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Abstract

We propose 4 mathematical framework for an analysis of local
spatial structures in computer-generated (molecular dynamice and
Monte-Carlo) liquidg represented by an ensemble of confiqurations of
Atoms. We use the methods of the earlier developed probabilistic
formalism of structural invariants. The basic concepts of a
statistical identification (classification and determination) of
types of local structures are discussed. We present the detailed
algorithms for an analysis of local spatial structures in individual
configurations of atomg and of the statistical correlations between

the local structures in subseguent configurations.



1. Local structures of liguid - status of the problem.

A description of the properties of condensed matter (crystals and
liguids) in a vicinity nf thelmelting line has two aspects. The first
one is the evaluation of the thermodynamic functions and the phase
diagram. These problems can be reasonably well solved using the
density functional théuries. gsee e.g. ref.l and 2. The second problem
concerns the studies of local and global structures of liquid and, in
particular, the character and distribution of defects. Recently, some
progress in the theoretical description of the melting of crystals
with simple st;ucture {Mitus and PatashinskiiaJ] and of local
structures of supercooled liquids (Steinhardt et all.*’) was achieved
by the use of the hypothesis of local order in liquid state. This
hypothesis (see ﬁext Section) bases on the concept of well-defined
type of local structure in small volumes of ligquid. As a consequence,
~solids and liquids in some temperature interval above the melting
point Tl can be treated from the same point of view, as different
atates of locally ordered matter. Solid is a locally ordered matter
with long-range correlations of local anisotropies of physical
parameters; in liquid these correlations are short-ranged. The p-T
(pressure and temperature) phase diagram of one-component system, see
Fig.1l, can be divided into two parts (Mitus and Patashinskii it
corresponding to condensed matter (shaded) and to gas. By the
definition, condensed matter is characterized by well-defined type of
local order.

The direct observation of the local structures of liquids and the
verification of the hypothesis of local order remains a challenge to
an experiment. The results of X-ray, electron and neutron structural
experiments show that, as a rule, the local structure of melt (liquid

near Tm} in volumes corresponding to at least two first coordination
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shells resembles that of the parent crystal ®> . The difficulties of
the interpretation of the data result from an indirect character of
an information about the instantaneous positions of atoms: the
fluctuating crystal structure is characterized by the radial
distribution function.

A detailed study of the structure of liquid can be made by the
computer simulations (molecular dynamics or Monte-Carlo methods)
which provide a sequence of instantaneous configurations of atoms of
liguid. The ensemble of these configurations contains a detailed
information about local and global structures of liquid. The analysis
of this information consists of two parts. The first one includes an
introduﬁtiﬂn of a concept of local structure and requires a
definition of a degree of similarity of two structures undergoing
thermal fluctuations. These topics were studied in our papers 5:. The
second part of the analysis is an identification of the types of
local structures in computer-generated configurations of atoms. The
aim of this paper is to provide a mathematical apparatus for this
purpose. In the second part of this paper = we apply our method in
order to analyze the local structures of a two-dimensional Lennard-
Jones liquid.

The paper is organized as follows. In the next Section we discuss
the physical picture of liquid as of locally ordered matter. In
Section 3 we review briefly the main concepts of the description of
fluctuating patterns of local structures and define the corresponding
parameters. The basic concepts of the statistical analysis of local
structures in computer-generated liquids are presented in Section 4.
The detailed algorithms for the classification, determination and the
study of time-correlations of local structures in_subaequent

configurations are given in Sections 5, 6 and 7, respectively.
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2. Local structures of liguid - physical concepts.

In this paper we study a local order in liguids - a characteristic
of an arrangement of atoms in a small neighbourhood of an atom. A
group of atoms ({(cluster) mentally picked out of condensed matter can
be treated as a geometrical figure characterized by the coordinates
. 9 of centers of atomg. Such the detailed description is superfluous
in the study of structure of real physical systems. Note that the
concept of thg structure includes the possibility of any motion
preserving the interatomic distances. Small fluctuations of atoms’
positions lead to various “geometrical“ {instantaneous) figures
corresponding to one "physical" structure. Thus, one configuration
can be selected to represent this infinite set of figures; it
displays usually some point-symmetry and can be chosen as the ideal
(static) structure pattern I'. Suppose that the set of patterns Fi is
known. Then, by the definition, the structure of a trial cluster is
determined as that of pattern Fl which provides a maximal coincidence
of both structures., Mathematical formulation of this criterion is
given in Section 3 (see also ref. 5). Such the prescription is of no
value when a few patterns approximate the trial cluster equally well.
In particular, this is so when the temperature is sufficiently
high L Consequently, the set of the patterns should consist only of
structures as different from each other as it is possible. The
patterns 1"i are chosen on the basis of symmetry arguments and of the
requirement of minimum of potential energy.

In general, a large variety of types of local order (i.e. of
patterns Fil can be studied, both with crystallographic and
non-crystallographic point- symmetries..In the latter case different
cerystallographic elements are required to build 3-d gquasi-periodic

; 82 9 : sl ; :
lattice . Frank considered the possibility of the exiztence of

small icosahedrical domains in supercooled liquids.

We assume that for simple melts the local crystal-order hypothesis
holds. According to this hypothesis, the statistical picture of
ordering of atoms in small volumes of melt resembles that of the
parent crystal. The concept of local and global structures is
associated with the so called tangent figures. By the definition i
the tangent position of an ideal sﬁructure to physical system
minimizes the degree of non-coincidence of atoms and their supposed
pre-images (i.e. the_siteﬂ of tangent figure). The choilce of tangent
figure is dictated by physical arguments. For example, the local
erystal-order hypothesis implies the choice of some crystal lattice
as tangent figure. The corresponding local order-parameters were
introduced by Hess 1> and in our paper ®? | Another example is the
choice of a tangent figure for the study of the structure of metallic
glass. The local order is supposed to be icosahedrical, with five
slightly distorted tetrahedra sharing an edge. The local topology is
the same as in{ 3,3,51}p01ytope which plays'tha role of the tangent

11>

figure; The local order-parameters were introduced by Sethma and

Nelson and Toner B

The concept of tangent figure provides the possibility of a
consistent analysis of the configurations of atoms of condensed
matter. Each of them can be splitted into domains of "good" and "bad"
matter. The former one corresponds to slow rotation of the tangent
figure in the space; the local structures of the latter are different
from that of the tangent figure. For example, the dcnainﬁ of "bad"
matter corresponding to the local crystal-order hypothesis are

102 shile for metallic glasses

149
they correspond to disclinations of Frank-Kasper phase .

locally equivalent to dislocations

So far the structure patterns I"i were supposed to be & priori
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known. In general case it is not clear whether a configuration of
atoms displays any type of local structure and, if so, which set of
patterns I'1 i3 the "prnper“ one. In this paper we study some topics
related to such the formulation of the problem of the identification
of local structures in liquid.

In general, one can study three types of local structures in liguid
which are ﬁssnciated with different time scales (Fischer 15)}. The
instantaneous (I) structure is described by the set of coordinates of
atoms at some fixed moment of time. The vibrational (V) structure is
the averaged structure of an atom's neighbourhood over the period of
time less than time of "settled” life. Finally, the diffusiocnal (I}
structure arises when the defects are free to move. This paper 1is

devoted to the study of I-structures.

3. Fluctuations of local structures of condensed matter.

Structural invariants.

The physical picture presented above uses the concept of well-
defined type of local order in small volumes of liguid. This gquantity
can be introduced in a formalism of probabilistic determination of
types of local structures of small clusters of atoms in the pfesence
of fluctuations. The detailed presentation of the formalism is given
in our papers g Here, we review briefly the main concepts and
definitions.

Consider a trial cluster of N atoms. We assume that it can be
treated as a fluctuation of any of the N-atom ideal ({i.e. static)
patterns Ti of structure. Each set of N points in d-dimensional space
is uniquely described by’ the set of dxN coordinates. Instead, one can
use some other set of dxN independent characteristics. They determine

the structure of the cluster (e.g. slightly deformed cube) and its

&

orientation in the space (e.g. via Fuler angles). The latter
information is of interest in the study of a global spatial ordering

3"'1n.'hﬁLLﬂE contrary,

of atoms in locally ordered condensed matter
it is not essential for the description of the structure of a cluster
because the structure is independent on the choice of a coordinate
frame. The characteristics of the structure have tc be rotationally
and translationally invariant. We call them structural invariants and
denote by Tn; they span the so called feature space. The structural
invariants ¥ = [ in ] can be defined in a large variety of ways (see,
e.g. refs. 4,5). Bach of them should, however, meet some requirements

ﬁ}I, of which the most important is the

(Mitus and Patashinskii
gquantitative definition of a degree of similarity (metric) of two
fluctuating structures. A simple metric which meets this requirement
hags probabilistic meaning. Namely, to each N-atom cluster there
corresponds a point in the feature space. Any of the fluctuating
patterns Tn is represented by a probability density function pn{gl
{(which depends on the ensemble of fluctuations). The feature space is
divided into domains corresgponding to the fluctuations of 1deal
structure patterns. In general these domains overlap which results in
d probahilistic charécter of recognition. The similarity of

fluctuating patterns Ti, Fj ig defined by degree Pij of an overlap of

the corresponding probability density functions:

= i ¥} ia¥ (1)
‘E"i‘j = Jmln[ﬂi{‘f},ﬂJE_l] ¥

where the integration is carried over all feature space. The

h]

; cnay :
structure of a trial cluster represented by point ¥ is determined

by the maximal probability decision rule as that of fluctuating

-

it } for each k=n. The reliability of

VL
pattern F" i1 2 mu{f | S pk{f

the determination depends on values of parameters Pnk: gstructure of



trial cluster is well-defined only when P <<1
S .

Paramet
ers PLJ characterize the reliability of the determination of

com ;
ponents of local structures in liquid (Section 6) as being the

On the contrary, wh
4 en Pij is not small (say, bigger than 0.5) then

id
entity of fluctuating patterns is lost and one deals with a

"atr ”
uctureless” pattern resulting from a fluctuational merging of
patterns ri and TJ.

a chos
en group of clusters in liquid. Let us define a domain Q@ in ¥
? Il
space by the requirement th - :
at p (¥) >
=1 Py Tor ¥ € @ ., where P, is a

constant. The N-atom cl
usters for w
hich # € 0 can be treated either

as fluctuations of
pattern Fk or of any other pattern FL. Consider

51[91: ] = | e, as (2)
t<o

which is an error of fi
rat kind fo
r structure 1“i (see ref. 5) we call

f

for the given d ' j '
omain 9&' If this degree is small then the clusters in

liquid, for w
hich ¥ « & + have well-defined structures corresponding

f

number
. n, of the fluctuations of pattern ', then approximatel
i :

B.l 0 :
i[--k ]ng of them will be determined 1

as being the fluctuati
5t rk. ations of

of both fluctuating structures is well-defined

4. Basic concepts of statistical analysis of local structures in
computer-generated licuids

In this Section we present the basic concepts of the statistical
identification of local structures in liguides represented by an
ensemble of semimacroscopic {133*13* atoms) I-configurations. We
propose two approaches. In the first one the identification of lecal
structures consists of a clasgification and determination. According
to the terminology of Kendall and Stuart 17}. a classification is a
division of local structures of N-atom clusters in an I-configuration
into groups consisting of similar structures. A prinri the types of
local structures are not Known. Thus, the aim of the classgification
is to extract the statistically uniform domains (i.e. groups of
clusters) in an I-configuration. Here, a atatistical uniformity means
4 statisticdal equality of some parameters (e.g. one of the structural
invariants or its moments) characterizing the clusters in this
domain. The choice of these parameters 1is dictated by the behaviour

of structural invariants in the presence of the fluctuations and, in

turn, determines how detailed the clasgification will be. The
hypothesis of local crystal-order states that the results of the
claggification are the same ones {in statistical sense) for each of
the I-configurations. In the gecond stage of the identification the
rlagoified structures are compared with idegl patterns of structure
(determination} . We look for a pattern Tk and for an ensemble of the
fluctuations for its atoms which approximate in the "hest" way the
clansified structures. The meaning of the "hest" approximation is
explained below.

In an alternative approach we assume that a few types of local
atructures represented by some set of patterns Tk exist in liquid.

The aim of the identification is to find an ensemble of fluctuations



of atoms of pattern I' and to estimate the concentrations ¢, of

k
clusters displaying Fk—th type of structure.

The next topic in a study of the local structﬁres of liquid is a
comparison of the results of identification for subsequent
configurations. The positive verification of the hypothesis that
these results are statistically time-independent means that the
classified structures are inherent local structures of liquid and
that the liquid itself is a locally ordered matter. A detailed '
discussion of the algorithms for the identification is given in the
next Sections.

The mathematical objects we are dealing with ére the probability
density functions p_(¥) introduced in previous Section and the
probability density function p(¥,t) which characterizes the
fluctuations of local structures in liquid. Here, t denotes a time,
e.g. the number of time steps in molecular dynamics or number of
steps in Monte-Carlo gimulations. Function p{¥,t) is constructed as
follows. For each atom from the configuration at time t, located
at point x' we find its N nearest neighbours. The invariants ¥
calculated for this N+1 atom cluster define a vector field ¥(x) at
the point x=x'. The field ¥ (x) characterizes the local structures of
the I-configuration and fluctuates in space. The statistics of these
'fluctuationa is described by the probability density function p(¥,t)

which is approximated by the histogram of random variable L

L
Analogously, the tunctimns-ph{f} are approximated by the histograms
of invariant ¥ calculated from fluctuations of pattern I . The
ensemble of the fluctuations of the atoms can be parametrized, e.qg., .

by the root-mean-square (r.m.s.) displacement ¥ of atoms from the
static configuration of pattern rn. Thus, we denote the probability

density functions for patterns by p (¥:8).

10

The identification of the local structures of liquid is done by the
methods of mathematical statistics and includes the verification of
the hypotheses -about functions p(¥,t} and pn{f:ﬁl. Below we provide
the brief resume of the concepts, definitions and methods following

182

the book of Press at all. In our approach the identification

reduces to the estimation of some parameters E:[Fi]’ e.g. the r.m.s.
tkor the concentrations ¢, of clusters determined as being:the
fluctuations of pattern Tk. These parameters are obtained by a
maximization of a merit function and are called the best-fit-
'parameters. The merit function characterizes the differences between
the computer data and model data calculated on the basis of a trial
hypothesis. The merit function we use is defined in the following
way. For the two set of data (MD and model) we verify the null
hypothesis stating that both the sels are drawn from the sage
distribution function. In this way we evaluate a significance level
a{pe) at which there is no reason to reject the null hypothesis. The
significance level a(y} 1is our merit function: we say that the
paramelers g* which extremize a{g) provide a “"best" agreement between
computer data and the madel.

Up to this point, Lhe best estimation g‘ of parameters g is quite
formal. Its reliability is determined by a statistical measure of
goodness-of-fit suggesting whether or not the model is likely tc'
match the computer data. This is provided, e.g. by the gquantity a{g‘}
- its small value indicates a significant difference between the
distributions and leads to the conclusion that the mnde; is probably
incorrect. If the model is not rejected then there appears a problem
of an estimation of the uncertainties (errors) of the best-fit-
parameters y‘. We solve 1t in the following way. We 9h005& an

i ' ¢ g ] ! 1 will. © i ind the
“acceptable” significance level 4 (Bay; 0.01 o D.1) and £



solutions of the inequality

a(p) z a %)

The parameters # which satisfy (3) (in particumlar ymi provide the
interval estimation of the unknown parameters of the model (for the
given value of a ). The uncertainties of the best-fit-parameters E*
are given by the gquantities Su = gb-y’, where g satisfies the
agquation “{EQ}E a, {(Fig. 2).

In this paper we present the methods of an identification of local
atructures described by only one structural invariant. We believe
that if the hypothesis of local crystal-order holds then the simplest
one-dimensional analysis should display the presence of the dominant
types of local structures. The multi-variate analysis can be used as
the next step. An algorithm for a multi-variate clasgification will

be presented elsewhere.

5. Classification
In the case of one structural invariant ¥ a simplest classification

is done by splitting the MD histogram into two parts by the line

#=3%“9"  (lusters are classified to one of the two groups depending on

Ca
gl T{d), The choice of the value of ¥ is

whether % » ¥
dictated by physical arguments concerning the expected types of local
gtructures. In what follows we discuss some sztandard cases which may
be of practical interest. In Figs. 3a-d we present the probability
density functions p(¥) corresponding to the simplest concepts of
local structures of liquids. The case ({(a) corresponds to an existence

Il

of two types ', and I‘1 of local order:; in case (b} one type is

i
dominant while in case {(d}) no definite type of local order exists.

In case {(a) the splitting ia done in a "natural™ way. Clusters with

iz2

d) . :
¥ > ¥ are declared as fluctuations of pattern Pi. The uncertainty

of this classificatioﬁ is given by the function thﬂi}J c.1.42), for
the competing pattern Tz. Here, ﬂi denotes the interval {i(d},W}. For
some purposes it may be necessary to deal with clusters for which

this uncertainty is smaller - then the splitting has to correspond to

Ldi

higher values of # . In the case (b} the structure of the clustefs

with % > 9

could be determined (Section 6) as that of some
fluctuating pattern Fi. If not, then it is worthwhile to change g
in the hope that the experimental function ©(%¥) (so0lid line in Fig.
3¢c) is a sum of two structural components Fi and Fu {dashed lines in
Fig. 3c¢) for which the parameter Pik is not small.

An algorithm for a multi-variate classification will be presented

elsewhere.
6. Determination

6.1 Determination of structural identity of classified structures

We consider a hypothesis stating that the structure of the clusters
belonging to one of the earlier classified groups corresponds to the
fluctuations of pattern ' , described by the probability density
function p {¥;£) for some value of £=f . Let the clasgified group
consists of the clusters for which ¥ > #+‘? | The value of the
parameter tk is determined in the following way. We introduce a

Lkd

(E); by a definition the line ¥ = iilet] crosses the

Ck)
¥

function 1/2

left part of the plot of function pk{E:E} at its half-height (see

{k)

Fig. 4). The r.h.s. part {i.e. for ¥ > i{d), where i‘d){ !1,:

(%))
of the plot of pk{i:ﬁi contains a well-defined peak. The r.h.s.
parts of of MD histogram and of the trial function pkiiitl are
normalized to unity and compared Ey za-test 1&:' We find in this
way a significance level u[}‘d’;i] for which there is no reason to
reject the null hypothesis stating that the two sets of data are

drawn from the same distribution function. A



small value of a indicates a significant difference between the

distributions ‘%7, When the liquid has two types of local structures

{c.f£. Fig. 3a) then for small values of o re a[i‘d}

;t]*ﬂ; with the

¢ d) g e
increase of value of # the significance level a increases. The
typical behaviour of the function d[?(d):f] in this case is shown in

Fig. 5. The best-fit-parameter Ek is estimated by the maximization of

the merit function

&{:1 = max u[%{d):t] (4)

The maximization in formula (4) is done with respect to bl with the

constraint i{d} ey

1;:{E}* When the function a(f) has a sharp maximum

at Zz!k (Fig. 6a) then we interpret that the local structure
corresponds "in a best way" to pattern Fk fluctuating at E=Ek. When
the plot of atﬁ} has a plateau (Fig. 6b) then the determination
yields an interval atk of "the best"™ parameters Ek. The uncertainties
for the eatimated parameter £, are given, as discussed above, by the
solution of the inequality &IE} > a_, where a, is some chosen

(W
aignificance level.

In an analogous way one can study the other classified groups of

clusasters.
6.2 Global determination of the local structures

We assume (see Section 4) that the probabilty density function pPlE, t)
is a linear combination of the probability density functions p, (¥;5)

for the patterns:
N
p¥,t) =z c, (t)p (¥:E ) (5a)
i=1

We determine the coefficients in (5a) by extremizing a merit function

afc,t) (where c=(c ,...c.), LR z c,=1 and ¢ 2 0), which is

14

the significance level obtained from the verification of null

hypothesis for o(¥,t) (represented by MD histogram of invariant ¥)

and a trial linear combination ptrial E
N
ptriall_;QIEI = Clpi {!:ti} {5b)
i=]
The uncertainties for the estimated parameters cf are given by

the solutions of the inequality a(c,g) > a,, where a, is some chosen
significance level.

When the determination of one of the components of local structure
yields high value of Ek (E z 0.3 for 3-d close-packed clusters 5)}
then this component can be called "structureless”. This is the
consequence of the fact that for high values of £ a structure of the
fluctuating pattern Fk is no more well-defined because the
probability density function p (¥;£) appproaches some universal
function p*[gl corresponding to "structureless" pattern (compare
réf. 5) and all the guantities Pij are close to unity. In this case

there is no way to obtain reliable upper boundaries for tk.

7. Time-correlations of local structures

The time evolution of the local structures of the liquid is
characterized, e.g., by the probability density function p(¥,t). This
function yields information about the onset of equilibrium regime and
provides quantitative characteristics for the memory about local
structures in subsequent configurations of atoms.

Let Q denote some chosen domain in the feature space ¥. We define
the time correlation function C(Q,t ,t,) of the local structures in
the following way. We consider two configurations after times t1 and
t and verify the null hypothesis for the normalized probability

2

density functions p(¥,t )} and p(¥,t ) restricted to domain 2: ¥ < Q.

15



We find a significance level a[ti,tzi for which there is no reason to
reject the null hypothesis. The function a{tl,tzi has the following
properties. When the system is-in equilibrium and when the hypothesis
of local crystal-order holds than there is no reason to reject the
null hypothesis. In other words, the significance level obtained from
the verification is not small. On the contrary, when liguid is not in
equilibrium then the local structures undergo noticeable chahges and
the memory abeout types of local structures is short. When the time
interval At = t2~t1 is suf?iciently big then the null hypothesis has
to be rejected and a{ti,tllﬁﬂ. The function “Iti'tn} is noticeably
non-zero only for t,*t, . These properties of function a{tl.tzl allow
us to treat it as a time correlation function of local structures in
liguid:

Clg.t, ., t,) = alt ,t,) (6)

It characterizes the time evolution of local structures with
structural identity determined by functions B (R), e.f.(2). In

particular, we define the correlation function C[ti,t } = C(g,ti,tzi

2
where O coincides with the full range of variable ¥. In

non-equilibrium regime function C{?,ti,t ) is quickly decaying with

2
the increase of the time interval At. In equilibrium regime it takes
non-zero values but can oscillate noticeably. This is the result of
the finitness of the model liguid and of the sensitivity of numerical
values of significance levels to the details of the arrangement of

the atoms when the statistics of the data is not too good. Both types

of behaviour are presented in Fig. 7.

8. Conclusions
The hypothesis of local (crvstal) order in liquids has two aspects.

The first one is connected with the type of local structure {(or of

ig

"b——b;ﬂii

—

a tangent lattice), the second - with the short- ranged correlations
of the spatial orientations of local tangent lattices. In this paper
we have presented the mathematical tools for the study of the former
problem for computer-generated liquids represented by an ensemble of
configurations of atoms. An equilibrium liquid has to be
characterized by a set of parameters like thermodynamic functions,
kinetic coeficients and structural parameters. As the candidates for
the latter we propose the parameters i c.f.(1), concentrations c,
and r.m.s. fi {corresponding to pattern Fi}, c.f.(5) and time
correlation functions C{Q,ti,taj, c.f.(6). Equally important are
functions ﬂi{ ?E]. c.f.(2), which characterize the structural
identity of a chosen group of clusters. In the second part of this

)

paperT we apply our method to the analysis of loeal structures of

2-d Lennard-Jones liquid.
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Figure captions

Fig. 1

Qualitative p-T phase diagram of one-component system.

Fig.2 &
The determination of the uncertainty of the best-fit-parameters y'
via formula (3).
Fig.-3 ‘
The probability density functions p(%#) corresponding to various
concepts of local structures in liquids. :
Fig. 4
Graphical representation of the quantity ii:;{E}.
Fig. &
The typical behaviour of the function a[ﬁ‘d}:E] when a ligquid has
two distinct types of a local structures.
Fig. 6
The déterminatimn of the best-fit-parameter Ek {part a) and of an
interval Af of the “"best" parameters Ek {part b} on the basis of the
merit function a{E}, c.f. formula (4).
Fig. 7
The qualitative behaviour of the time correlation function C(Q,t ,t )
c.f. {(6), in non-equilibrium (dashed line) and equilibrium {solid
line) regimes. :
~

18

[1]
(2]

[3]

[4]

[5]

(6]

[7]

(8]

[9]
[10]

[11]

[12]

[13]
[14]

[15]

References

P. Tarazona, Molec. Phys. b2 (1984) 81,

B.B. Laird, J.D. McCoy and A.D.J. Haymet, J. Chem. Phys. 87
(1987) 5449.

A.C. Mitus and A.Z. Patashinskii, Sov. Phys. JETP 53 (1981) 798;
Phys; Lett. A 87 (1982) 79; R.Lyzwa, A.C.Mitus and A.Z.
Patashinskii, Sov. Phys. JETP 54 (1981) 1168.

P.J. Steinhardt, D.R. Nelson and M. Ronchetti, Phys. Rev. B 28

-(1983) 784.

A.C. Mitus and A.Z. Patashinskii, Physica A 150 {1988) 371,383;
J.Michalski, A.C. Mitus and A.Z. Patashinskii, Phys. Lett. A 123
(1987) 293.

L.I. Tatarinova, The structure of So0lid, Amorphous and Liquid
Matter (Nauka, Moscow, 1983) (in Russian).

A.C. Mitus, A.Z. Patashinskii and S.8okolowski, submitted to
Physica A.

A.L. Mackay, Kristallografiva 26 (1981) 910; Physica A 114 (1982)
609; P. Kramer and R.Neri, Acta Crystallogr. A 40 (1984) 580.
F.C. Frank, Proc. R. Soc. London, Ser. A 215 (1952) 43.
A.7. Patashinskii and B.I. Shumilo, Sov. Phys. JETP 62 (1985)
177.

S.Hess, 7. Naturforsch. A 35 (1980} 69.

J.P. Sethna, Phys. Rev. Lett. 451 (1983) 2198; Phys. Rev. B 31
{1985) 6278.

D.R. Nelson and J. Toner, Phys. Rev., B 24 (1981) 363.

F.C. Frank and J.S. Kasper, Acta Crystallogr. 11 (1958) 184: 12
(1959) 483,

I.Z. Fischer, Statistical Theory of Liquids {(Moscow, 1961) (in

FE



[16]

(17]

(18]

Russian}.

A.C. Mitus and A.Z. Patashinskii, proceedings of NATO School
"Patterns, Defects and Materials Instabilities", Cargese,

1989 (in print).

M.G. Kendall and A.S8. Stuart, The Advanced Theory of Statistics,
vel.3 (Charles Griffin Company Limited, London, 1968).

W.H. Press, B.P. Flannery, S$.A. Teukolsky and W.T. Vetterling,

Numerical Recipes (Cambridge University Press, Cambridge, 1988).

gas

21

Fige1



"

Bl
f--";

|
ﬂ.x.;._____
"-.. .._(l
¢*atd
T ._ : .
ﬁ..x]___5 ..__w w_.
o :
| ” "
y ! _ |
___ | “ _ .._
| i ! ! |
| ; | |
h ! “
L . _ |
__, _ ___
| _ .
___ " " ! .._
i _ | |
_____ 1 " " ..
___ | _ |
| " __. |
.__. I ! | _._ “
_. _ | | I |
__. ] ; _ _._ “
L1 I | .. |
L ! .._
..._.. "_....
e _ _
__..___ ¥ \m g - +
L _ |
F I ......
(e
.....,_,_ ..__.._.. m
% | q._. |
'\ !
/ 1 ..\.\....
! ’
e




qe IRl

25

24



¥ *3Td

PE *3Td

27

26




9 *Ftd

¢ *IFTd

28

29



At

30

Fige T

A.C.MuTyes, A.3.[aTammHCKER

JIOKAIBHAA CTPYKTYPA KOMIBKTEPHOR MMIKOCTH
1. OCmaea TeoOpHA.

lipenpmaT 90— 89

Padora neerynmna 0I.08.I990 r.

Tlogn®cado B nedaTs 02.08.1390

dopmar dymarm 60x90 1/16. Odsem 2,0 new.a.,
1,6 y4. = HaL.d,

Tapax 230 sx3. BecmuartHo. 3axas M 89

Poranpmt WA® CO AH CCCP, r.HomocmOmpor 90



