequality
ém <&b

shows, that some part of the (PT)-plane corresponds to the equilibrium liquid
state with a well-defined local order. The condition & = & fixes the smooth
boundary of the locally-ordered matter in (PT) plane. In elastic approxima-

tion one gets
3

. &

£ = ﬁgc ~0.017—.

The vicinity of the melting curve in the liquid state belongs to the locally

structured liquid. Of course, to be more explicite one has to study the statistics

of clusters in a macroscopic system of interacting particles. The simple simula-

tion in [12] only determines the geometrical basis of the description, and gives
the upper bound for the &p.

In the liquid state for temperatures T <7 the local order in the good matter

is frozen. In a first approximation one can neglect the {luctuations of invariants

W of the structural lowest rank tensors Ta, ..., (# =< 10) in clusters of good

material.

The second result obtained in [12] is that for £2 >£§ the local order become
ambiguous. A crystal lattice heated up to those temperatures can’t keep the
local order. It explanes the puzzle of the Lindeman criterium — the small value
of £ ¢ = 0.01. The described simulation support the possibility of local order
in melt, but gives no answer on the next important question: what is the local
order in the melt, In what follows we suppose it is crystalline.

3. LIQUID WITH CRYSTALLINE LOCAL ORDER

In what follows a liquid is suggested to be locally crystalline ordered. For
an ideal crystal, this is the case for every small volume. Important topological
properties of a lattice are the neighbourhood relations of its sites. A physical
configuration of N points is said to have crystalline order if the points r2)
(a=0, 1, ..., N-1) are represented as slightly shifted from their ideal lattice
positions r(a). Morc formaly we define the one-to-one mapping I' - I'":

(r{ﬂ) - r'(a)) of atomic positions onto sites of the chosen ideal lattice. The
mapping preserves the nearest neighbourhood relations: images of nearest
neighbours are nearest neighbours. Let us match the ideal lattice to the
physical system. By definition the tangent position of the ideal lattice for a
cluster containing N atoms is reached if:

8

1. The image r'(©) of the central atom mahes the center (%

(© _ .0

2. The lattice is rotated from initial standard orientation in order to

minimize the noncoincidence of images r'(@) and preimages r There
are N—1 vectors

cﬁr(a)= r(a)— r’(a) y aed ... N-=1. (12)

To define the minimal noncoinsidence one has to consider the series of
invariant combinations Ag, Aj, ..., of vectors 8r® and to minimize the
invariants in the choosen sequence. There are 3 parameters (Euler angles)

that are to be found for the tangent orientation g?r(n)) of the lattice. One can
take for simplicity

i g or@y2 (13)

The tangent orientation of the lattice (or, in more physical terms, the
orientation of the local lattice) is described by the rotation g(r) that brings the
ideal lattice in the tangent orientation from the reference orientation. The
order in a cluster (a small part) of the system is crystalline if the mapping
described above exists for limited dr(b) << a. In this case the rotation g(r) is
assined to the central point of the cluster, and this point belongs to good
material. For an ideal crystal all atoms belong to good material, and therefore
it is possible to map once all the atoms onto the ideal lattice supperimposed on
the whole crystal. Ia this case the tangent lattice coinsides with the crystal
lattice, and g (r) = const. In 2-D crystals one has to proceed with a step by step
mapping even for ideal crystal when T # 0.

Liquids are isotropic, and therefore a liquid must contain atoms of bad
material — centres of clusters that cannot be mapped into the lattice in a
unique way.

The most important next question is the form of the region occupied by
good material (and by bad material as the complement of good material to the
whole volume of the system). We assume the good material with the same local
lattice to occupy most part of the volume, so liquid is in essence one multiply
connected cluster of good material. The geometry of bad material has to make
the system macroscopically isotropic. Note that the definition of local crystal-
line order given above is valid in principal for 2-D systems. A minimal disorder
in the 2-D locally crystalline system that makes the system isotropic is a
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distribution of point defects. For the 3-D system, the minimal disorder is a
finite density of infinite lines of bad material.

The next step of our construction is to map the whole system onto the
lattice. To start with the mapping, one has to chose the initial cluster of good
material and map all points of the cluster onto sites of the moveable ideal
lattice. As described above, one superimpose the lattice on the cluster in
tangent position, getting the local orientation g(r), r being the centre of the
cluster. The next step is to choose a new cluster with the central point r1 being
the nearest neighbour or point 7, and to repeat the mapping procedure,
mapping only new points and making minimal change of orientation to reach
the new tangent orientation g(r1). The mapping at the second step is unique
defined by the mapping at the first step. Continuation of the mapping along
all paths through the good material define the local orientation field g’fr). The
mapping is one-to-one for every two consequent steps, but, in general, not
one-to-one for a closed path. The procedure of mapping along paths is rather
well known in dislocation theory as the Burgers—Frank procedure [13, 14].
Note that the mapping of points map the path through the system onto the
path on the ideal lattice. The failure of the image contour is a whole number
of elementary vectors of the lattice.

The idea of our construction is to describe a configuration of an atomic
system, that is locally crystalline ordered but has no long-range order both
translational or orientational. It is important to stretch that at few steps the
change of atoms positions from those of a lattice sites and the change of
orientation g(r) is supposed to be small along the chosen path through the good
matter cluster.

Consider quantities b(ro, r) and g(ro, r), defined as

b(ro, r) = pzh Aé(r) ~ I gx_i dxk (14)
) = i 5
g(;-ﬂ.! ,r') — pzh ,rj.g(r} - f %x% dxx (1 )

Here, A8 = §(r+d)—&(r) is the displacement of an atom from its ideal position
and Ag is the relative rotation

Ag=g '(r)g(r+d)

in the point r of the path, d'is the shift from atom r to its nearest neighbour.
The sum in (14), (15) is taken along the path. The continual form of b(ro, r)
and g?ru_ r) is written in (14), (15) as path integrals.

The expected property of liquid configuration is that for a liquid there exist

10

a finite correlation length r¢; of translational order and ro of oriental order.
In a crystal riy = o, ror = . For a path of alength/ (rg, 7) >> ri; one expects
a result of a Brounian motion of £(7) and g(r)

i 1/ (16)
|b(ro, 7) | = (—) ;

Ttr
3 \ (17)
ey 1= (55

It is expected (see below), that /(rg), r) >>r(.. The important statement is that
for a closed path in the configuration r = rg both b(rg, rg) and g?rg, rg) are
nonzero, and the mapping of the closed physical path onto the ideal lattice is
not closed and has a failure

b(ro) = b(ro, —ro) = n) &0, (18)

which consists of whole numbers n® of elementary translation vectors ¢ of
the ideal lattice. For the rotation one returns to the initial point rg having an
equivalent orientation of the tangent lattice, that means that

‘: gh(rﬂr ro) = [1 (gAﬁ)) . (19)

where g7 are elements of the rotational symmetry group of the lattice and
nj—whole members.

Circulations (14) and (15) are not changed by contraction of the contour
of integration untill the contour crosses a line of bad material. The whole
problem reduces to those of elementary circulations around defects, and the
local characteristics of line defects are those of Volterra dislocations. Defect
lines with g (ro) = 0 are well known dislocations. The failure b(rg) is the
Burgers vector of the dislocation. It is constant on the moveable ideal lattice.
As a physical quantity it has the form (18). Along the dislocation line, b(ro)
rotate with the tangent lattice:

b(ry=g (') g \(r) b(r). (20)

Defect line that gives gA(rn, ro) #0 is a disclination line. Instead of the
Burgers vector for a dislocation the disclination is characterized by the direc-
tion of the rotation axes and the angle of rotation w. The disclination axial
vector @q has the direction of the rotation line and the length w. Along the
disclination line ojg rotates with the tangent lattice:
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g ') wa(r) =g ") wa(). (20")

From energy arguments one expects in the liquid only dislocations having
smallest Burgers vectors b and disclination axial vector w allowed by the ideal
lattice symmetry.

To describe positions of atoms of a chosen cluster of good material
homogeneous strain of the local lattice has to be introduced that brings the

images () closer to the original points r® . Small rotations and strains are
described by rotation tensors wij = — wji and strain tensors Uj; = Uj; being
respectively the antisymmetrical and the symmetrical parts of the distortion
tensor fFij

i = i + U

wjj = %(ﬁij - Bii) e

1
Ui = 5 By + Bii) »

For liquid configurations we expect the strain to be small but the rotation
to be rather large, so the representation (15) has to be gencralized — see [4].
The best (tangent) orientation and the local deformation are to be determined
by the minimization of the series of invariants described above.

The displacements 7@ of atoms from the tangent position of the
deformed lattice arc the short-range thermal fluctuations,

Now we are able to review the description of a configuration of a locally
crystalline system. The configuration is described in terms of:

1. Good material;

local oricntation g’tr),
local strain tensor Uij (r) (22a)
short range fluctuations 5r @)

2. Bad material:
dislocation lines Dir

disclination lines Dor (22b)

In our description point defects are to be considered such as vacancies and

interstitials. These defects are local ones. The local topology of the configura-
12

tions described in terms of good and bad material is the same as that of a
crystal with (possible) dislocation lines, so the recognition of a vacancy or an
extra atom 1s to be based on the same principles. Formaly one can treat these
point defects in a 3-D system as very small dislocation loops. The point defects
may play an important part in the dynamics of defect lines where the necessity
to deal with a concentration of vacances ny(r) and of interstitials n;(r) occur.
To complete the list let me mention the concentrations of impurities. The
description in terms of these parameters is justified if short rang fluctuations
do not destroy the local order (see sect. 2), and if the density of dislocations
is small enough and most part of the system belongs to good material. To
proceed with the statistical theory one has to write the energy of the system
in terms of parameters (22). In the elastic approximation this was the matter
of the paper [4].

4. CHARACTERISTIC LENGTHS OF THE LIQUID

At the initial atomic scale a typical confliguration of the liquid state is given
in terms of atom coordinates r®), 2 =1,2,... The energy has the form (3). The
suggested local order allows the division of the matter into two parts — the
good matter and the bad matter. The same configuration is described, with
the help of the moveable ideal lattice and mapping procedure of atoms onto
lattice sites, in terms of local orientations g(r), local strain Ujj(r), the uncor-
related atom displacements from the sites of the local lattice, and the
parameters of bad matter. The possibility of such a description exists only if
the good matter occupies most part of the system and has the form of a
multiconnected infinite cluster. The mean distance between two nearest dis- -

location lines /g and the density of defect lines ng~/ .;1_2 has to obey the
condition

[ g
£ DRa>1
a” ng <1. (23)

Physical arguments that lead to (17) are the inelastic repulsion of defects
at short distances and the loss of entropy for high densities of dislocations.
There are no strict mesurements or computations of 14. The experimental data
seem to be consistent with the values g ~(3+7) at the melting point. Let us

treat A3 L as a small parameter of the theory

13



gl << 2 (24)

and go to the scale /;

a<<li<<lyg (25)

for a coarse-grained description of a liquid configuration. At that scale_the
liquid is to be described in terms of smoothed fields of local orientation g (r}
local strain Ujj(r), and the bad matter parameters: positions {Dir} of disloca-
tion lines, concentations np(r) of point defects, and diclination lines.

Let us first exclude disclination lines and describe the new infinite
multiconnected cluster that include good matter, point defects and disloca-
tions. The model of that part of the liquid is at scale It a system {D¢} of strings
with Burgers vectors b(r), and a medium with local anisotropy of the local
lattice clastically stressed by the dislocation strings. Locally this model is the
model studied in the continuum theory of dislocations—see Kroner [15].
This model was studied in the dislocation theory of melting—see f. e. [5, i6,
17]

The local orientation g(r) is represented in the theory by the orientational
order parameter. For the cubic local lattice it is the rank four tensor Tk (see
(6))

Tijxi(r) = > n i(a) n }a) n ](F) n [(1“) -
c=].3:3

f g
- % (3ij Okn + ik Ojn + Sin Oj) . (26)

Here n(%) is one of three (¢ =1, 2, 3) basis vectors of the local ideal
undeformed lattice. An essential change of local orientation due to disloca-
tions demands some number of those defects. The standard configuration of
small angle boundary that minimizes the necessary dislocation density under
a change AP of orientation is known. The distance between dislocations in this
boundary is (see [13])

- (27)

One obtains the same change Ag of relative local orientation at the distance
Ar >> b by shifting the dislocations randomly at distances r < A r. For all

the dislocations with density ng =1/ 73 having the same Burgers vector one
gets the limitation for the orientation correlation radius rdr:

14

Hypa = — v Tijkt hija
f Tijki exp[— pv Tijk1 hijwt] dg (38)
J exp[— Tijxt hiju] dg

Rijki =

The solution of (38) is studied in Ref. [5]. It gives a qualitative unterstanding
of melting and crystallization, of surface melting [19] and other phenomena.
In the crystal phase, <Tijji> =hjjk # 0, and 40Tiju | > 2is relatively small
at the melting temperature. At the same temperature in the liquid, Ajjx = 0.
For the defect line picture, it means the proliteration of defect lines, so that
the defect density ng(7) at melting line i1s some dimensionless number in
interatomic distance units. When the temperature increases, the density of
defects increases slowly in the melt for T < Ty. At the high-temperature
boundary of the liquid state this increase is sharper as a function of tempera-
ture, and the density reaches the value nq~1, so that the description in terms
of good and bad matter is no more adequate.

5. CONCLUSION

The picture of the liquid state described above explores two main assump-
tions one can’t proof at the present time rigorously by theory or experiment.
The first assumption is the existance of a crystalline local order in most small
parts of the system, and the second one is the form of the cluster occupied by
the good matter.

The real liquid, even the simple one, has a complex structure at all scales
r = ror . One is able to study simple models of liquid (see egs (37), (38)), and
to understand at least qualitatively the properties of the system.

In this paper attention is paid to the description of atomic configuration.
The statistical mechanics of the model of disclination lines interacting with
local rotation field 1s beyond the frames of this paper, as well as problems of
dynamics of the configuration. Assuming the local crystalline order in melt,
onc obtine some important properties from the gcometry of the configurations:
the existance of a relatively large length of ror~(10+50)a. A liquid has an
anisotropy of a crystal in a volume containing thousends of atoms. The
importdnt part of liquid structure is a system of infinite disclination lines.
The size of the core for a disclination 1s expected to be some a. One speculate
that it is structureless and that the density in this core for a dense packed

system 1s small.
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f'nrat’nr="a_=ﬂ.15.

Let us take, as expected for the liquid at the melting temperature

Tor = const + 15 . (29)

For the supposed value /g~3+7 one has
lor ~ (10+50) a. (30)

This means that there exists a scale /¢ for the liquid
lg <lr <lor, (31)

where the mean local orientation Tijki(r) is a well defined quantity. From
(28) — (30) one seces that the density of disclination lines is small. At scale /;
the liquid is in essence a system of disclination lines surrounded by continuum
media having the anisotropy of the local lattice. The orientation order is
represented by the field of orientation order parameter, in case of a cubic
lattice this parameter is Tjj(r). The media is plastically bended, this bending
obey conditions (15), (20') for paths around disclination lines:

ﬁﬂgdfi=ﬂ)d. (32)

In the static theory, one asks for the probability of a configuration of the
local orientation field Tiju(r). If written as

dwor = A E}ip[— - [ T;k}(r)} } Dg,(r) ’ (33)

it defines the effective Hamiltonian (local thermodynamical potential) of the
local orientation. The probability distribution {33) can be obtained from the
previous scale description, where the change of the local orientation could be
written as a function of the dislocation and disclination lines configuration.
Namely, one has to integrate the Gibbs distribution

dwer = exp {- i%{)_]_} d{D} (34)

of dislocation lines over all states consistant with the long-wave orientation
field Tijx(r). The computations, even in a simplified version, are rather
complicated — see [4]. The interactions of dislocations is known to be long
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range. From the outer space at distance R, the action of a system of dislocation
lines is equivalent to the action of one line with the resulting Burgers vectlor
by, and the energy of elastic stress is

Egp~b% InR. (35)

An exeption is a dislocation wall mentioned above (see eg. (27)). We begin
the description of the ensemble of dislocation line configurations for a given
orientation field Tijk(r) from a very special configuration where small angle
boundaries (dislocation walls) divide the volume in crystalline cells of size /op.
For that configuration, the Tijk1 1s constant in a cell. The interaction of
dislocations is screened, and the energy density is the core energy density
proportional to the dislocation density, plus the interaction energy density of
dislocations in the wall. Small angle boudaries may cross at disclination lines.
Let us start from this poligonized configuration and allow every dislocation to

shilt randomly at a distance &rq ~ :’é. The energy of the dislocation system
now has a part proportional to the dislocation density (core free energy), and
a part that includes the interaction energy of dislocations over the screening
length /.

Relations between this two parts depend on the parameter p = lg / lor . For
p=1 the amount of dislocations is the minimal one for the given long-range
orientation field. The entropy is relatively small, and the effective Hamil-
tonian in (32) is of first order in VTijj. For p 3 the total density of disloca-
tions exceeds essentially the minimal one.

The simple model Hamiltonian for the orientation ordering in a locally
cubic system is proposed in [5]. The system is a help lattice. A configuration
is given in terms of Tijki(r), r being the sites of the help lattice. Independent
variables are ratations g (r), and

i e G | L 2
Ti(r) = £r) Tou . )
The configuratiion {gh(r}} has the energy
H{g,} = E, J(r — r' Tiju(r) Tijra(r') . (37)
I T

Disclinations are included in (37) as lines of lines of help lattice sells with
nonzero circulations of rotation changes (15), (32).

Models like (36), (37) are the simplest models of a liquid at the scale /~/or.
One can compare the ideas behind such a simple theory with those of Heisen-
berg or Ising models of magnets. In mean field approximation one obtaine
from (37)
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