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INTRODUCTION

The main idea I would like to expose here is inexhaustible diver-
sity and richness of the dynamical chaos whatever description you
choose: trajectories, statistics or, recently, renormalization. The
importance of this relatively new phenomenon—the dynamical
chaos—is in that it presents, even in very simple models to be dis-
cussed below, the surprising complexity of the structures and evolu-
tion characteristic for a broad range of processes in nature including
the highest levels of its organization. Moreover, dynamical chaos is
the only stationary source of any new information and, hence, a
necessary part of any creative activity, the science including. This is
a direct implication of the Alekseev— Brudno theorem and Kolmo-
gorov's development in the information theory (see, e. g., Rels
[1, 2]). The chaos is not always that bad!

Below I restrict myself to the classical mechanics only. The
so-called «quantum chaos» is another story (see, e. g., Refs [3, 4]).
Let me just mention that apart from very exotic examples there is no
«true» chaos in quantum mechanics contrary to a common belief,
On the other hand, the inavoidable statistical element of quantum
mechanics related to the measurement is very likely assotiated with
the same classical chaos in the measuring device.

With a bit of imagination and fantasy one may even conjecture
that any macroscopic event in this World, which formally is a result
ol some quantum «measurement», would be impossible without
chaos.



Also, I am not going to consider any dissipative models (very
important in practical applications) because they are not as funda-
mental as Hamiltonian systems. Besides, strictly speaking, the dissi-
pative systems are not purely dynamical as the dissipation is inevi-
table related to some noise.

In what follows I take a physicist's approach to the problem,
that is my presentation will be based on a simple (sometimes even
qualitative) theory combined with the results of extensive numerical
(computer) experiments. For a good physical overview of nonlinear
dynamics and chaos, see books [5, 6].

The principal concept of such a theory is the nonlinear resonance
whose quite familiar by now phase space picture is depicted, e. g.,
in Fig. 4 below. Essential part of this resonance structure is a pair
of periodic orbits, the most important being unstable one as it gives
rise to the separatrix and, under almost any perturbation, to a
chaotic layer around. This is precisely the place where chaos is
dawning.

Again, | have to restrict mysell to a simpler case of strong non-
linearity which does not vanish with perturbation. A very interesting
weakly nonlinear resonance will be brieily mentioned in Section 1.2
below. |

The paper is organized as follows. In the next Section 1 simple
models are described currently extensively used in the studies of
nonlinear phenomena and chaos. They well represent the whole
spectrum of complexity classified in Section 2. The main Sections 3
and 4 are devoted to a detailed description of the so-called critical
phenomena in dynamics which reveal the most complicated beha-
viour presently known.

1. SIMPLE MODELS

First, let us consider a number of simple models currently very
popular in the studies of dynamical chaos. Most of them are specili-
ed by some mappings, or maps, rather than by differential equa-
tions. This considerably simplifies both the theoretical analysis and,
especially, the computer experiments.

In conservative Hamiltonian systems the chaos requires, at least,
two ireedoms. Then, the corresponding so-called Poincaré map is
two-dimensional.

1.1. Strong nonlinearity [7]. Below we shall consider 2D maps
of the following form:

y=y+fx); x=x+gly. (1.1)

This map is area-preserving, or canonical, which corresponds to the
Hamiltonian nature of the model. Function f(x), periodic in x, de-
scribes a perturbation usually assumed to be small. Hence, y is the
unperturbed motion integral. Function g(y), even linear (see
Eq. (1.6) below), represents the nonlinearity of x oscillation.

The simplest example of an analytic perturbation is given by

flx)=K-sinx. (122)

We shall consider also a smooth perturbation specified by the
Fourier series

[ ) == Z fove " i fy e K i) B 7 (1.3)

where B is the smoothness parameter: The term «smooths means
actually «not smootk enough». For B=2, for example, function f(x)
is continuous but the first derivative is discontinuous.

I mention twe particular forms of nonlinearity. The first one

gly)=h-In |yl (1.4a)

models the motion near separatrix of a nonlinear resonance, so that
map (l.1) with this nonlinearity and perturbation (1.2) describes,
particularly, a separatrix chaotic layer [7].

Another form of nonlinearity

glE) =2aw(—2E) %7 (1.4b)

corresponds to the Coulomb interaction, and it is actually the
Kepler law. Here it is convenient to use unperturbed energy F<0
as a dynamical variable, and o is the perturbation frequency (see
Rei. [4]). ;

The map (1.1) with nonlinearity (1.4b) and perturbation (1.2) is
called the Kepler map, and it was applied in both celestial mecha-
nics and atomic physics. In the former case the motion of comet
Halley driven by Jupiter and Saturn was proved to be chaotic [8].
In atomic physics the Kepler map is a simple model to describe, in
particular, a new type of photoelectric effect, the so-called diffusive
ionization of Rydberg (highly excited) atoms [9].
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The two latter examples show that map (1.1) can be considered
also as a model for time-dependent dynamical systems that is for
those driven by a periodic perturbation. This is, ol course, simply a
very convenient approximation in which the freedback from the per-
turbed freedom to perturbing one is completely neglected. Then, the
model (1.1) can be described by the Hamiltonian

Hix,y,t)=Gly) + F(x) 8:;()~G(y) + K ) cos (x—2mmt) 11.5)

m

where §,(f) is &-function of period 1 (one map’s iteration),
G’ (y) =g(y), F'(x) =—f(x), and the last series represents pertur-
bation (1.2). |

A fairly simple map (1.1) can be simplified still further by line-
arizing the second equation. In this way we arrive, upon appro-
priate change of the action y, at the so-called standard map

g=y+ K-sinx; X==x-if, (1.6)

which describes the original model (1.1) locally in y, and which is
also very popular now in studies of nonlinear phenomena in Hgmii—
tonian systems. Model (1.6) is completely characterized by a s-,_mg!c
parameter K. In Hamiltonian representation (1.5) the «kinetic
energys for standary map is G(y)=y’/2. Since x is an angle
(phase) variable and y is the angular momentum, the model (1.6)
is also called the «kicked rotator». |

Each term in series (1.5) describes a particular first-order (pri-
mary) nonlinear resonance with the «pendulum» Hamiltonian (for

standard map) \
'y % + K-cos(x—2nmt) . (1.1}

The resonant value of momentum yp=x,=2nm. In variab_les
¥=x—2nmt and j=y—yn any single resonance is a conservative
system. Its motion is strictly bounded in y by the resonance width
Aynm=4+/ K owing to the nonlinearity that is the dependence of fre-
quency £=y on momentum y.

i.2. Weak nonlinearity [10]. The structure of resonarnce drasti-
cally changes if we add to Hamiltonian (1.7) the term wgx"/2:

2 2
Hm=%~+-t9i]§’£—|— K-:cos (x—2nmt), (1.8)

which breaks down the integrability of the system for any wos0.
8

Actually, the model (1.8) is quite different from model (1.7) as
now variable x is no longer confined to interval (0, 2n), and y is
not the angular momentum. One may interpret Hamiltonian (1.8)
as describing a particle-wave interaction. Such models have been
studied by many authors in plasma physics (see, e. g., Ref. [5]),
yet the true understanding has been achieved only recently (see,
e.g., Ref. [10]). The peculiarity of model (1.8) is the weak nonli-
nearity that is the unperturbed (K=0) oscillation is linear (isochro-
nous) which turns out to be a much more difficult problem as com-
pared with strong (unperturbed) nonlinearity (1.4). The resonance
is now determined not by initial conditions but by the parameters of
the model: 2nm=nwo with any integer n=£0. In the action-angle
variables (/, ¢) of the harmonic oscillator a single resonance is
approximately described by the Hamiltonian

Hpu~ K- 15(a) ms(mq:-+ “Tm) , {1.9)
where a= (2//wo)'/? is the oscillation amplitude, and J,, is the Bessel
function. There are now infinitely many stable and unstable periodic
orbits (instead of two for strong nonlinearity) while the separatri-
ces, connecting unstable points, form an unbounded netwerk on the
phase plane (/, ¢). As a result, even a single weakiy nonlinear
resonance can make the motion completely unstable and unbounded.

2. LEVELS OF DISORDER

In this Section | attempt to «organize» the great variety of cha-
os into a series of levels with increasing disorder and complexity.

2.0. Complete integrability |[15]. This, zero, level of the maximal
order is characterized by a stable and dynamically predictable mo-
tion in terms of individual trajectories. The motion is quasi-periodic
that is of a purely discrete spectrum. One may call it simple dyna-
mics. Yet, in the general theory of dynamical systems this «simples
motion includes the whole quantum chaos, typically on a finite time
scale (see, e. g., Ref. [3]). The latter is dynamically equivalent to a
many-dimensional linear oscillator which is apparently the simplest
model of the quantum chaos [11]. On the other hand, in the formal
thermodynamic limit of infinitely many freedoms this model provid-
ed the foundations of the traditional statistical mechanics, both clas-
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sical and quantal, of macroscopic systems (for a rigorous theory
see, e. g., Ref. [12]).

The standard map, as the simplest model, is completely integ-
rable for K=0 only, that is in the unperturbed limit. In this case
y=constl is the motion integral, and x=2nr{ where quantity

r=2 = 8% (2.1)
2m 2n At

is called rotation number. This very important parameter of a tra-
jectory is the ratio of motion frequency (w) to that of the perturba-
tion (2n). Particularly, this ratio determines resonances (with zero
perturbation in this limit!) which correspond to rational r=p/q.
Any resonant trajectory is just g separate points on the phase plane
(x, y). For irrational r the trajectory is a continuous straight line
y=2nr which is called invariant curve, '

In spite of a great recent success in constructing the whole
families of completely integrable systems (see, e. g., Ref. [13]) they
all are exceptional, or nongeneric, in the sense that almost any per-
turbation destroys the integrability.

2.1. KAM integrability [14] is the generic property of a comp-
letely integrable system under sufficiently weak perturbation. The
theory of such systems had been initiated by Kolmogorov and was

essentially developed by Arnold and Moser (see, e. g., Rel. [13]),

hence, abbreviation KAM.

For the standard map this first level ol disorder corresponds to
a nonzero K—0. Most invariant (KAM) curves survive weak pertur-
bation that is they are only slightly deformed but remain continuous
and, hence, unpenetrable for other trajectories. For this reason the
KAM curve is called absolute barrier (for the motion). This pro-
perty depends on the rotation number r of the curve which must be
sufficiently irrational for the stability against perturbation. Hence,
the importance of parameter r which is used as the label for identi-
fication of a given KAM curve at diiferent perturbations.

Curves with resonant r=p/g are all destroyed by any perturba-
tion to form a different structure of the nonlinear resonance
(Fig. 4). However, the ‘nonintegrable part of this structure is confin-
ed to an exponentially narrow chaotic layer only. From physical
point of view such a motion can be well considered in most cases
as integrable to a very high accuracy. This is reminiscent of the
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:adiabatic invariance which is very important in physics even though
It is not exact. Actually, there is a deep relation between the two
and we call KAM integrability the inverse adiabaticity [14, 16]. :
zﬂfppruximately, the dynamics on this level is as simple as on the
previous one. Yet, the chaotic component of motion, being of an
exponentially small measure, is everywhere dense. As a result, the
whole motion stucture becomes very comlicated. For more than two
ireedoms the phase space is cut through by a connected network of
channels which support a global diffusion [7]. Even though the rate
of this Arnold diffusion is also exponentially small it may be impor-
tant in some special cases. For a weakly nonlinear system the
Arnold diffusion is possible even in two freedoms as well for
instance, in model (1.8) [10]. ;

2.2. Complete chaos [20]. Now we turn to the opposite limiting
case when the motion is fully chaotic. In the standard map, as
K—-co, there is a single chaotic component of motion stretched over
_the whole phase space (cylinder) of the model. The motion spectrum
is purely cortinuous while a typical individual trajectory is most
complicated. The latter means that Kolmogorov’s cc}mplex'ﬁy, which
is ?qu_al to the information associated with trajectory, is finite, per
umtr time, and equal to the rate of local exponential instability of
motion [1]. Hence, the dynamics on this level is most complicated
to the extent that trajectory actually loses its physical meaning.

Nevertheless, the dynamical equations, e. g.,‘map (1.6), can still
be applied to copletely derive the statistical properties of the un-
stab]e‘motion, Moreover, on this level the statistics turns out to be
very simple and already well-known frot the traditional statistical
mechanics. For example, in the standard map it is simply a
homogeneous diffusion in y with the rate '

KAy - KR K*
Dy= ; —?C{K)_’“é—a (2.2)
where function C(K) accounts for the dynamical correlation of

p_haae X a{?d C(K)—1 as K—oo [17]. For this reason the comple-
xity of motion on this level is still not the highest one.

2.31 Critical phgnumena: scale invariance [21]. For a typical
(generic) perturbation, neither very weak nor very strong, the
whole structure of motion is most complicated because the phase
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space is generally divided in many separate domains with both
regular and chaotic motions. In the standard map, for example,
such an intricate behaviour corresponds to K~1 (see Fig. 1) that is
around the global critical perturbation K=K ;~1. The latter is the
border between strictly bounded motion for any initial conditions
(K< K;) and unbounded motion for some initial conditions
(K> Kg).

In the unbounded chaotic component (for K= K;) the motion is
still diffusive with the rate [18]

D,~03(K—Kg)? (2.3)

vanishing toward the critical perturbation (ci. Eq. (2.2)) where the
correlation C(K) ~0.6(K— K;)?/K*). The main difficulty here is a
hierarchical (fractal) structure of the chaotic component. The inva-
riant measure —phase area, known beforehand, doesn’t help in this
case. The ultimate origin of that complexity is the chaos border in
the phase space between chaotic and regular components of motion
which also results in very peculiar statistical properties of the chao-
tic motion (see Section 4).

Thus, the chaos border makes both individual (chaotic) trajecto-
ries as well as the statistical properties of the motion very compli-
cated. Is there any way to simplify the description of such a mo-
tion? Or: would it be possible to find any order in that mess? Sur-
prisingly, it is possible, indeed, in some cases if one compares the
critical structure at different scales in the phase plane (Section
3.3). Asymptotically, as you enlarge the structure more and more it
exactly repeats itself with all the dynamical and statistical comple-
xity (see also Fig. 5 below)! This peculiar property is called the
scale invariance, and it is described by the so-called renormalization
group, or in brief, renormgroup.

2.4. Critical phenomena: renormchaos [22]. The variation of the
motion structure with the scale in phase space can be considered as
a certain abstract dynamics (see Section 3.4) which we termed the
renormalization dynamics, or renormdynamics [22]. Here the scale
plays a role of «time» and we call it renormtime. The simplest case
of any dynamics is a fixed point (for maps) which in renormdyna-
mics corresponds to the scale invariance described above (see also
Section 3.3). But typically the dynamics is chaotic, and so there
must be a sort of renormalization chaos (renormchaos) as well.
Guided by this analogy we have found such a chaos, indeed [22]!

12
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Fig. 1. An example of critical structure in map (3.1) with A=5: scattered points
belong to a single chaotic trajectory:
a—the whole chaotic layer; b—enlarged part near the chaos border Y= —X where the motion is

described locally by the standard map (1.6) with K=1 [19].
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In this case the renormalization is as complicated as an indivi-
dual chaotic trajectory of the original dynamical system. Yet, some
remnants of order still persist, namely, the universality of renorma-
lization. It means that asymptotically for a big renormtime, that is
for small spatial scales, the critical structure is a universal functio-
nal of a single irrational number —the rotation number r. of the cri-
tical curve, e. g., the border curve, in almost any 2D map [21].

Moreover, one can introduce the renormstatistics that is statisti-
cal description of the renormalization. Then, for almost any r. the
renormstatistics is the same, i.e. universal, and it is fairly simple.

2.5. Critical phenomena: the breakdown of universality [23].
Recently, the first example of still more complicated behaviour has
been found in Ref. [23], where some quasi-periodic driving pertur-
bation was studied. Specifically, the standard map (1.6) was used
in numerical experiments with periodically time-dependent parame-
ter K(t) =k ko cos (2nref) incommensurable with map time step.

To some extent such a model represents also a higher-dimensio-
nal behaviour. A critical curve is now characterized by the two irra-
tional rotation numbers ry, ro. For a particular choice of irrationals
ri, re it was found that the renormdynamics is different in depen-
dence of parameters &y, ks. It is not clear thus far whether such a
breakdown is ftypical. If so, one would expect also a more
complicated renormstatistics.

Here we have come to the frontier of unknown. Currently, there
is no idea what would be still higher levels of disorder, i any.

3. CRITICAL DYNAMICS

In this Section I consider in some detail the two levels ol disor-
der brifly described in Section 2 above (levels 3 and 4). This work
was done in collaboration with D.L. Shepelyansky.

3.1. Statistical «anomalies» in dynamical chaos [24]. We en-
countered the critical phenomena in studying some statistical pro-
perties of motion in a simple map

g=y+sinx; x=x+4Ai-Inly| (3.1)

of the type described in Section 1.1 above. These our studies were

14

sj[imulated by paper [25] with an intriguing title «Numerical Expe-
riments in Stochasticity and Heteroclinic Oscillation». Actually, the
motion in a chaotic separatrix layer had been studied, and we went
on with a much simpler model (3.1) (see Ref. [7]).

We studied the statistics of times /, when a trajectory crosses
H}e symmetry line y=0. We call differences t,=1¢,., —{, the times
of Poincaré recurrences (to line y=0). The same was implicitly
done in Rel. [25]. Our results are shown in Fig. 2 where P(1) is

_(integral} probability for 1, 1. The initial part of the distribution
is very close to

Pi= —]:, =1 (3.2)
VT

and i,t is explained by a [ree homogeneous diffusion within the
chaotic layer before the trajectory reaches the layer border (y,~A).
[t takes the time

t7ar0.3)%, (3.3)

where Ihe coefiicient was obtained from the numerical data.

- Curiously, in Ref. [25] only this (trivial) part of distribution
P(t) was observed. It was the cost for authors’ great concern
about the exponential error growth at a chaotic trajectory. To over-
came the instability the computation was performed with the record
accuracy of 358 decimal places! As a result the chaotic trajectory
could be followed during a rather short time interval.

. Error growth is a serious problem, indeed, as the structural sta-
bility of Hamiltonian motion is almost unknown rigorously. Yet, all
the numerical experience up to now strongly suggests such stability
an‘d, hence, the stability of statistical properties which are of the
primary interest for a chaotic motion. Besides, only structural stabi-
i?ty would justify the use of various simple models and approxima-
ions.

In our studies of model (3.1) we directly checked that distribu-
tion P(t), which is a statistical property of the motion, does not
depend on a particular trajectory within expected statistical fluctua-
tions. The latter noticably influence the lowest part of distribution
P(t) where the number of events per bin is ~1 (see Fig. 2).

The most interesting is asymptotics of P(t) for v3>7; (3.3). This
part characterizes the motion structure of chaos border at
|yl =ys= A, or the critical structure as we call it.

15



Ecg’t

Fig. 2. Poincaré recurrences in the chaotic layer of map (3.1) for various A=1

(lower points) through 100 (upper points). Two straight lines are power law with
exponents —0.5 and —1.37, respectively (after Ref. [24]).
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The following features of P(t) asymptotics seem to be of impor-
tance. First, the distribution is a power law and not an exponential:

p—1/2
Pmymt—:; pv; (p)m15<2. (3:4)

T

This suggests a hierarchical (iractal) structure of the border. The
accuracy of numerical value for p is not very good, yet we are sure
that important irequality (3.4) always holds.

On the other hand, distribution P(t) is a power law only appro-
ximately, at average. Irregular oscillations of the local exponent
p(t)=d In P/d Int clearly show up in Fig. 2. These do not depend
on trajectory and, hence, characterize not statistical fluctuations
but, again, the structure of chaos border. Such a structure with
variable exponent p(t) is now called multifractality (see. e. g.,
Ref. [26]). :

Statistics ol Poincaré recurrences P(t) proved to be the most
convenient and reliable numerical data to study (cf. Ref. [25]). On
the other hand, it is directly related to the most important statistical
property of motion—the time correlation [27], e. g., such one

C 1) = LOW+D) (3.5)

Y1)

which characterizes the «sticking» of trajectory near the border.

Notice that y({) =0 for map (3.1).
Indeed, the correlation is proportional to the sticking time that is
(cf. Ref. [27])

Looy e c=p—1<1 3.6)
{T} pe=t (

for t=7;. Here (1) a3k is mean recurrence time, and the latter
important inequality follows from Eq. (3.4) (see also Fig. 3,b). For
chaotic motion C,—~G as 1—oco (mixing property), hence, p.> 0,
and, for bounded motion, p= 1. Also, notice that due to ergodicity
of motion Cy~nu(t), the measure of the sticking domain (a strip)
which is ~|y—uysl/ys.

Slow correlation decay due to the sticking of a chaotic trajectory
near the chaos border, and especially the inequality (3.6) are res-
poncible for all other statistical «anomalies» of the motion with a
chaos border to be discussed below. A power law decay (3.6) is

17



Fig. 3. Statistical properties of motion with chaos border:

a — Poincaré recurrences; & — correlalion decay, Solid curves are for map (3.7) [27] while circles
are our dala for A=3. Straight lines indicate power law with the exponent shown. Dashed curve
is the effect of noise [22].
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especially remarkable in view of the strong exponential instability of
the motion which is characterized by positive Lyapunov’s exponent
A4 and the KS-entropy (per map iteration): h=A, ~0.7 (see Sec-
tion 6.3 in Rel. [7]). The apparent contradiction is explained as fol-
lows. The instability rate & is mainly determined by the central part
of the chaotic layer while the sticking is a peripheral effect which
has a negligible impact on the mean local instability. In other
words, KS-entropy does not discern such statistical anomalies. It
can be done using the so-called Renyi entropy K, which is a genera-
lization of h=K, (see, e. g., Ref. [28]), and which drops to zero
for all values of parameter g1 in the presence of chaos border
[29].

The critical phenomena at the chaos border and related statisti-
cal anomalies are «universal» (a very popular word in this field of
research!) in that they are approximately the same in any 2D map.
In Fig. 3,a, Tfor example, our results are compared with those in
Ref. [27] for a different map on torus

J=y+2x’—a’); I=x+j (3.7)

with a closed chaos border surrounding the domain of regular mo-
tion around the stable fixed point at y=0; x= —a (0<<a<<1). No-
tice that the two distributions P(t) are not identical but rather
similar (see below).

3.2. The resonant theory [30]. To understand the statistical ano-
malies described above we have developed a resonant theory of cri-
tical phenomena in dynamics [30, 31]. Let us begin with a simpler
problem of isolated critical KAM curve whose rotation number is
some irrational r. According to the KAM theory most invariant cur-
ves are preserved under a sufficiently weak perturbation in the
sense that they remain continuous and are only slightly deformed
by the perturbation. The theory of critical phenomena follows the
transformation of a KAM curve up to the critical perturbation which
destroys the curve.

The critical perturbation, e. g., Kc(r) for the standard map, cru-
cially depends on the arithmetic of r. Remember that for the every-
where dense set of rationals r=p/g the critical K:(p/q) =0 (Sec-
tion 2.1). The whole dependence K.(r) is a fractal function [32].

The physical explanation of this behaviour is in resonances.
Their profound impact on the critical structure is clearly seen in all
numerical data (see, e. g., Fig. 1). For irrational r the principal
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resonances correspond to the best rational approximations of r
which are known to be the so-called convergents r,=p./g. of the
infinite continued fraction

r=———1 =(my, My, ...) ;

1
Y o= ...

Fa=(miy,..,My)—>r, nH—>0c0. (3.8)

The arithmetic of continued fractions gives for almost any r

1 :
|[J'r1|Elraz_r|"‘“‘——?"”"‘"trn+1“-fn|. {39;

n

From physical viewpoint p, is the detuning of the n-th principal
resonance with respect to the critical motion. Then, from the reso-
nance overlap criterion [7] the main critical scaling, or the critica-
lity condition, is

:ﬁpnﬁ-’]pn|~!—2. (3.10)
where Ap, is the resonance width. These resonances determine the
principal scales of the critical structure whose scheme is outlined in
Fig. 4 (cf. Fig. 5 below).

To estimate Ap. we need the critical Hamiltonian which descri-
bes all resonances rm,,=p/q (p, g are any integers), and not the
primary ones r,=m only from the original Hamiltonian of the type
(1.5). Integer resonances r,=m are obtained in the first approxi-
mation x.(f) ~2nr.{=%&, the mean motion on the critical KAM
curve,

Extrapolating the KAM theory (see, e. g., Ref. [15]) the fol-
lowing expression can be assumed for the critical motion:

xc(t) =8+ ) ag sin(gg) . (3.11)
q

Locally in y, in the standard—map approximation the critical
Hamiltonian H., which describes some vicinity of the critical KAM
curve r—r,, can be written as a natural generalization of the origi-
nal Hamiltonian (1.5) (with G(y)=y*/2) in the following form

H.(0.0.0) = £ Mpe e n kel Saones 192
0,0,0) =% +_Z o 251( g0 — V) (3.12)
pg
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Fig. 4. Outline of the critical structure with a few principal resonances, represented

by the separatrix chaotic layers (hatched) and stable periodic orbits (Icirc}e:a} and

the correspending scales g..- Another chaotic laver @, is a bottleneck hotweeh the
scales {Section 4.3). :

21



Fig. 5. A small part of the critical structure with 3 successive scales shown by rec-
tangles (including the whole picture). Critical curve is indicated by 2 arrows (aiter
Rel. [21]).
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g, -

‘Here p=r—r,; 2n0=x—E=x—2nrt, and vpg=p—gqr. are the

driving frequencies. Resonances pp,=p/q—r. are characterized by
perturbation amplitudes v,, to be found below from the criticality
condition. The factor (2m)? is introduced to recover the original
Hamiltonian for which v, =K (in variables 8, p).

For principal resonances (p=pa., §=¢.) the frequencies Va~qn '
are minimal, and they determine the time scales {,~v. '~g. which
are the motion periods at the resonances. Instead we can introduce
the scaled variables, e. g,

raada g (3.13)
tn

which remain of the same order of magnitude on all scales n.

The width of a principal resonance Ap.~uvn/*~g:’ (see
Eq. (3.10)). Hence v,~g. *, and another scaled variable
Vit gl | (3.14)

Now we can approximately solve the equation

L, o el |
26 " 3 Vo

J=p=

The latter approximation means that we substitute mean motion §
for x.(f). As our original model (3.1) is a map, time [ is integer,
and we can drop term pf in the solution 0(f) which then takes the
form (3.11) with

ag =~ q Z Upg ;
(2m)° (p—qr)®
%

3 -1
Qp~Tn Ju~qn .

Hence, the longitudinal scaled amplitude
A=a,q,~1 (3.15)
and x scale is g. ' which is simply one cell of the resonance chain

(see Fig. 4).
In the standard-map approximation

Ye (1) midt) =2nr.+) by cos (gE.—2npt)
q

with b,=2na.v,, and the transverse scaled amplitude
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B=b.qs~1. (3.16)

Hence, y scale is g= % which is the resonance width.
Consider now the periodic orbit at resonance center (Fig. 4). Iis

stability is determined by the so-called Creene residue [33] (see
also Ref. [5])

R:sin?(“:‘") =1 (3.17)

where {,=g¢g, in‘the period, and w,~¢g.vs/® is the small oscillation
frequency (see Eq. (3.12)). Obviously, R is a scaled variable.

Finally, the scaled rotation number, or rather the scaled
detuning

D-:pnq'f;ml (3.18)

determines actually all the other scaled variables.

SC: lar we considered exactly critical conditions that is
K=K:(r). What would be impact of any deviation
:‘ﬁKZ_K—KL-{F}#U? It can be evaluated as follows. Perturbation
amplitudes v, in Eq. (3.12) appear in g,-th order of the perturba-

tion theory and are proportional to [K{f(c}"zexp(q In-fi), Hence
X ;

for a small deviation [rom criticality {:lf(#{}}\ the tTaznpli’[luje
vn~exp (Cg,AK) with some C~1. At AK=0 the exponential depen-
dence cancels, and only a power low (3.14) remains. Generally,

1
e'n&?exp{ﬂqnﬁf{} ; (3.19)
For AK> 0 all scales Qqn_;}[fs.‘{)_‘ are destroyed and a chaotic lay-
er m_}:.-rdth Ay~ (AK)* is formed. From Eq. (3.19) the scaled per-
turbation can be introduced

P=g,AK,~1, (3.20)

which describes approaching the renormalization limit for a fixed V
for example. :

Ii the original perturbation is nonanalytic that is with some
power law spectrum vy~qg "' (cf. model (1.3) where fm~mo’,
the critical conditions are only possible for = 3, otherwise K.,=0.
Thus, B.=3 is the critical smoothness of the perturbation. I shall
come back to this poeint in Section 4.1 below. '
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3.3. The renormalization group |21]. This powerful method, well
known and widely applied in hydrodynamical turbulence, phase
transitions and quantum field theory, was first used in nonlinear
dynamics and chaos theory in Ref. [33]. Later on, the exact renor-
malization equations were formulated and studied in Ref. [34] for
(dissipative) 1D maps, and in Ref. [21] for 2D area-preserving
(Hamiltonian) maps. The renormgroup equations are an abstract
map acting in the space of dynamical maps, and it is based on the
arithmetical map for successive convergents r,=p./q. of the critical
rotation number r.= (ma):

p=mp+p, g=mq+q , (3.21)

where p=p,..; pP=pa; p =p,_, etc. Besides qualitative understan-
ding of critical phenomena (particularly, their universality) this
approach provides very efficient numerical algorithms for computing
all the parameters of critical structure. Unlike this, our resonant
theory, being inherently approximate, allows some analytical estima-
tes.

The resonance overlap criterion, on which the theory is essenti-
ally based, can directly provide order-oi-magnitude estimates only
as, for example, for scaled variables (3.14—3.17). However, there
exists another group of critical parameters which can be evaluated
to a surprising accuracy. Those are the scaling factors that is the
ratios of particular quantities on the neighbouring scales. For

example,
. by AK,

B oo
|
'&Kndl

Sg==
i1

fi= 1 T4
are the renormalization factors for x, y, and perturbation K, respec-
tively.

The structure oi scaled variables shows that all scaling factors
are some powers of the main arithmetical factor

Sy = dn . {322}

I}rl—l

To compare both approaches let us consider the simplest case of
a homogenious continued fraction r=(m, m, .., m, ...)={(m 5%itIn
this case all the scaled variables become asymptotically, as n—-oo,
exact invariants of the renormgroup. This is called the scale inva-
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riance. For example, D— (44 m?) ~'/? (see Eq. {2‘3.21)) which is a
simple arithmetical property. The other invariants are not yet known
except the case of r=r;=(1")= (/b —1)/2=0618... which is
called the golden tail (because for asymptotic properties only tail of
the continued fraction matters). '

In this particular case, studied in great detail, the normalization
invariants are: T=1 (if, by definition, {,=g¢q., see Eq. (3.13));
R=0.2500888...; V= (2arcsin \/R)?>=1.097052...; A~0.167: B~
~2nA/\/5 ~~0.470. Notice that from the above relation R~V ~
~Apn/pn the Greene residue also characterizes the resonance over-
lap.

Now consider the scaling factor for the area c¢,~anb, of a reso-
nance cell (the corresponding scaled variable C=c.gi~
~AB~0.0787):

Se=CnfCppy=5,=4236... (3.23)

while the exact numerical value via the renormgroup is 4.339... The
two numbers are not equal but very close which was a puzzle for
the formal renormgroup approach.

A similar situation is for the perturbation factor:
Sk=Sq¢=1.618... (resonant theory), and s4,=1.627... (numerically).

The differences in scaling factors of the two theories can be
interpreted as small changes of the exponents of ¢ in scaled vari-
ables. For the two above examples we can write:

C2ipq,: a=3.049960...

Other examples will be given below.

The behaviour of asymptotic renormalization irivariants A and R
is shown in Fig. 6 below. Remarkably, the invariant critical struc-
ture, which repeats itself on finer and finer scales with rapidly
increasing precision, is itself of the highest complexity as it contains
both chaotic trajectories and intricate admixture of regular and
chaotic components of motion. An example of a tiny part
(~0.010.01) of that structure is shown in Fig. 5 [21]. The scale
invariance is clearly seen within 3 successively scaled areas indi-
cated by rectangles.

Notice that the scale invariance holds on a particular discrete
set of scales, infinite though, because the renormgroup equations
are based on the arithmetical map (3.21).
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3.4. Renormalization chaos [22]. Variation of the critical struc-
ture from scale to scale can be viewed as some abstract dynamics.
The corresponding dynamical space is infinitely dimensional but we
may consider various few-dimensional projections of that as described
by a set of scaled variables such as A,, R., V. etc. (see, e. g., Fig.
6). The serial scale number n plays a role of «time», and we call it
the renormtime. It is proportional to the logarithm of spatial and
temporal scales:

n~|Inay| ~| Inb,| ~Int,~Ing,. (3.29)

The renormtime is discrete as is the renormdynamics based on the
arithmetical map (3.21).

The scale invariance described in the previous Section is the
simplest type of renormdynamics, namely, a fixed point of the
renormmap. The dynamical interpretation of renormalization sug-
gests other, more complicated, scalings up to a chaotic one which
would be the opposite limiting case. Guided by this heuristic ap-
proach we conjectured a new type of chaotic behaviour —the
renormchaos [22], and presented an example of the latter in
Ref. [30]. A similar possibility was also considered in Rel. [33] for
dissipative systems as modelled by an 10D map.

Our basic idea was to achieve the most complicated renormali-
zation by using a random critical rotation number that is one with
a random sequence ol the elements {m,}. As is known from the
modern ergodic theory (see, e. g., Rei.. [20]) this is just the case
for almost any irrational r. Indeed, we may introduce a sequence oi
rotation numbers via the Gauss map

|

I iy e mod 1, (3.26)
m-r r .

i) |

which is known to be chaotic [20]. Moreover, the basic arithmetical
factor in renormalization (3.22) also obeys the same map

w=IT mod 1 ; w~——-l—-c::1 (3.27)
w Sg

backwards in renormtime, and with the «initial» w ,=r where r is
the irrational with reversed sequence of elements in respect to r.
Clearly, the variation of critical structure in this case would be as
random and unpredictable as a chaotic trajectory. An example ol
renormchaos is presented in Fig. 6 as described by A and R scaled
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variables. Irregular character of this renormdynamics is clear from
Fig. 6 but the proof of its randomness is related to Gauss map
(3.27).

A chaotic trajectory is completely determined, in principle, by
the initial conditions via the formal equations of motion. By ana-
logy, we can conjecture that the chaotic variation ol critical struc-
ture is related to the rotation number r. This would imply that the
scaled variables are some universal functions of r. Then, asymptoti-
cally, as n—oo, the renormdynamics is described by an infinitely
dimensional map

A(r)=AF); R()=R({) ete.; F=—modl. (3.28)

r

Some numerical confirmation of this conjecture was presented in
Ref. [30].

Thus, particular critical structure essentially depends on r, and
in this sense is not universal. Nevertheless, the statistical properties
of chaotic renormalization are the same for almost any r. Particu-
larly, the average arithmetical factor (3.22)

. g
(s, =e"?~328; h=-"—=237, (3.29)
61ln2

where # is KS-entropy of the Gauss map (3.27). This may be com-
pared with a nongeneric case of the scale invariance for r=(m 9

.

”"[ﬂ;“"g BE 1T (3.30)

Numerical value is given for m=1 (golden tail).

A grandiose example of renormchaos is the oscillation of the
whole Universe near singularity in homogeneous but anisotropic
cosmological models [36]. So far there is no sign of such oscilla-
tions in our early Universe. Yet, the equations of the general relati-
vity allow that type of solution. Remarkably, the very complicated
relativistic equations are approximately reduced to the trivial Gauss
map.

3.5. Higher dimensions. A general picture of overlapping reso-
nances, which destroy KAM tori, holds for arbitrary number of free-
doms [7]. This allows to extend our resonant theory of critical phe-
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nomena to higher dimensions. There are two generally different

cases of the latter: (i) N> 2 freedoms, and (ii) a driving quasi-pe-

riodic perturba_tion of one freedom. In the resonant theory both are
s[.gn;iiar, the principal parameter being the number of frequencies N
First of all, for arbitrary N the number of all resonances with

~¢ harmonics of each basic frequency is ~g" hence the detuning
p~g " (ci. Eq. (3.9)), and

D=pg"~1. (3.31)

Now the main rotation number r is defined with respect to one of
perturbatiﬂn frequencies. Remaining N —2 rotation numbers enter
driving frequencies vo~gp~g'~" in the critical Hamiltonian (3.12).
The resonance width ﬂ.pﬂ-«u; 2, and from the overlap criterion (3.10)

the criticality condition is v,~g ", or (cf. Eq. (3.14))
R~V=u,q*" ~1. (3.32)

Hence, the critical pefturhaliun smoothness B,=2N—1 increases
with N (cf. Ref. [37]).

Longitudinal amplitudes a;~gqu,/vi~g~"' of the critical motion
Xc(¢) do not depend on N, and

A=ga;~1 (3.33)

as before. The transverse amplitudes b,~a,vs~q "~Ap decrease
with N but remain of the order of resonance width. Finally, the per-
turbation scaling does not, aproximately, depend on N also:

However, in many-dimensional case (N> 2) there is no simple pro-
cedure to single out the principal resonances like for N=2.

The renormalization group in higher dimensions was generally
discussed already for dissipative systems (see, e. q., Ref. [35]). ch,
I am not aware of any particular results concerning the scaling
properties in such systems. _

To the best of my knowledge the only numerical data for N=3
(standard map with a time-periodic parameter K{t)) were present-
ed recently in Ref. [23]. They seem to confirm the scalings related
to R, P and A.

On the other hand, the authors did not find the scale invariance
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in this model, and it seems do not exist at all. What is even more
important, they discovered a breakdown of the renormalization uni-
versality in the sense that irregular oscillations of the critical struc-
ture depend, generally, not only on the two rotation numbers but
also on model’s parameters. Thus, many-dimensional renormdyna-
mics appears to be even more complicated (chaotic?) as compared
to the simplest case N=2.

4. GRITICAL STATISTICS

The most difficult, and as yet unsolved, problem is the impact of
the critical structure at chaos border on the statistical properties of
motion.

4.1. Smooth perturbation: p<<B.. To begin with let us consider a
simpler problem of a smooth perturbation (1.3) with B<<f.=3.
First, we can evaluate B. directly from the resonance overlap crite-
rion as applied to the original perturbation (1.3). The simplest esti-
mate is as follows. The total width of all primary resonances
rpe=p/q on the unit r interval is

~Y qu, P ~K'2Y ¢! TP (4.1)
i

g

This sum diverges for p<C3, hence f,=3 in agreement with the pre-
vious estimate in Section 3.2. The latter estimate in Eq. (4.1) deter-
mines those resonances which provide the overlapping for §<Z3. The
critical g.~K""" . The corresponding resonance width Ap.~
~K'/2g ®*tV2 and the frequency (cf. Eq. (3.17)) ®c~g:Apc. Hence,
the diffusion rate in r (or in y) is
L1435
D~a (Ap)2~K¥%q, * ~K7". (4.2)

The border case p=3 requires more accurate estimates. \
Estimate (4.2) agrees with numerical results in Rei. [38] for
p=1 (discontinuous f(x)).

4.2. Critical perturbation [31]. One peculiarity of the standard
map (1.6) is the periodicity not only in x but also in y with the
same period 2m. As a result there is exact critical perturbation
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K=Kg=~1 [33], such that for K> K the motion is unbouded in y
and diffusive for some initial conditions (Section 2.3). The problem
I am going to discuss now is to explain scaling (2.3) for the diffu-
sion rate as K—K_.

For K> K; the last (most robust) KAM curve is destroyed and
transformed into a chaotic layer comprising all critical scales ¢,>g.
where g.~&¢~', and e=K—K ;>0 (see Eq. (3.19) and around).
This chaotic layer is just the critical «bottleneck» which controls the
transition time between integer resonances r=m, and, hence, the
global diffusion. The time scale in the layer is ~g., and the same is
for the exit time (¢_) from the layer. However, the entering into
this thin layer (Ar.~q °, Eq. (3.16)) from a big region (Ar~1)
takes much more time:

Ar

byt ~gd ~gm D! (4.3)
iAr,

This determines the transition time which is inversely proportional
to the diffusion rate D in agreement with recent numerical results
(see Eq. (2.3) and Ref. [18]). Notice that the first value for the
exponent ~2.6 [7] was not very accurate. The above estimate
Arsft_~Ar/ty (4.3) is simply the flux balance in statistical equilib-
rium.

It is interesting to mention that the renormgroup theory [39]
gives the value Ins./Insg=3.011... This is another example of sur-
prising accuracy in the apparently primitive resonant theory.

4.3. The chaos border [30]. The impact of the eritical structure
at chaos border in phase space on the statistical properties of the
chaotic motion is the most difficult, and as yet unsolved, problem.
The straightiorward approach would be as follows. The transition
time t, between adjacent scales is proportional to the time scale
tn~qn, which, in turn, scales like p,,f*"'zw(?y” "2 where Pn~Pa~q, "~ is
the sticking measure, and where C, is the correlation (Sections 3.1
and 3.2). Hence, C,~v % and p.=2; p=3. In a more sophisticated
way the same result was obtained in Ref. [40]. But this is a sheer
contradiction with numerical data: p~1.5<2.

The only way I see to avoid this contradiction is the conjecture
that at exact criticality all {ransition times 1,= oo that is all scales
are dynamically disconnected. Then, why a connected chaotic com-
ponent near the chaos border exists? The natural answer is in that
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the exact criticality is achieved on the border only while inside a
chaotic region the motion is supercritical. Consider, for examp_le,
model (3.1). Locally it is described by the standard map "n.‘.".l)[h
K~A/y. In a small vicinity of the border y=y,~ . the per‘turbatmn
K increases, indeed, like AK~Ay~p~g<*®. However, this is not
enough to destroy the corresponding scale ¢. as ?qnit.Kna-»-qn < 1
(see Eq. (3.19)). Only resonances wittgl g =Qn~qn _wuuld be QE-
stroyed and form a very narrow (~Q, ~q,f4) chantlg }ayer_ which
could play a role of the bottleneck controlling transition time 7,.
Similarly to derivation of Eq. (4.3), we obtain

W R e (4.4)

2
n
0
n

Hence
Chv)~1=12%. Py, (4.5)

now in agreement with numerical data.

The same result can be obtained in a different, more formal,
way. Namely, we can rescale dependence (4.3) for transiti(:-_n bet-
ween integer resonances (¢.=1) to arbitrary scale ¢.. To this end
we rewrite Eq. (4.3) in scaled variables

'-';iw{‘?mﬂf()_s - (4.6)

With f.~g, and AK~q, ® we arrive at Eq. (4.4). Notice that a dif-
ferent relation t.(g.) in Rel. [22] was due to a mistake in Scalin_g.

A weak point of the latter approach (4.6) is in that the scaling
(4.3) is asymptotic (g.—oco0) while integer resonances (anél) are
not. In any event, further studies into the mechanism of critical sta-
tistics are certainly required. i

In higher dimensions (Section 3.5) the supercritlcallt_y
AK~p~g "; the bottleneck harmonic Q~(AK) '~g", and transi-
tion time (ci. Eq. (4.4))

N
N N— 2—32N
~Q" I?‘“.w- e R il (4.7)

Hence

TR 1
Cyrm At 5 Ao, (4.8)
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As N—oo, p.~0, and correlations do not decay at all. I am going
to come back to this interesting case in Section 4.5 below.

Another difficult problem is the arithmetic of rotation numbers
ry of the critical border curves. In Ref. [22] it was conjectured that
the set of r, consists of all combinations of only two elements m= 1
and 2 in the continued fraction representation. This is sufficient for
ry to be random, and hence to explain irregular oscillations of the
local exponent in the distribution of Poincaré recurrences (Section
3.1). This conjecture was partially confirmed numerically in
Ref. [45]. Our recent refined conjecture is that r, are the so-called
Markov numbers [30].

4.4. Internal borders. Typically, the central part of principal cri-
tical resonances is not destroyed (see, e. g., Fig. 5). Hence, in any
neighborhood of the main chaos border there is an infinite set of
internal chaos borders, each one with its own critical structure.
Assuming universality of critical phenomena at any chaos border we
arrive at the following estimate in scaled variables

(eg?) ~( -;—) i (4.9)

for a principal resonance g where p, is the sticking measure at the
internal border. '

The main difficulty here is in that the internal border exists not
only inside the principal resonances but also in many others, near
the critical border curve, which are not destroyed by the local
supercritical perturbation. To estimate the total number of such
resonances we can make use of Eq. (3.19) which determines the
stability zone AK;~ps;~q~' for any ¢ (as a very crude approxima-
tion, of course). Then, for a given ¢ only M,/g~1 resonances fall
into this zone, where M;~q is the total number of resonances p/g
for a fixed g. Again, as a crude approximation we can extend the
estimates, particularly Eq. (4.9), on all undestroyed resonances. As
a result, the total internal border contribution to the correlation is

Go~Y ot Py g1, (4.10)
, q q

where the sum is taken over all ¢ up to t. This contribution is
essential if p.=>1. But for p.> | the above estimate is not self-con-
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sistent as Cy~71~' contrary to assumed universality. However, the
latter holds for p.=1 (to logaritmic accuracy). This_ was the [L)I"'Ell]-
minary conclusion in Rei. [41] which was confirmed also in
Ref. [42]. . :

It would be a nice solution in the spirit of universality of the
critical phenomena. Yet, first, the value p.=1 seems still to be
incompatible with numerical data (Section 3.1), and second, t'here is
another possibility missed in Ref. [41], namely, p.<<1 as is sug-
gested by numerical data. Then, the effect oi internal bGI"dE["S is not
decisive, at least, for exponent p, whose value is determined by
another mechanism, for example, one described in the previous Sec-

tion. .
In higher dimensions we have instead of Eq. (4.9) (see Section

3.5)
bl

(eq") ~( . ,.L) , (4.11)

In calculating the total contribution of all internal burderws_;.ue need
to take into account that now there are as many as ~g undes-
troyed resonances, for a given g, within the stability zone. Hence,

the total «internal» correlation

LN =1
T

= N—1 —p. e (N— 1) —2
Cy""’z }l'ffqll' A Z q' Sl T (4.12)
g

g

The critical value p. of the critical exponent is p; = {N+—l}_'. Only
this value preserves universality based entirely on the mte*rna] bor-
ders. And, again, there is another possibility that p.<<p: so that
internal borders are irrelevant. This is just the case if the above -
estimate (4.8) is true: p.=pc/2. : _
Preliminary numerical results obtained in collaboration with
V.V. Vecheslavov (p.~0.26 and 0.19 for N=3 and 4, respectively)
seem to confirm (or, at least, do not contradict) prediction (4.8).

4.5. Superfast diffusion [22]. Slow correlation decay with pf:f:;l
(4.5) may result in a superfast diffusion. Indeed, if this correlation

determines the diffusion, the rate
D.~{Cy(r) dr
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formally diverges. Here the diffusion goes in a new variable z, and
z=y. The divergence means that the dispersion (the second moment
of the distribution function)

o'~ Ddv~t* " (4.13)

grows faster than time f. Hence the term «superfast diffusion» we
use. This phenomenon‘was studied from diflerent points of view in
many papers (see, e. g., Refs [43, 44]).

The simplest example is again standard map for special values
ol parameter Ka~2mm with any integer m=£0. At these K the
so-called accelerator modes exist [7] that is relatively small areas
of regular motion with linearly increasing momentum: y~ ¢ while
phase x is fixed. A chaotic trajectory cannot penetrate into these
domains but it sticks at their borders. As a result, a superfast diffu-
sion in y occurs which was first observed numerically in Ref. [46].
Notice that in the above notation z=y now while the role of y plays
a new coordinate normal to the chaos border surrounding the regu-
lar regions. According to Eq. (4.13)

0’ A (e AT IR % ;:3-"'9,.-..,;351’ 2 [4_] .1}

where a=0.5 from numerical data [46] for K=~2mn, and relative
stable area p,~0.02. As p.~K * [7] the rate of this anomalous
diffusion (o?/1*%) does not deperd either on K—oo or on p—0.

In Rei. [44, 47] more complicated accelerator modes were
shown to produce a superfast diffusion also corresponding to
p.~2/3 in reasonable agreement with our numierical data. A simple
expression for the growth of all moments of the distribution func-
tion was also given in Ref. [44], namely:

A (4.15)

for k& even. In higher dimensions when N—oo, and p.—0 this rela-
tion becomes especially simple but somewhat puzzling. It appears to
describe almost a free motion but in both directions of 2z variable!
The limiting case p.=0 corresponds to the fastest homogeneous dii-
fusion possible. |

Further insight into the nature of superfast diffusion can be
obtained from the motion power spectrum which is the Fourier tran-
sform of the correlation [30]. For o—0 we have [rom Eq. (4.8)
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S} ~a™ '~a P2, (4.16)

As N—oo it approaches the famous 1/w spectrum which, thus, pro-
duces the fastest diffusion. If 2=y, the spectrum of z-motion is
B o B i P (4.17)

(1}2

i

From normalization (Parseval theorem)

-2

he 3 (4.18)

;‘::S SiAw) do~w” "~
If p.<<1 the integral diverges as w—0. For a [inite time interval the
minimal w~¢~", and the diffusion law (4.13) is recovered, including
the limiting p.=0. However, in the latter case the velocity disper-

sion y? ~In w diverges (see Eq. (4.16)). In our models with a chaos
border this is impossible, hence, always p.> 0 (4.8).

The theory of superiast diifusion can be applied to a broad va-
riety of different problems. A nice example is the tangle of a long
polymeric molecule in a certain environment. Approximately, such a
molecule can be considered as a trajectory of the seli-avoiding ran-
dom walk. The constraint imposes a long-term correlation which
can be estimated as follows. Suppose that the molecule length [ and
the tangle size o are related by

g~ (4.19)

with some so far unknown parameter v. Then, the correlation due to
avoided crossings of molecule line is roughly proportional to the
probability of the self-crossing:

et T s (4.20)

D-!

where integer d is the space dimensions. Hence, we havel a
power-law correlation with the exponent p,=vd—1. Using
Eq. (4.13) with {={ and Eq. (4.19) we arrive at the relation

Oy =3—vd; v':z;%d' (4.21)

which is known as Flory formula (see, e.g., Ref. [48]). It was
derived in a completely different way (from the thermodynamics of
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a polymeric molecule), and holds for d<C4, otherwise v=1/2. In
our dynamical approach the latter limitation follows from the condi-
tion p.<<1 for anomalous diffusion. In the border case o®~{ In [
(see, e. g., T. Geisel et al in Rel. [43]) which slightly differs from
Flory formula.

4.6. Fractal properties [49]. The critical structure in Hamiltoni-
an systems is also called «random fractals» (R. Voss, Rei. [43])
because of the renormchaos {Section 3.4) or «fat fractalss [49] for
their finite measure unlike dissipative systems. Some Iractal proper-
ties were studied numerically in Ref. [49].

Here 1 am going to explain one property —the fractal dimension
d, of the set of all chaos borders (mainly internal ones, of course).
It is inferred irom the dependence of the measure pg of a chaotic
component on spatial linear resolution e—0:

Hen (8) = W (0) ‘i—f-”'ﬂ- (4.22)

Here pe (0)=>0 is the measure of the whole chaotic component,
hence, its dimension d¢=2 is topological. The second term repre-
sents the borders whose total length and dimension are

Ife)~e® ", d,=2—p. (4.23)

The simplest evaluation of this scaling can be done as follows (see
Section 4.4). Each undestroyed resonance has internal borders of
the total length [/;~1. This estimate follows [rom the [act that an
individual border is a noniractal curve whose dimension d;=1 is
topological. It is because the ratio of transverse to longitudinal sca-
ling factors of the critical structure ss/sa=¢gn—>o00c as n-—»oco (see
Sections 3.2 and 3.3). Thus, the border curve y,(x) is very smooth
(see Fig. 5). The number of undestroyed resonances is of the order
of maximal g=g,, which is determined by the resolution: E.quTai.
Hence

i | 3
L~e ™% B=—; d,= (4.24)

in a reasonable agreement with numerical p=0.3—0.7 [49].
Notice also that the total number ol resolved borders scales, in
this approximation, as

No~gla~e™ (4.25)
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In higher dimensions with N frequencies we -need to consider
N-dimensional map with nonfractal border surfaces of N—1 dimen-

g N—1
sions. Now there are ~g undestroyed resonances up to
- —1/N :
G max ~E€ . The border surface in each such resonance S;~1, and

total border surface and its dimension are

ke
Sp~¢ | NJ; ﬂfs=N~—rL

5 (4.26)

The total number of resolved border surfaces, or of the domains
with regular motion

Ny~e~! (4.27)

does not depend on N, and in this sense is universal.
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