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Abstract

We study the local structures of 2-d Lennard-Jones liquid of 2500
atoms near the melting line {pazﬂ.TE. T*=ﬂ.4?}. The determination of
types of local structures is done within the framework of the
probabilistic formalism of structural invariants. We analyze the
local structures of individual configurations, the correlations
between the local structures in subsequent configurations and study
the time evolution of patterns of "good” matter. We conclude that the
model liguid displays two types of local structures: hexagonal and
"whaotic". The first one corresponds to the fluctuations of hexagon
with r.m.s. fluctuations £ of atoms equal ¥=0.14-0.16 while the
second can be represented by strongly fluctuating (£=0.25-0.30)
"defect" pattern. We discuss briefly the consequences of the physical
picture of liquid as locally ordered two-structure system for

methodology of computer simulations and for theories of 2-d melting.



1. Introduction

In this paper we present the préliminary results of the
probabilistic analysis of local structures in a two-dimensional (2-4)
Lennard-Jones (LJ) liquid. The analysis is carried out within the
framework of formalism of structural invariants proposed recently by
Mitus and Patashinskiii. This formalism provides new methods of
description of a "structural identity"” of a small group of a few tens
of atoms (cluster) in a liquid in the presence of thermal
fluctuations. The detailed presentation ot the mathematical apparatus
was given in the first part of this paper 2 hencefqrth referred to
as I.

The paper 1is organized as follows. In the next Section we define
the local order parameter and structural invariant used for the
analysis of local structure and introduce the ideal patterns Fi of
iocal structure for 2-d liquid. Section 3 deals with molecular
dynamics simulation of 2-d LJ liquid of 2500 atoms. In Section 4 we
identify the local structures of individual configurations of atoms.
This includes the clagsification of local structures into two groups
with suﬁsequent determination of the parameters describing the
classified local structures. Section 5 is devoted to the study of
statistical correlations of local structures of subsequent
configurations* In Section 6 we study the evolution in time of
"macroscopic" patterns corresponding to definite type of local order
and discuss the problem of "structural" time scale in our liquid. In
Section 7 we discuss the physical picture of liquid as locally
ordered two-structure system and some implications for the

methodology of computer gimulations and for theories of 2-d melting.

2. Structural invariant and patterns of local structure in 2-d liquid

In this paper we restrict ourselves to the study of one "relevant"®
structural invariant ¥. The results of the analysis of 3-d close
packed clusters show that the main contribution into parameters Pij
{see I) at the melting point is given only by a few "relevant"
invariants . The rest of the invariants describe the details of the
structure and are of interest at lower temperatures, i.e. for solid.
We describe the local order of 2-d liquid in the vicinity of an atom
located in point r by 2-d local version of bond-order parameter of
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Nelson et all. *:
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where Yﬁm{ﬂ,¢] denotes the spherical harmonic function, the sum is
over the N neighbours of atom r and the pair of azimutal and polar
angles (#,,¢,) fix the direction between the central atom and i-th of

i |
its neighbours. The structural invariant ¥ = Q(r) degscribing N+1 atom

cluster "centered" at point r is defined as
m=56
2 _ _4n Z Py 2

m=-6

As far as regular polygons are concerned the invariant Q has only
three different "eigenvalues": QB=D.EBE for sguare, Qh:ﬂ.?41 for
hexagon and triangle and Qe=5316 for all the other polygons).
Invariant Q is closly related to the one used.for the study of 2-d
systems (see, e.g. ref.21 ). The problem of the choice of the sets of
local-order parameters and structural invariants for 2-d systems will
be presented elsewhere.

The choice of the static patterns Tk (see I) for the analysis of
local structure of 2-d LJ liguid follows from the following
arguments. The natural choice is hexagon {Fh] with N=6. The other

J-atom clusters, the candidates for the description of "bad" matter
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correspond to the arrangement of atoms in the vicinity of
dislocation. F5 is the cluster centered around 5-coordinate atom
(dislocation), FB is the "gide" cluster with central atom being the
neighbour of dislocation and the pattern F? is centered around the
7-coordinate atom. The central atoms of clusters are marked in Fig.
1. In the cases of patterns r5 and F? the choice of sixth atom is not
unique: there are left- and right-hand patterns. This, however,
creates no problems because Q is invariant under mirror reflection.
The coordinates of atoms for "defect" patterns were found from
elasticity theory g More strict approach requires the minimization
of the potential energy of a configuration with dislocation. The
choice of small patterns is dictated by necessity: we do not know a
priori what the sizes of domains of "good" matter are.

The ensemble of fluctuations of atoms is chosen to be gaussian.
Each atom fluctuates independently with probability density plr)=

P
plxlply), where p(x)= ——iﬁ——expfm ——5§—~J and r=(x,y) denotes the
¥

4 Jfﬁ_
vector of displacement. The root-mean-square (r.m.s.) displacement of
atoms from static configuration of pattern is £. The histograms of
invariant Q, which approximate the probability density functions
Pitu:fl (i=h,5,7.8), see I, were calculated from 2500 configurations
representing the fluctuations of static patterns Fi. Each of the
configurations was obtained by random displacements of all the atoms

of the patterns accerding to the probability density function plr).
3. The model and simulational method

We have analyzed the local structures of a two-dimensional liquid,

interacting via the LJ (12,6) potential

utr1=4s[tafr112-{wr15] (3)

2 g
at T =kT/£=0.47 and p‘=p02=ﬂ.?5?4. This state point is located in the

liquid in vieinity of the triple point - ¢.f. the phase diagram
evaluated by Abraham o

The constant temperature Molecular Dynamics method used in this
work has been quite similar to that described previously T+8  The
equations of motion were integrated by using a fifth-order
predictor-corrector scheme with a time step equal to 0.004. All
calculations were carried out by running vectorized programs on CYBER
205 supercomputer. The simulational cell dimensions were 55#3&2”60
and 55x2'"%g, Except for minimum image convention, no additional
cut-off of the interaction potential was used in our calculations. No
long-range corrections were introduced neither during or after
simulations. We have started form the "zero-temperature" crystal
built of 50x50 atoms, placed in an ideal hexagonal lattice with the
interatomic distance 2'7%0. our starting configuration is rather far
from equilibrium. The studies of such system would give interesting
information about the time evolution of local structures of strongly
non-equilibrium systems. In this paper, however, we restrict
ourselves to the study of the equilbrium properties only. Taking into
accoint the starting configuration we have decided to use long
simulation runs (up to 25000 time steps).

The equilibration nf the system was controlled by analyzing the
behaviour of the averages, as well as subaveragaé, of the potential
energy E‘=Ef£ and of the compressiblity factor Z=p/PKT. The
subaverages were determined after each 1000 time stepas. The average
equilibrium energy E' and the compressibility factor were found to be
equal to -1.895 and 0.686, respectively. In Fig.. 2, however, we have
displayed the changes in evaluated subaverages with the time. We
conclude that after approximately 6000 time steps the equilibrium was

reached.



4. Local structures of individual configurations
We determine the types of local order present in liquid in two
ways. First, we extract the components of local order by analyzing
only a part éf the histogram. In our simulations the MD histograms of
invariant Q have two-peak structure. We split the MD histogram into

(d)

two parts; the splitting line Q=Q passes between the two peaks.

Cluster are classified to one of the two groups depending on whether

(d) [d}. The meaning of the classification results from

Q>0Q or Q < Q
determination of local structures of clusters belonging to these two
groups. Alternatively, we decompose the histogram into components

corresponding to some assumed types of local structure. More details

can be found in I.
4.1 Determination of hexagonal component of local order

A preliminary analysis shows that the right parts of MD histograms
cculd correspond to hexagonal structure characterized by probability

density function ﬂh{Q;E} for some value £ = Eh' E. is determined by

h
an analysis of the significance level ﬂ[Q{d}:E] as described in I.
The results are as follows. After 500 MD steps the r.h.s. MD peak
iz determined as corresponding to fluctuations of hexagon for £=0.11
at significance level a~0.06. The determination is "sharp": the null

31. The

hypothesis is rejected at £<0.10 and £20.12 (a < 10
gsignificance level increases with increasing number of time steps.
Simultanecusly, the uniqueness af the determination is lost. The
typical case, corresponding to 15000 MD steps is presented in Figs.
3, 4. Fig. 3 displays the MD histogram and the histogram of hexagon
at £=0.15. The determination is done on basis of Fig. 4. For small
values of Q{dj, a[?‘d};ﬁ]mﬂ, which means that liquid has some
non-hexagonal component of local order. We determine the "best" value

of ¥ by maximizing the merit function al¥)= max a[ﬁ{dj:f] {see I). We

{d’fglfgttl.

We chose QIIE{EJ in such the way that the line Q=Qllet} crosses the

look for maximum of a[bld]::] {as function of Q{dj} for Q

left part of trial pattern histogram approximately at its half-heigth
(Fig. 3). The function Qllet} for hexagon is plotted in Fig. 5. In
Fig. 6 we show the merit function a(f). The interval estimation &Eh
of the parameter Eh is given by the solutions of the inequality (%)
za,

example, B = 0.40 then the determination yields the values Eh=ﬂ.14,

where o is some chosen significance level (see I). When, for

a

0.15 and 0.16.

The results of the determination of hexagonal component in our
liquid are summarized in Fig. 7, where the plot of the dependence of
Eh on number of MD steps is displayed. We present only these values
of £, for which @ z 0.2 (with the exception of §h=ﬂ.14 and 0.15 for a
configuration after Eﬁﬂﬂ time steps, for which a= 0.04 and 0.10,

respectively). We put a bar of length 0.01 around each of the points.
4.2 Determination of other components of local order

In an analogous way we have determined the structural component
responsible for the left part of MD histogram after 15000 time steps
by assuming that it corresponds to fluctuations of pattern Fﬁ. We
obtained a[@IIEED.SD]:ﬂ.BG]:D.DE, This time the line Q=Q132{E}
crosses the right part of graph of HE{Q:E} approximately at its
half-heigth. We conclude that at the significance level a=0.03 there
is no reason to reject the null hypothesis. The analysis of the case
£-0.25 yields a=0.01: for £ < 0.20 and £ z 0.35 a < 107 °.

Analogous determinations have been performed for configurations at
various values of MD steps and yield the same results: the “"best"”
determinations correepond to 0.25 ¢ £ ¢ 0.30. The significance levels

are, as a rule, higher than in the case of 15000 MD steps (a=0.4 for

F=0.25 at 6000 MD steps or a=0.2 for £=0.25,0.30 at 25000 MD steps).



For high values of £ the structure of a fluctuating pattern is no
more well—defiﬁed; the probability density functions ﬂi[Q:t]
{i=h,5,7.8) appproach some universal function ﬂ* correspbnding to
"structureless” pattern (compare 1]. In Figs. 8a,b we show the plots
of the functions P, (Q;%) for £ = 0.25 (part a) and £ = 0.30 (part b).
In both the cases the guantities Pij are not small; for £ = 0.30 they
are bigﬁer than 0.5. Correspondingly, the non-hexagonal component of

local order is "structurseless".

4.3 Global determination of the local structures

We assume {see I) that the probabilty density function e(Q,t) where
t denotes the MD time depends linearly on the probability density
functions ﬂi{Q:EI for patterns. The "best™ determination of the

¥ vhe

coefficients results from extremizing some merit function
merit function we use is the significance level u{ch,cﬁ.th.tﬁ}
{ch+c5=1. ch.c5 z ) obtained from Iz—test verification of null

hypothesie for p{(Q,t} (represented by MD histogram) and linear trial

combination ptrial

Pliyan 1oy o typkgd =i « Sy PRARIT,) (4)
: ; i=h,5

In Fig. 9 we present the best trial combination {4) for the
configuration after 25000 MD steps. We have obtained a=0.12 for
ch=ﬂ.4ﬁ. th=ﬂ.2ﬂ and ﬁ5=ﬂ.25. The reasonable values of @ (0.04 to
0.12) correspond to 25=ﬂ.25 and 0.17 = th s 0.20 for which 0.40 sc,s

0.46, see Fig. 10. For th outside this interval a < 10 >

For t5<ﬂ.25
a <1D-3: for t5 > 0.25 the best determination corresponds to the
above interval for th and yields @ > 0.01. The upper bound on ts is
not well-defined because there are very small differences between

ﬂE{Q:ﬁ-25} and, say, PE{D?ﬂ-Eﬂ]. see end of previous Section. The

analysis of other eguilibrium configurations yields the same values

for "best" Eh' 25 and concentrations Sy - We have also investigated
the generalized combination (4) accounting for other patterns {TT,PS}

and obtained that Coe € « Cg.
4.4 The case of 15000 MD steps

In this Section we analyze the space distribution of hexagonal
clusters for wvarious degrees of "hexagonality"™ B8 = ESth'EEJ of the
competing pattern T5 in a configuration after 15000 MD steps. The
function BS{QQ,EE} is defined as follows "

Bl AT = | b, (aet) R

Q 20,

We treat a cluster as hexagonal when Q > QQ; Qb is a solution of the
equation HEEQU,EE]=E. According to the results of Sections 4.2, 4.3
we put E5=ﬂ.25. The function B[QH:H.EE} corresponding to pEEQ:G.BS}
fc.f. Fig. 11) is shown in Fig. 12. The distributions of hexagonal
clusters for # = 0.01, 0,02, 0.04 and 0.08 are presented in Figs.
13a-d, respectively. The sguares denote the centers of hexagonal
clusters. All the gpace distributions have one common feature, namely
the tendency to form clusters. When # increases, the "nuclei™ of
clusters shown in Fig. 13a are growing by the process of inclusion of
hexagonal clusters lyving near their rim. At the same time the
structural "identity" of these clusters is being gradually lost. The
dependence of the number Hh of hexagonal c}usters on B is shown in
Fig. 14 and can be approximated by formula Nh{ﬁl = 2100 8 ﬂ'32-_

The "structureless" clusters contributing to the left part of MD
histogram do not show the tendenqy to form big clusters.

We conclude that our liquid displays two structural components of
local order: "defect" structure F5 at 35:9.35 - 0.30 and hexagonal
structure Th at Eh=ﬂ.14 - 0.16 [(which correspond to maximal values of

a, c.f. Fig. 7). The guestion of the width of interval of Eh is

9



discussed in Section 7. The approximate functions ph{Q;D.lﬁl and
pﬁ{Q:D.EEI are shown in Fig. 11. The reliability of the determination
depends on the values of parameters Pij , see I. We obtain P5h=ﬂ.12

which means that fluctuating pattern I‘h is still well-defined.

5. Local structures: time-correlations

In this Section we study the time evolution of the local structures
in liguid by the time-dependent probability density function p(Q,.t)
and by a time correlation function 2 Cttl,tz}.

The MD-time evolution of function o(Q,t) is depicted in Fig. 15. At
t=0 p(Q) corresponds to finite 2-d hexagonal crystal at £=0, i.e.
plQ)= EIQ—th+ st Qh=ﬂ.?41. The terms which were not writtem out
explicitely are due to the finite size of the system, have also
5-1ike form and correspond to the clusters lying at the-haundaries.
The finite wid}h of MD histogram at t=0 is the result of gridding
procedure used for plotting the surface. We conclude that after 5000
- 6000 MD steps the function p(Q,t) does not seem to be
systematiqally dependent on t. Thié ﬁualitative statement can be
formulated rigorously in the following way 2. For two configurations
of atome after t1 and t2 we verify the null hypothesis stating that“
the density probability functions ﬂ{Q,tll and pEQ,tz} are drawn from
the same distribution function. Verification is provided by

Kulmogoro#—ﬂmirnnv test L

. The resulting significance level
aksitl'tﬂ}is our time correlation function: C{tl.tgi = oty t,).
In Fig. 16 we present this function for t1=3Dﬂﬂ and t1=5DDﬂ. In the
firset case the correlations decay quickly with the increase of At =
t,-t, . We conclude that.after 3000 time stepe liquid is not in
"structural” equilibrium. Function C(5000,5000+At) displays

oscillatory character. This means (see I) that the system is in

structural equilibrium (see also next Section).

10

We conclude that the structural equilibrium is achieved after
teq=5ﬁﬂ0—ﬁﬂﬂﬂ MD steps, in agreement with results of qulitative
analysis of data in Fig. 15 and with thermodynamic results of Section
3. The local structures of configurations after teq.are statistically
the same. We stress once again the meaning of this statement: there

iz no reason to reject the null hypothesis at significance level

akskﬂ.l.

6. Time evolution of patterns of "good" matter

Figures 13 show that the centers of hexagonal clusters form
complicated patterns of "good" matter. In this Section he analyze
time evolution and some structural properties of thesé patterns.

consider first the problem of time of "life" of patterns. We have
analvzed the subsequent configurations with time interval of a few
tens of MD steps. Big patterns fluctuate weakly; the fluctuations
influence mainly patterns consisting of a few clusters. Noticeable
fluctuations of big patterns occur over time intervals of order of
100 MD stps. In Fig. 17a-d we present the configurations after
13100, 13200, 13300 and 13400 MD steps. The squares represent the
centers of hexagonal clusters. We treat a cluster as hexagonal when
Q> Q, such that the degree of hexagonality EE{QQ:G.ZE}-is 0.04. Ve
conclude that the memory about the shape of the pattern is the better
the more compact and bigger pattern is.

In last Section we have shown that for t }_teq the functions p(Q,t)
are not dependent on time (in statistical meaning). This, in
particular, means that the number of hexagonal clusters Hh fluctuates
around some mean value, as shown in Fig. 18, but says nothing about
the shape of patterns of "good" matter.

In Figs. 1%a-d we present various stages of the process of the

‘equilibrating of MD system, starting from 500 MD steps up to 25000 MD

steps. In the early stages of simulation the change of pattern of

i



"good" matter is rapid. In order to draw conclusions about the
evolution of these patterns for t » tEq we have studied the relative
concentrations Py {with respect to the total number of hexagonal
clusters), i=1l,...,4, of i-atom patterns such that all its atoms are
the centers of hexagonal clusters. As before, we treat a cluster as
hexagonal when 8=0.04. The parameter Dy increases until tst=lﬂﬂﬂﬂ =
13000 MD steps after which it fluctuates around some equilibrium
value, as shown in Fig. 20. We conclude that in time interval

tEq < p 4 tst the prﬂcegs of loosing one hexagonal cluster by big
patterns is non-equilibrium one. The other guantities Py behave less
regularly; the guantity pz+p3+p4 increases monotonously up to 7.000 -
9000 MD steps, see Fig. 20. In Fig. 21 we present the total number of
seperate patterns as a function of number of MD steps. The structural
eguilibrium occurs approximately after tztst'

We conclude that besides the "thermodynamical" time scale teq model

ligquid displays the existence of "structural” time scale tstzzteq'

7. Discussion and conclusions

The results presented in Sections 4-6 can be summarized as follows.
Model LJ liquid near the melting line {T*=D.4?, ﬂ*=ﬂ.?51 displays
two types of local structure: ordered and disordered. The first one
corresponds to the fluctuations of hexagon with r.m.s. fluctuations
of atoms Eh=ﬂ.1d = 0.16, the second can be represented by defect
pattern T5 at EE:H.EB - 0.30. The concentrations of T-atom clusters
of first and second type are c

=0.40-0.46 and c5=1=c Both types of

h

local structure are relatively well-defined {Ph

h
5 = 0.12). These
statements have probabilistic meaning and their reliability is
determined by significance levels discussed above.

Let.ua discuss some methodological aspects of our approach. The

width-A% of the intervals of "best" . are determined by the degree

h

12

of correlations of fluctuations of hexagon at two close values of E.
Oour method gives A£(=0.04, see Sections 4.1 and 4.2. Next, the
significance levals @ depend noticeably on the small changes of data.
To investigate this point we have provided the global identification
of local structures affer 25000 time steps using two sets of data to
represent ph{q;ﬂ.zﬂ}. The verification of the null hypothesis for
these two sets yields high value of a=0.84. The second structure was
r5 at E5:U-25. The significance levels obtained in the way explained
in Section 4.3 were 0.12 and 0.04; nevertheless the values of c, Wwere
the same in both cases. To "stabilize" the fluctuations of & one
would have to use better statistics for fluctuations of patterns.
Finally, we believe that the global determination of th is not as
reliable as determination based on the study of right parts of MD
histograms. Thig is the consequence of the crude simulation of
fluctuations of patterns, where each atom fluctuates independently.
We have analyzed the local order in solid and have concluded that
more refined ensemble of fluctuations of patterns 1is necessary to
obtain satisfactory significance levels.

The physical picture of liquid as locally ordered two-siructure
system has important methodological consequences both for theoretical
studies and computer éimulations, Hexagonal élustera form complicated
patterns of “good"” matter with tendency to form compact groups
containing up to 50 hexagonal clusters. These groups should be taken
into account in an analysis of various properties of liquids. The
average parameters over the system have two components corresponding
to subaverages over domains of "good" and "bad" matter. In
particular, global averaging of parameters describing the
correlations of local anisotropies can supress relevant information.
consider the simple analogy: antiferromagnet below Neel point has

null average spin but well-defined magnetic substructures exist. The

13



two-structure picture of liquid offers a new point cof view on the
problgmﬂ of entropy of simple liquids and entropy of melting and may
be useful in answering the guestion how and where the entropy arises
in going from the solid over liquid to gas. Consider the problem of
diffusion in lecally ordered liguid. The coefficients in Fokker-
Flanck equation are some averages over elementary processes of
collisions (see e.g. ref.10) and can be different in "good" and "bad"
matter. Thus, the gtudies of diffusion at different temperatures and
densities and subsequent comparison with the prediction of the
two-atructure approach would be of noticeable interest.

Let us discuss briefly some cansequences for theory of melting. The
description of condensed matter in the vicinity of the melting line
has two aspects. The first one is connected with evaluation of the
thermodynamic functions and the phase diagram. These problems can be
reasonably well solved by using recent versions of the density
functional theories 11’1*. The second problem concerns the studies
of local properties of liquids and, in particular, the character and
distribution of variocus defects. The local and global structures of
condensed matter are results of interplay of two mechanisms. The
first one is responsible for type of local arrangement of atoms; the
gecond - for loeng range correlations between local structures. The
standard analysis of melting is done by an effective hamiltonian,
which is the functional of some order-parameter fields. As a rule,
these fields are chosen to represent various kinds of defects -
elastic dipoles (KTNHY theorvy 13} or dislocations and disclinations

i

(Chui **, Kleinert %)

« Our results show that it is neccesary to
include an order parameter which describes the local structure. The
general formulation of the problem was given by Patashinskii and
Shumilao 16. In such approach the effective hamiltonians for defects

can be obtained by integrating Boltzmann factor (with initial

14

effective hamiltonian) over the local-structure parameters. Although
technically difficult, this approach can provide systematic approach
to the construction of effective hamiltonians for defects.

Our analysis casts some light onto the problems of time and length
scales in computer generated liquids. The patterns of "good" matter
are complicated geometrical objects which conserve their form
(statistically) in time. The distribution of number of hexagonal
clusters in various groups of "good" matter iz an equilibrium
characteristic in an infinite system. In computer simulations the
effect of the boundary conditions can be described by an external
field {Steinhardt et all. 4} acting on orientational degrees of
freedom and change this distribution. The study of this problem would
require the repetitien of our analysis for bigger systems. The
repercussions for 3-d systems can be more dramatic. Suppose that the
2-d patterns are not self-similar under the change of the length
scale, i.e. the maximal compact groups of hexagonal clusters contain
66 or T=<=7 atoms. We expect that the picture ﬁf local order in 3-d is
qualitatively similar as in 2-d, with compact groups of good matter
containing lﬁ'ﬁi or ?3 atoms. Adding the same number of clusters of
"bad" matter we conclude that the inherent unit of local order and
disorder in 3-d liquid contains approximately 1000 atoms. The study
of smaller systems could lead to misleading interpretations of local
structure. We believe that reliable results could be obtained from
study of liquids of 1{]4 or more atoms. The analogous argumentation
holds for time scale. We have shown that the liquid which is in
equilibriuom judging by the time behaviour of thermodynamic functions

shows non-equilibrium relaxation as far as some structural

characteristics are involved. 1t is the manifestation of general
tendency in relaxation of systems displaying a few length scales
{aoe, e.qg, ref.17)., The relaxation time increases as the size of the



system incréases. In particular, the big patterns of "good™ matter
relax more slowly than thermodynamical functions determined by pair
correlations. We conclude that the repetition of our analysis for
bigger systems (10.000 and more atoms) could give answers to the open
question of self-similarity of physical picture of liquid as of
locally ordered two-structure system.

Finally,., let us discuss briefly the problem of character of
oscillatory movements of atoms in liquid. First of all, the concept
of r.m.s. displacement ¥ of atom in equilibrium liqguid has to be
defined. A straightforward generalization of £ which measures the
r.m.s. displacement of the atome in the solid from ideal lattice
configuration onto the case of ligquid was proposed recently by

LaViolette and Stillinger *®* in the formalism of inherent

1@ 1%

structures (Stillinger and Weber ). The r.m.s. return distance
" gives the average ¥ in the sense discussed above. Our approach
defines this quantity separately for "good" and "bad" matter, as
parameter of an ensemble of fluctuations of ideal patterns which
approximate in the "best” way the MD density probability functions of
structural invariant. We believe that the combination of the method
of "inherent" structures with our formalism of structural invariants
would provide a powerfull tool for the study of the problem.

The analysis of local structures of ligquid presented in this paper
is the first step towards the understanding of local and global
gtructures of simple liquids. The full information about the type of
local arrangement of atoms is contained in the set of relevant
invariants. The treatment of this information will require the use of
methods of multi-variate statistical analysis. Next, we have studied
one point in p*—T* plane. The more complete picture will emerge when

&
a few pointa, say at constant p , are analyzed and the results

compared with each other. This problem is in progress now.

16

A compact report of our study will appear elsewhere 21.
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Figure captions

Fig. 1.
Atom-atom nearest-neigbour network in the vicinity of dislocation.
The symbols 5, 7 and s denote the central atoms of static patterns

Fg, Ty and I, respectively.
Fig. 2.

The dependence of subaverages of the total internal energy E' =E/¢ and
of the compressiblility factor Z on the number of time steps. The
subaverages were calculated after each 1000 time steps.

Filg, s
Probability density function p(Q) evaluated from MD simulations
after 15000 time steps (circles) and the probability density function
ph[Q:ﬂ.15} for hexagon at £=0.15 (asterisks). The parameter Qlfz is
defined in the text. The solid lines are the 4-th rank polynomial
best fits to the data.

Fig. 4.
Plot of the significance level u{?{d}:ﬁ] versus Q{d} {after 15000
time steps). The different markers correspond to different values of
E displayed in the figure.

Fig. 4.
The dependence of 91;2 on ¥ for hexagon.

Fig. 6.
Plot of the merit function a{E} for a configuration after 15000 time
steps. The s0lid line is the 4-th rank polynomial best fits to the
data (asterisks).

Fig. 7.
The dependence of Eh on number of time steps. The small horizontal
bars denote the values of Eh for which the significance levels a are

the biggest.
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Fig. 8.
Plots of the probability density functions ﬂi{Q:E} for patterns for
E = 0.25 (part a) and £ = 0.30 (part b). The solid and dazhed lines
correspond to different wvalues of ¥ displaved in the figure and are
the 4-th rank polynomial best fits to the data.

Fig. ' 9.
MD histogram of Q@ after 25000 time steps (asterisks) and the "best"
trial combination (4) of histograms for patterns (circles). The
coefficients of the trial combination are given in the text. The
solid and dashed lines are the 4-th rank polyvnomial best fits to MD
and trial combination data.

Fig. 10.
Plots of the merit functions E{Ch'l_ch*th‘ﬁﬁi for a configuration
after 25000 time steps for 35 = 0.25 and for a few values of Eh
displaved in the figure.

g T
Probability density functions ph{Q:G.lEI {for hexagon at ¥=0.15 -
circles) and pB{Q:ﬂ.EE} {for the pattern T5 at £=0.25 - asterisks}.
The solid lines are the 4-th rank polynomial best fits.

Fig. 13.
The dependence of "degree of hexagonality" BEIQG:EEJ on Qﬂ feq. (5B))
for pattern T5 at Eb =o 2h,

Fig. 13.
Configuration of atoms (points) and centers of hexagonal clusters
{squares) after 15000 time steps for selected values of 8: #=0.01,

N, =473 {part a); 8=0.02, N =764 {(part c)} and

1=0.08, Nh-gll {part d).

?=EQE {part b); 8=0.04, N

b h

Fig. 14
Plot of the dependence of the number Nh of hexagonal clusters on

degres of hexagonality #& of pattern rH in a configuration after 15000

o



time steps.

Fig. 15
Plot of the probability density function p(Q,t).

Fig. 16.
The dependence of the time cofrelaticn function C{tl,ti:)’ upon the
number of MD time steps tifor t1 = 31000 (asterisks) and t1 = 5000
{circles).

Fig.-17.
Configuration of atoms (points} and centers of hexagonal clusters
{(squares) for B8=0.04 after 13100 time steps (part a), 13200 time
steps (part b}, 13300 time steps (part c) and 13400 time steps (part
d}. The numbers of hexagonal clusters were edqual to Nh=?49, BOO, 783
and 755, respectively.

Fig. 18.
Plot of the number Nh of hexagonal clusters {E5 = 0.04) versus number
of time steps.

Fig. 19.
Configurations of atoms (points) and centers of hexagonal clusters
{squares) for B8=0.04 after 500 time steps (part (a), Nh=19901 and in
an equilibrium regime after: 6000 time steps (part b, N_=849), 20000

h

time steps (part c, =813) and after 25000 time ateps (part 4,

No

N, =806).

h
Fig. 20.

The time dependence of relative concentrations Py of i-atom clusters

of "good” matter: Py {solid line) and Po*P4*P, (dashed line).

Fig. 21.

Total number of clusters of "good" matter versus number of MD time

steps (8=0.04).
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