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Abstract
Quantum gravity in two dimensions is formulated
by the analytical continuation of the random matrix
model. The smooth solution without poles is found for
the exact equation, which determines the partition

function dependence on the cosmological constant.

1. Recently the great progress has been made in
the formulation and solution of the two-dimensional
quantum gravity [1,2,3]. For the first time the
universal (i.e., regularization - independent)
description of the system was found outside the
perturbative framework. The problem of the rigorous
definition and exact evaluation of a sum over random
surfaces has been reduced to the problem of solving
the ordinary differential equation.

In the present paper we would like to discuss
several important issues which, in our opinion, were
not completely clarified in the Refs [1-3]. First of
all, it has to do with the formulation of the model
itself. Random surfaces appear in the matrix models
as the dual Feynman graphs in the perturbative
expansion of the integral over a Hermitian N x N

matrix M:

jaM exp(=N trV(M)) - (1)

where V(M) is polynomial in M. Here we shall discuss

in detail only the simplest theory with the potential

Vil e s Ny (2)



In this theory random surfaces are glued from the

unit-area squares. If we discuss the pure gravity,
each surface must contribute to the partition
function with the positive weight (this weight I1is
merely the number of surfaces of the area A times
exp(-AA), A being the cosmological constant). That's
why the coupling constant g = 48 exp(-A) in the
potential (2) must be positive. Moreover, the
interesting critical behavior was observed also at
the positive value of the constant g = 8y 1

On the other hand, the integral (1) exists
outside the perturbation theory prescription only at
Re g < 0 . For those values of the constant -
which are reliable to the quantum gravity in two
dimensions, the integral (1) diverges. If we want to
consider this integral as the exact definition of the
theory, not relying on the perturbative expansion
only, we have to do something with its divergency.

In order to avoid the ccntradiéticn between the
positivity of the perturbative expansion and the
convergency of the integral we may consider as a non-
perturbative definition of the quantum gravity not
the integral (1) itself, but 1its analytical
continuation off Ithe half-line g < U to the
half-line g > 0 (a possibility of such a

continuation was mentioned in [3]). It is easy to

perform this analytical continuation if one replaces
the integration over the Hermitian matrix M by that
over its eigenvalues. The crucial observation is that
while varying the coupling constant in its complex
plane one should simultaneously modify the contour of
integration. For the specific model with the
potential (2) we start with the real negative value
of g and then rotate it in the complex plane.
Simultaneously we rotate the contours of integration
over each of the matrix M eigenvalues in the opposite
direction in order not to spoil the convergency of
the integral. The result of this analytical
continuation can be easily represented in terms of
Hermitian matrices. The potential (2) should just be
replaced by

2

A o 3
5 M~ + is M (3)

V(M) =
Here g > 0 , the sign in front of 1 1is generally
not fixed.

The above procedure is easily generalized for an
arbitrary polynomial potential. Even for potentials
with an odd maximal power, the complexification of
the integral allows one to assoclate the
two-dimensional quantum gravity with the convergent

matrix integral. For example, the theory with the



potential

V(M) = EXF[E“"?’] M+ igh (4)

generates the sum over triangulated random surfaces.
Obviously, any model defined by a polynomial
potential with real coefficients and an odd maximal
power can be treated only perturbatively for any
values of coupling constants.

Thus, we have defined the model in which real
and positive terms of perturbation theory series
are generated, while non-perturbative effects lead to
the complexity of the final result. An imaginary part
of the partition function cannot be expanded in
powers of the coupling constant and hence cannot be
interpreted in terms of random surfaces. It is the
consideration of this complexity that allows us to
take a fresh look at the results of [1-3]. The most
important conclusion 1is the following. The real
solutions of the Painleve equation, which describes
the critical behavior in the quantum gravity,
inevitably turns into infinity at some real value of
the coupling constant. On the other hand complex
solutions which we get in the model with the
potential (3), as will be shown below, have no poles

on the real axis and are therefore finite.

5> Let us consider now the model (1) with the

potential (3) 1in more detail. As wusual, 1t Iis

convenient [5] to introduce the polynomials PAAY 5
n

n=20,1,... , orthogonal with respect to the measure
du(Ar) = da exp(-NV(A)) (5)

Here V(A) is the complex potential (3). These

¥
polynomials satisfy the recursion relation:

AP () =P A)*RP 1) (6)
n n+1l n n-1

All the observables in the theory can be expressed in
terms of the coefficients En . For example, in order
to calculate the partition function, one should find
the Rh’s with B =l 1wl DO coefficients

can be found from the recursion relation [71:

S = g
N Zn (3 12 (zn—l g zn : zn*i]) (7)
Here - i iR When the parameter N is very

large, z's are well approximated by the .

slowly-changing function of number ol

(0) _ e ffl - gn/N

- : (8)




At n < N/g this solution can be expanded in a power
series in the coupling constant g and corresponds
to the contribution of random surfaces with the
spherical topology. At n > N/g , the solution (8)
becomes complex. Our formulation of the model

provides the realness of the perturbative series
(0)
v4

only. So, since at n > N/g the function £

cannot be expanded in powers of g , its complexity
causes no confusion.

The corrections to Z;D} arising due to surfaces
with more complicated topologies and due to
non-perturbative effects are most important for
numbers close to the critical value N/g . There =z

n
is conveniently represented in the form [1]:

-2/5 4/5

z=-§-N £( N2 ) (9)

n

where A = ( N/g = n )/N . For the function f(x)

the Painleve equation is readily obtained:
x + =—f"(x) - 2£(x) =0 (10)

At  |x| » 1 a solution of this equation is

naturally expanded in the asymptotic series [3]:

1 -2 49 -3s2 -9/2
X e

128 576 (11)

f(x) ~ JE“VQ -

where the coefficients are determined by the Eqg. (10).
The series (11) corresponds to the expansion of z
in powers of N™°. For large positive x a solution
of (10) is determined by the series (11) up to the
non-perturbative contribution
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Sf(x) = A x exp ( 8 X ) +

(12)

v B X€hﬂexpf égg'g1z4xsz4

)

Similar terms exist at large negative x as well. If
we want to have the solution, approaching the
classical one (8) far from the critical point, the
coefficients in front of the growing with |%|
exponents should be taken equal to zero both at large
positive (B=0) and large negative x . Two these
conditions are enough to determine the solution of
the Eq.(10) unambiguously. Strictly speaking, there
can be a discrete number of such solutions. Indeed,
the real and imaginary parts of the Eq.(10) can be
considered as the Newton’'s equations for a classical

point particle, moving on the plane under the



influence of -the time-dependent force. In fact, we
would like to find the trajectory for this particle,
going from the given initial point to the given final
one. There can exist a number of distinct
trajectories, sufficiently different from each other.

Having fixed the boundary conditions, we got
numerical solutions of the Eq.(10). The most smooth
solution is shown on the Figure together with the
classical one. The difference between these two
solutions is due to the higher topologies
contributions as well as to non-perturbative effects.
For the discrete approximation of the Painleve
equation we used the recursion relation (7). The
values of the parameters were chosen to be the
eotlowing: %1, oM = ol 1800 130)
With the high accuracy (of about 10"°) we observed
the expected scaling behavior (9). Our numerical
scheme was close to that used in Ref.([8].

The simple analysis shows that any real solution
of the Painleve equation (10) inevitably has a pole
at some point X, on the real axis. The turning of
the function f into infinity was interpreted in [1]
as some new phase transition {(the condensation of
handles). In our . approach, after the analytical
continuation the complex solutions naturally appear.

As a result, all the poles of the Painleve
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transcenden; get away from the real axis and we
obtain here the smooth and finite solution.

We would like to note also that the physical
argument exists against the interpretation of the
function £ poles in terms of surfaces with the
infinite number of handles. In fact, the
contributions of higher genus surfaces decrease the
free energy - the appearance of a new handle
increases the entropy. Owing to this fact, all the
terms of the asymptotic series for z_ have the same
sign. Thus the condensation of handles would turn the
function f into the minus infinity while a pole of
the Painleve transcendent corresponds to the infinite
value of f with the plus sign.

3 As it was pointed out above, there exists a
discrete series of solutions of the Painleve equation
satisfying the boundary conditions we use. At the
same time the recursion relation (7) determines z

uniquely through the first two values,

2
. oy T gy SERIRE & (13)

1 Jdu(A)

The Painleve equation describes the behavior of z
only in the vicinity of the critical point. Now we
would like to convince ourselves that we have found

the right solution (i.e., the solution of the
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recursion relation (7) with the initial data (13)).

After reducing to zero the coefficients in front of
the exponents, growing with |[x| at large |x| , the
solution of the Painleve equation 1is wuniquely
determined by a value of the coefficient A in (12).
We mean here only the imaginary part of A , since
only the latter can be reliably extracted in the
background of the real asymptotic series (11). Below
we shall calculate Im A directly from the recursion
relation (7) with the initial data (13) in order to
check whether it coincides with the value obtained
from the numerical solution shown at the Figure.

In the following we fix the wvalue of the
coupling constant g to be the critical one £~ 1
Generalization to any other value of g 1is evident.
Let - A Im I To get into the range of validity
of the Painleve equation, it is necessary to express

yn’s with the numbers satisfying the inequality
1 - n/N«1, in terms of ?ﬁ and yl . At the same
time large values of x , relevant for discussion of
the asymptotic behavicr, correspond to nes -,
satisfying N - n » N'’®. That enables us to replace
the unknown real part of zZ_ in the relation (7) by

its classical value (8). After such replacement the

equation for ¥ takes the form:

12

A . o L (14)
n i | n :

n+1

t4 293 ~ NN,

where IF

1 =% & ~n/N

It is convenient to rewrite the equation (14) in
terms of two-component vectors and the transfer

matrix, connecting them:

y ZFrl s y Y D

Y | 0 v : v 0
n+1 n 1
The solution of this system is the product of n
transfer matrices times the initial column. It Iis

suitable to diagonalize each of transfer matrices:

=i : e - & t-71%
n =T n T—l T[-1}=__1 n
1 0 B gt S ad B VS VGt X )2
n n n
- (16)
A =J.'1 s F "—1
n n In

The product of T;l and T _ 1s very close (up to
corrections ~ N_ll to the unit matrix. It is easy to

show that for hk not too close to unity the matrix

13



products T;lTk don‘t affect the final result. Thus,

¢ -1
up to corrections ~ N one obtains:

2
i e S mA vy, (17)

k=1

Using the Euler-Maclaurin formula we come to the

result:

n-1 n-1 1
log Ml A = ‘FE cosh F =
, k=1 k k=1 k

(18)
5/4
4V6 n 1
~ 3N - ——N(1- ) - log 24nN
Finally, - is connected with 48 through
; e;{pjiSN} N5 M Boyp (- 4\5/3' 574 y. (19)
R

475
where x = N

(1-n/N) . The appearance of the large
factor exp(3N) seems to be an important feature of
this result. If the smallness of . 7 doesn’ t

compensate the large exponential factor, one cannot
even use the scaling ansatz (9) for the recursion
relation (7) with the initial data (13). Fortunately,
such the compensation really occurs. Simple
calculation of the imaginary part of (13) yields (up

P -y
to corrections ~ N 7):

14

Y, ™ 3vZ exp(-3N) - (20)

Thus, the imaginary part of the non-perturbative
contribution to the function f (12) has the
coefficient

1/4
6

2V

The numerical value of this parameter varied {from

Im A = =~ 0.4415 (21)

0.420 to 0.435 for different values of N . Comparing
these numerical values with (21) it should be taken
into account that accuracy of the discrete
approximation varied correspondingly from 0.1 to
0.01,. So, we . gcan .state rather firmly that the
solution, shown on the Figure actually takes place in
the matrix model under consideration.

4. Let us discuss now the issue of the partition
function complexity. The standard formulation of the
quantum gravity in twe dimensions as the sum over
random surfaces (with the weight exp(-AA) ) leads
naively, i.e. without an explicit definition of the
summation procedure, to the real results. On the
other hand, in the matrix model considered here, its
complexification seems to be the only way to get the

real and fixed-sign perturbative expansion of the
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convergent integral. The analysis of non-perturbative
effects, arising due to this complexity, was the main
theme of the present paper. At the same time the
complexity of the partition function deserves a
physical interpretation.

The partition function complexity may arise, to
our mind, as the result of some instability in the
theory, or, more formally, due to the unitarity
violation. If a theory allows the Hamiltonian
formulation, the unitarity is violated when one tries
to consider the evolution inside some subspace of the
total Hilbert space. The classical example 1is the
pair creation from the vacuum during collisions of
some particles. If the collision energy lies be%ow
the threshold of the pair creation, we can stay in
the range of the two-particle Hilbert subspace, while
at the energies higher than this threshold, it is
necessary to take into account the transitions at
least between two- and four-particle subspaces in
order to provide the unitarity.

The standard way to conserve the unitarity
consists in an extension of the Hilbert space. In the
functional approach this procedure is equivalent to
an extension of the range of functional integration.
As for random matrix models, sﬁch an extension may

consist, for example, in the transition from the one-

16
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to two-matrix theory with the "Hermitian" potential,
#*

V(A,B) = V (B,A) . The simplest case of such a

potential is the following:

o o - - o 4. 4
ViA:B) = =LA B) + =2l A B (22)

According to the usual interpretation, in this model
the random surfaces of two types are generated,
without any interaction between them. The free energy
in this model is merely twice the real part of the
free energy for the model (1) with the potential (3).
Introducing the simplest interaction 8V(A,B) = cAB
we get the Ising model on random surfaces [9], where
the matrix integrals are regularized by the
analytical continuation.

As a matter of fact, two-matrix models may
naturally appear on the physical grounds. In the
quantum gravity we have to integrate over all
mnetrics (of <course, if there is no dynamical
principle, restricting the range of integration).
Two—dimensional theory, in particular, should include
the summation over two possible signatures -
Fuclidean and Minkowskian. To obtain surfaces with
general metrics on them (i.e., metrics of varyling
gsignature) one can Iintroduce the term 3V(A,B) =

k(AB)® in the potent’al (22). In the perturbation

17



theory this term will generate the squares with the
Minkowskian metric, while the quartic terms in (22)
generate that of the Euclidean one.
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Note added

After this work has been prepared for
publication we were informed [10] that F.David has
also discussed the complexification of a matrix

integral as a possible way to def ine

non-perturbatively the sum over topologies [11].
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Figure caption

The smooth solution of the Painleve equation together

with the classical =solution.
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