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ABSTRACT

The initial-boundary value problem for the Ishimori-II
equation is studied. The time evolution of the inverse
problem data in the case ol nontrivial boundaries is
found. General formula for exact solutions of the Ishi-
mori-11 equation with the nontrivial boundaries is de-
rived. The localized soliton solutions of the Ishimori-1I
equation with the time independent boundaries is stu-
died in detail. It is shown that there exist essentially
the three different types (ss, sh, bb) of the localized
solitons for the Ishimori-II equation. Some explicit
examples of such solitons are presented.
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1. INTRODUCTION

Nonlinear evolution equation in 141, 241 and multidimensions
integrable by the inverse spectral transform (IST) method form a
wide class of differential equations with number of remarkable pro-
perties (see e. g. [1—3]). A main feature of such equations in
1 + 1-dimensions is the existence of the soliton seolutions which are
localized in one dimension. Solutions of the 2 1-dimensional integ-
rable equations which are localized only in one dimension (plane
solitons) have been constructed years ago [4—5]. Then the lumps
(rational nonsingular solutions) have been also discovered [9].
Exact solutions of the 2 1-dimensional integrable equation expo-
nentially localized on the plane but decreasing at time f{— 4 oo
have been constructed in [6]. And only recently the travelling solu-
tions of the soliton type for the 24 l1-dimensional equations expo-
nentially localized in all directions on the plane have been found.
For the first time this has been done in the paper [7] by the use of
the Backlund transformations. Spectral theory of such localized
solitons for the Davey—Stewartson [ (DS-I) equation and their
connection with the initial-boundary value problem for the DS-I
equation have been studied by the different methods in the series of
papers [8—13]. The localized solitons (or dromions) of the DS-I
equation possess the properties which are different from the pro-
perties of the one-dimensional solitons. In particular, they can be
driven by the change of the boundaries [11—13]. All this demons-
trates the richness of the coherent structure associated with the
2+ 1-dimensional integrable equation.
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The present paper is the first one from the series of papers
devoted to the study of the coherent structures for the Ishimori
equation

Si (x, 4, 1) ‘|‘§X(§H+C‘52§w} + ¢Sy + ¢S =0,
':er_'m?'%y*'?ﬁﬁg{gxxgyj =0, (1.1)

where S= (8, Ss, S3) is the three-dimensional unit vector (§*°=1),
@ is the scalar field and a®= +1. Equation (1.1) is the 24 1-di-
mensional integrable generalization of the Heisenberg ferromagnet
equation (isotropic Landau— Lifshitz equation) S;=S8XS,. It has
been introduced by Ishimori in [I4]. An important feature of
eq. (1.1) is the existence of the classes of the topologically nontrivi-
al and nonequivalent solutions which are classified by the topologi-
cal charge [14]

Q=1 {{ axdyS(3. x5, . " (1.2)

This topological invariant is connected with the mapping S*—§?
defined by the unit vector S(x, y, t) with the boundary value
S.=(0, 0, —1). The Ishimori eq. (1.1) is of the great interest also
since it is the first exampte of the integrable nonlinear spin-one field
model on the plane.

The applicability of the IST method to the Ishimori eq. {(1.1) is
based on its equivalence to the commutativity condition [Li, Lz] =0
of the operators [14]:

: Lt=may+ Pﬁ;,
Lo=i8,42P3l+ (P4 aP,P—ia’Pp.+ip,) 0., (1.3)

where P=S-6 and &= (o1, o032 o03) are Pauli matrices and
O0y=20/0;, d0,=0d/d,, d;=0/d,. The standard initial value problem
for the Ishimori-1 (a=i) and Ishimori-II (&=1) equations with the
vanishing boundary values has been solved in the papers [I15—17]
with the use of the &-method (a=i) and the nonlocal Rie-
mann — Hilbert problem method (ae=1), respectively. The exact
rational-exponential solutions (a=i) and solutions with functional
parameters (a=1) have been also constructed in [15, 16].

Our aim is to solve the initial-boundary value problem for the
Ishimori-11 equation with the nontrivial boundaries. In the characte-
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ristic coordinates i&,:-;—(y—l-x), r|=?(y—x) in virtue of t_he

equalities

I'| e i
pe= | dn'S(SyX8y) +2u2 (8. 1),

—_

o= | dES(SyxS) +2ui(n,1), (1.4)

- (s 4]

eq. (1.1) at a=1 is equivalent to the equation

1
(| dnSS:xSy) +2udt. 1)) S

— O

JS‘..I'—|_ _;_ g){{gt[‘—+' 'S:ﬂri} —|_

b2 | —

. | d'S(Sy X S,) +2un, 1)) §,=0, (1.5)

" — oo

where u,(n, t) and wu2(E, {) are arbitrary scalar functions. The ini-
tial-boundary value problem is to solve eq. (1.5) with given initial
value S(§, v, 0) and boundary values u,(n, {) and u2(E, ).

We will use the method proposed by Fokas and Santini for the
DS-I equation [10—13]. Firstly we present the solution oi the for-
ward and inverse spactral problems for the auxiliary linear problem
LW =0 slightly different from that given in [16]. The consideration
of the nontrivial boundaries requires a modilication of the operator
L,. The obtained equation LoW =0 gives rise to the following linear
equation for the Fourier transform S(E, m, ¢) of the inverse probiem
data

i)

3 —-—SHE—FS“.]H—MJH,HS —uy(ny, 8) §,=0, (1.6)

which coincides with the linearized eq. (1.5) for S4+=8,+4:Ss. For
real S separation of variables reduces problem of solution of
eq. (1.6) to the solution of the linear equations

2iXi (8, ) + Xeet 2ius (B, 1) X:=0,

20Y (B +VYy—2iui(n, £) ¥, =0. (1.7)

4 =y i

Using the exact solutions of eg } and the solution of the facto-



rized inverse problem for the auxiliary linear problem LW =0, we
construct the exact solutions of the Ishimori-I1 eq. (1.5). They are
representable in the form

SE . t)=—tr(Ggasg "),

@(E. n. ) =2i In(det @) +20; ' usE, 1) 428, ' wi(w’. 1), (1.8)
where
g =1—
_(<X=f1—pap+bJ"uap+X*>. ={FopT{l=tpapy K ) (1.9)
(X,(1 —pap*b)~'p¥), — (¥, p"(1 —bpap™) ' bpY)

where (X,Y)=) XiYi, Xi and Y, are the solutions of eq. (1.7), p;

are arbitrary constants and

!
Qip = S dn'Ye(w', ) a, Yi(n', 1),

— o0

1k
-]

bie=— | dEXe(E.0) 0x XIE(E.1). (1.10)

— 00

Charge Q for these solutions also.is given by the compact formula
+ oo

Q=—-L § dud,0,0,In(detg). (1.11)

e

In the present paper we consider in detail the case of the statio-
nary boundaries u;(n) and wu2(E). In this case the linear problems
(1.7) are gauge equivalent to the 2X2 matrix Zakharov— Shabat
spectral problem with the reduction which gives rises to the modifi-
ed KdV equation. The inverse problem for that spectral problem has
been solved in [18] and corresponding discrete spectrum includes
the solitons (s) and the breathers (b). As a result, we have essenti-
ally the three different types of exact localized solutions of the Ishi-
mori-1I equation: Sy, Si and Si» which correspond to the choice of
the functions X and Y as the soliton or breather eigenfunctions. The
simplest examples of such solutions are presented explicitly.

The paper is organized as follows. In the second section the
solution of the inverse spectral problem for the Ishimori-II equation
is presented. The compact formulae in the case of the degenerated
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inverse problem data are derived in sect. 3. The time-dependence of
the Ishimori-II eigenfunction is found in sext. 4. It is shown that the
Fourier transforms of the inverse problem data obey the linear
eq. (1.6). It is demonstrated also that the linearized eq. (1.5) coin-
cides with (1.6). The compact formulas for the exact solutions of
the Ishimori-II equation via the eigenfunctions of the linear prob-
lems (1.7) are derived in sect. 5. Some explicit formulae for the
exact localized solutions of the Ishimori-II equation are presented in

sect. 6.

2. THE INVERSE SPECTRAL TRANSFORM FORMALISM
FOR THE ISHIMORI-II EQUATION

; 1
In the characteristic coordinates Ezé(y—x), n=?(y—x) the

first auxiliary linear problem LW =0 for the Ishimori-II (Ish-II)
equation is of the form
oy B L Qo—a,) w=0 2.1
Lo ») P 3008 ¥=0, (2.1)
We assume that S-S _=(0,0, —1) at &, n—>o00 and Q=P+ o3. The

spectral parameter A is introduced by the transition to the [unction
y. defined as [16] '

¢ e MITE e i 0 92 2
WEnN=YE () (2.2)
The function y obeys the equation
dy, 0 i i s e
" e 5 1 Gl i 2 4=0. 2.3
(o o) g londl+ 3 Q(2—0at ) (2.3)
The operator G formally inverse to the operator fo=
:(‘5:]" {?ﬁ)—i[m, ] acts as follows [16]
i . a7 (DilE ")), 0, '(el L ;111,2(3_, ﬂ’})
o) v V) P S G, P (2.4)
& 'fe ' DalE, 1,_}), d; ' (DaalE, M)



where mp:(“’“ ‘D'ﬂ) s 2X2 matrix. The kernal G(E—%, n—1’)
Dy Mo
of the operator (G is the Green function for the problem (2.3). Since
:
the integrals 4, ' and d, ' can be choosen as 4, '= | d&’-. and
=4 oa

1
a;': S dn’-, the Green function G is defined nonuniquelly. This

< oo
ireedom allows us to contrust the bounded analytic Green functions.
Here we will use the iollowing Green functions:

[ awouem). {ave * outm)
(G, HD) (Em) = ( P ¢_ ) *
f dge > @u(E,m), ﬁg dE Mag(E’, M)
4 f L it
| dn®u(E ), 5 dn'e * @k 7))
(G(-, WD), m-t( B IOPRRE < 7 ) (2.5)
jdge ' ®aE.m), | dEOu(E, )

=+ s —

It is easy to see that the Green function G* (A) is analytic and
bounded at the upper hali-plane ImA> 0 while the Green function
G~ (A) is analytic and bounded at the lower hali-plane Im A<<0.
Note that the Green functions (2.5) differ from the Green functions
used in [16] by the signs of the lower limits of integration in the
M;; and M99 respectively,

With the use of the Green functions Gt and G~ we define the
solutions 4 and y~ of equation (2.3) via the integral equations

x*(ésﬂ,l)=E—{Gi{nl}€rQ(ﬁ’—5’+%)x*(u?ﬂ}{’é.n). (2.6)

where 8'=48/d%, ¢’=0/d0n’. As far as the Green functions GT,
G~, the solutions y*, y~ of the integral equations (2.6) are analy-
tic and bounded in the upper and lower half-planes ImA> 0 and
Im A <0, respectively. Then since G — G~ 540 at ImA=0 one has
also y* —y~ =0 at Im A=0.

Thus one can define the function

x_{x"', Imi=0
v, ImA<<0’

which is analytic and bounded at whole complex plane and has a
jump across the real axis. So we arrive at the standard Rie-
mann — Hilbert problem. As in [16] we assume that the homogene-
ous integral equations (2.6) have no nontrivial solutions.

To specify the Riemann—Hilbert problem arised one must
express, according to the standard procedure, the jump y* —y = at
Imi=0 via x . To do this we firstly obtain the integral equation
for y©—y . Using (2.6), one gets

@ —x7)E N =T(E 1) —

—(f?(n?u}%(?(@’—ﬁ%f)(x*-—x‘))(ﬁ,n}, (2.7)
where
IE.n.A) =
0, ‘{'gmmr emﬁi;—(a(g. W) (ag-—aqfq- ;_) f) .
—faxe 7 (@@ w(d—ont L)), 0
and .

5 in—w)

§I ‘fﬂf (I}I]{_E, T]:}!- S dt]:e ; ‘DlE{E,i ?]rj
{Ga-,w}(a,n}—( s e 3 bk 10 ) @9

5' dE’f‘-_ L OuE, ), gfii’mzz(ﬁ’ﬁfl}

— a0 — oo

Note that the diagonal elements of the quantity I' (2.8) are
equal to zero in contrast to the similar quantity considered in [16].
This is due to the our choice ol the Green functions (2.5).

We will look for the expression for y* —y~ via y— in the form

+ oo

@ —xEN= { S EmODE N IEH T G, (210

where
0
: ;) (2.11)



and f(!, l}-is the 2 X2 matrix which must be found.

Substituting (2.10) into the r.h.s. of (2.7), we obtain

+ e
g7 =A== S

—

di
-F;)<

( §dn”;(@(a’—é’ﬂr%)x"'(ﬂE:f(fi}zf')
sy e

- (Q( o }L) x (D) 2 f(L 1) z;‘)

L e T
=
e
-
m
e
|_.

i[n—n

23

_Smrfafg( o~ + ) =fit 1 57")

On the other hand from (2.6) one has

+ oo

L o o g . o
| FO B =yt == | Smpan s -

i L
= !I.":_?.I

e+ Hyra),
(! _
Ldg)e ; %(Q(a’—ﬁf + %) x‘(f})m :

Hn—n')

La(r -+ 1)),
) Zf(L A Zl_l,

_g a¥' 5 (Q(o—5+ ) 0)

1

S dn'e

22
Transforming (2.12) with the use the identity
(=9 + %)x‘(fi L) 2) 6 )=

[ ave ™ L(o(v—d+L) o zien ),

=( (o—d+ m;) "0 ) &) ZeEm) FER) 27 @),
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a1’

2
) (2.12)

(2.13)

(2.14)

performing the matrix multiplication in (2.13) and subtracting the

obtained equations, one gets

+
(| & Eienz"=
0, imdn’e_%u;—((}(&’—é’—l—i};)*x*)m T
( A _ )zu(g,mg
-t (e o), o =

X(n, u) (fu.- f;ﬂ)Efl{
i e 3 i) o fz1, fo2
fage’ 5(Q(e—d+)x), .0

[

s N

i

(2.15)

Multiplying (2.15) by Z; from the right and acting on (2.15) by

+ oo

Lgfa "«
f( L : )
2 o
: 0 +5 dne

— o0

irom the left, we obtain

(fl!':P:-}u]', fu{P,l])H__({]. Td;[p,k} )__
falp,2), [a2(p.2) —TnipA), O
+m ~ " -

—— S ﬁ(ﬂ i ﬂ) (r”“! ?\-Jllv ]FIEI:.L ?j %

Z\To (e, 0) \full.h), [all,h)

where
| + oo §% . 4n

)

T2 §dgne P (Q(o—d+5)xt),,

e in 4 4% T
T o= = § deane” T L(Q(a—5+ L)), .

In the matrix form equation (2.16) looks like

11

(2.16)

(2.17)



-+ oo
dl

Fp, )+ 5 T TP ) L) =T*(p,2) —T~(p.1), (2.18)

— 0

O . ® 0 0
T+=( S 2 ol =( ' . 2.19
0, 0 ) T u) el

Thus, we have proved that the jump y* —y~ indeed is given by
(2.10) with the matrix f(/, A) which obeys equation (2.18) (see also
[16]).

Note that [ is easily expressed via Ti; and T3

—f 9 . Tap.)
PA) = % . 2.20
e, ( =Ty (p.2), +o g ) ( )

— | = Talp ) 1%L

=

where

So, we have arrived at the standard regular nonlocal Rie-
mann — Hilbert problem. Its solution is given by the rather standard
linear singular integral equation [16]

+ oo
g 1 dp dk 3 (p) Z,f(p, k) =,
N=1L L (f dp dk : 21
hgtaE = Egmpﬁ # k—A+i0 .

Equation (2.21) is the inverse problem equation for the linear
problem (2.9). The functions Tib(A, u) and T3 (A, n) are the inverse
problem data. The reconstruction formula for the potential
P(E, m, t) is obtained by the substitution of the Taylor expansion

XE s A =xo(E M)+ Axi(E, ) +A%x2(E, m) + ... (2.22)

near A=0 into equation (2.3). The consideration of the terms of the
order A~ gives rise to the formula [16]

P&, n, 1) =§{§, N t) = —goag "', (2.23)
where

gEn )=y 0.1, r=0)=
+ oa
=i+— §adey-@nozenieoz e, (@29

— o

One is able also to obtain the compact formulae for the topolo-
gical charge (1.2) and the scalar field .
Note firstly that

12

SRS a —é;tr (PP.P,) . (2.95)

Using the expression (2.23) for P, one obtains
tr (PP:Py) =2tr(os((g ™)y gx—(g7")x &) - (2.26)

On the other hand substituting (2.22) into (2.3), one gets in the
zero order on A

0sg~'g:—g " 'q=5[g " 1.0 . (2.27)

Differentiating (2.27) with respect to x and y, one obtains
o3 g 'E:'.u!_-f.r—{‘ﬁﬂg_lgxy—'fg_[ﬂyjy: —;_‘?H g~ ", 03],

{g nglx—(r;j.l.ig _l}xgy_ﬁaﬂ_lgxyi éﬂﬁ (}_'f[g I'x.ir ﬁ3| g

The summation of these two formulae gives
os((g™ ")y gr—(e7 ") 8 =(e" ')y —(g™ '8+

+ L (0,400 g w001 (2.28)

Substituting (2.28) into (2.26), taking into account that
tr ((8,-+030<) [g ' 03] ) =0 and using the well-known formula
tr (g.g~') =20, In det g, we obtain:

tr (PP.P,)=21r{(g 7 'g)),—(g 7 'gu)x) =

—2(02— 02 Indet g=24.0, In detg . (2.29)
So the topological charge Q is
} oo
i 9: W dedna.o,Indetg. (2.30)
T :

— o0

The formula (2.29) gives rise also to the following reconstruc-
tion formula for the scalar field ¢:

@E, n, ) =2ilndet g+28 " usE, ) +28,” wi(n’, 1) (2.31)

The formulae (2.21), (2.23), (2.24) and (2.31) completely solve
the inverse problem for the linear equation (2.3).
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For the real S the matrix P is the seli-Hermitian and the rela-
tions (2.23), (2.24) imply that g(§, n, {) is the unitary matrix
ggt=1. So |detg|=1 and therefore the scalar field ¢ is a real
one for the real u, and us.

Note that the similar expressions for the topological charge and
the scalar field can be derived for the Ishimori-1 equation (e=i):

-+ oo
Q=— &L | dxdy(62+02) In det g (2.32)
- —
and
p(x,y)=2Indetg. (2.33)

The formulae (2.31), (2.33) are in complete agreement with the
formula ¢=2ict In det g ! denved by the diiferent method in [19].

3. DEGENERATED SPECTRAL DATA

To study the initial-boundary value problem for the Ishimori
equation and to construct the exact solutions we need, similar to the
DS-I equation [10—12], the solution of the inverse problem equa-
tions with the degenerated inverse problem data, i. e.

Ny

T )= ) Sdp)Sih),

=

N_

Tar(p, M=) Tup) Tu(p). (3.1)

k=1

For this purpose it is convenient to rewrite the matrix equa.tiuns
(2.10) as the system of equations for the columns of x. One has

+ oo

(i;} EE) _(:g Eﬁ) R _Sm T—; Gi Eg) Ta(Lhe R (3.2)
and

. o = 8
(i; Ei;)_(i;i:j) £ S %Tm (I, L) e

—_—

& _ i
[

W (%r ()
Gin) -89

Correspondingly the inverse problem equation (2.21) looks like

14

it (V) s £ E{F_T— {3 =t ! +_?_] Yz () 3.4
(50)=()~( § Sraane )T o
REMY _(0y ([ dl dGmie Fert 35
(;;zﬂz:(;.})_(l)+(_g 2 Tid (.4 (12; {!}_) ' el
where (f(A))* denoted the projection onto the real axis:
+ oo
T dr'f (&)
)™= o S W —(A=i0) | )
Substitution of (3.1) into (3.4) and (3.5) gives respectively
N- Tt i S it
Ty b G & & dlrn, (DY (Fne *)T 3.7
CE-()-%  #moe FEn@me o
N_ in

G]j “‘L) ( )+ Z S Sipe’ (1';‘“:;)(5”(;)@?] (3.8)

Let us introduce the quantities

e dl <o %z ()
P | S h{le. AR (3.9)
\2n y { Koo (1)
T by S :
G s o ( ) (3.10)
v B s ()

Equations (3.7), (3.8) imply now the following system of equations
for F; and G;:

—+ @0 |'“ —+ oo

G;Z(é) x.flz_ﬂ_ S —-—S () e —Z F

— o0

: 1 & i
S Sf IL}'.rl g (T.’g(l} e g J

== a0 L]

F,.:-(“) l__ S ﬂrmg _|_Z (jk "ﬂ —Tr’;‘lp (bkfﬁﬂf'}) - BELE)

=00 fr=1
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If one denotes

Bkt~ g -‘?—S;(l}e (Tye *) (3.12)

then th e system (3.11) is represented in the compact form

N 5
Fi— ik sz( ) Ti{m) ,
Ei )

N 3.13)
i (
G;—kél ﬁ;kf.ez=(0) Gj'l:-;;l :
This system is easily solvable and the solution is of the form
N4
N ), %ot O
Fi=) (1—4);" (’*='
p=1 o
o | o
Gi=Y (1—B), (vﬂ ) (3.14)
g Z_ Bp-’?"ﬂt‘a

where A and B are N_ X N_ and N4 X Ny matrices of the form

."'I.'I+ .'"Ir
A.r'_,-'z Z Chip ﬁk;f Bin= Z Pee Cim . ] [3-15}
k=1 =

16

Khowledge of F; and G; allows us to find the matrix %= (A).
Namely, (3.7) and (3.8) imply

() ~() o (-

&
L

b

2

(IE{“-})Z(?)JF 2 i G;-(i(;.}e'*]_‘ (3.16)
fa= §

Yoz (M)

Finally, one finds S(E, n, ) by the formula (1.8) via x (& n,
K==l |

Thus, the inverse problem for the Ishimori-II equation with the
degenerated inverse data, as usually, is solved explicitly. The cor-
responding potential p(&, n, {) depends on the 2(Ny -+ N_) arbit-
rary functions of one variable,

Note that in the degenerated case the Fourier transforms of the
inverse problem data

i : o
Seam=N L Lraene * 7,

— 0

.

pi ihX SRIgRRpYL, WHW TS 4LE
filr‘a, ) :SS I'_E ?le (f? f-.-} e : - {31?)

have the factorized form too:

N
SEn)=2n ) ) wE),

i=1

N £

fe.n)=2x ) oi(E) 5;(n), (3.18)

i=1

where 1;(n) and o;(§) are given by the formulas (3.12) and

iE

G(E) = — — S SLahiher
"I."IIZT'* = A
+ oo .
: .
Gm=——= { Sagme. (3.19)
NS
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4. TIME EVOLUTION OF THE INVERSE PROBLEM DATA

In the case of the nontrivial boundary conditions
P > 2uin, ), @y — 2us(E, 1) (4.1)
the second operator L, associated with the Ishimori-1I equation
must be modified, in order to the linear problems
Low=0,
£ =0 (4.2)

will be compatible and equivalent to the Ishimori equation. The ope-
rator L; remains unchanged L,=L,. The modified operator L, can
be constructed analogously to the DS-1 equation case [10—11].
Namely, we will look for this operator in the form

Lo=Lo+ | f—jvaﬁc, . (4.3)

where L» is given by (1.3) and the kernel y(%, {) must be found.
5o the time evolution of the eigeniunction ¥ is defined by the
equation

-+ ao
LW S % o, ) W) = LW 4o | (4.4)

— O

Since the Ishimori equation is equivalent to the condition
[Li, L2] =0 and L,¥=0, then equation (4.4) implies

Liv=0 (4.5)

i. e. v and ¥ are the solutions of the same differential equation. The
relation between v and W can be found by comparing the integral
equations satisfied by these functions.

Let us choose W as

S el ottt g
W& n A) =y (E, TMJ( e n;) (4.6)

where y obeys the integral equation (2.6). This function ¥ obeys

18

the integral equation

we =2 L) {6 (o= + LYy wey) w4

where )
G r=(G -5 )3 (4.8)

The first column of W obeys the equation

(tﬁ:) =(EU) ‘_{ G=(-,%) %Q(a’—éw Jf) t}r} En).  (4.9)

The quantity v obeys the same equation (4.5) as W, hence, the first

: ¢ b 4
column of v obeys the same integral equation as (qr“). The only
21

diiference is the inhomogeneous term, i. e.

()=(m) {0 carba(r—a+ LYo)an. am

Yoo

The quantities v, and vy, are found from equation (4.4). Taking
into account (1.3) and (1.4) and considering the limit n— — oo, one
finds

th
A
*

Unm:—f—f-’;_‘l— %Hz@sf}ﬂ Yoo =0 (4.11)

2h°
Comparing now the integral equations (4.9) and (4.11), one
gets

4= oo

oMY _ i (P 4 Todl L_L) ‘Fuaﬁ!}) 4 12
(Erﬂl[j}a}) 2}.,! ( qIEJI:}u:')+ 2h S IE : s { ("I'rgl“} : B ’
where
oo
vp)=o— ( dse™®ux, ). (4.13)

mn

===

Now let us consider equation for the second column

({i}lz) :(KIE) . —in/h
oz X2
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It is of the form



@D=(eﬂ—~'-f1)_{‘ﬁ_("‘""}%@(ﬂ’—ﬁ’+i)“"} Em) . (4.14)

The second column of v obeys equation (4.10) with another
inhomogeneous term o. Its form can be found by the consideration
of equation (4.4) in the limit £+ — oo. One gets

U]gm =U,
P 0 -
V09 pg == = @ —uy(n, t)e : 4.15
22 93 -+ o Iﬂ } ( )

Comparison of the 1ntegral equations for the second columns of
¥ and v, as a result, gives

.+_. =)

12 ] 1.[; : di ~ i i ‘i’ ; { }
()= (0.)tm § 75 D) (em):  41®

where
W)= 5 +5mdn uin, ) e =", (4.17)

2

— o

So, we have found all components of the matrix v. Thus, the
time evolution of the quantities

V(1) =(w“) =(":'T) et
Wa L2
in

A i T
¥ = (Kli) P

A9

and

is defined by the following equations
; , _
T - ?p(ag—aqfurju %fe{ag—af,) W — ?qur

+ oo

s g ff_f?'(,j_-_ _:_) W (/) (4.18)

and

A —L S 2 I_ § =0 §
V= - P(0;— 0n) " + ——R(3;—3,) ¥ 4 2L2¢r+
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ﬂa_—f-‘——':I-;

4 co
5§ (3= vo.

where

R==Pt—pu+(Pi+Pa) P+i(1—P) | du’ S(S:XSy)+
+i(l—P) | d& $(SyxSy). (4.20)

= X

Similar to the DS-I equation, the nontriviality of the boundaries
essentially changes the evolution of the eigenfunction ¥ in time.

Equations (4.18) and (4.19) allow us to find the time evolution
of the inverse problem data.

The consideration of equation (4.18) at E—~— oo gives rise to
the following equation

4 =0
dl | l
Oum, )= —omtu(n ) on— —zot+ =5 | Gy — ) ollin.§) (4.21)
for the quantity
i i
; e N Ay T
alh, n, 1) = S STa (ke "= lim Wy (4.22)

=— a0

Analogously for the quantity

=
!

)= | STdene "= lim W, (4.23)
one obtains from- (4.19)
G Sy =ha oo e e L J'-TK 4t (J--J—) ol E) . (4.24)
o B SR ;R ik W { y

et

Further, for the full Fourier transforms of the inverse problem data
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4 oo ) : + oo o
o - TR e LY s
SE 1) = —:,g S < i_z:-h WENs oty S Sho(hn,f)e *,(4.25)
+ o0 S + oo .
£ i i
3 S d! e T d 3 X
f{g,l],f)=-—£5 S %F;.Tlg e ey S Ii:m(x,g,f) e’ (4.96)
one gets the simpler evolution equations. They are
S8 n.t) — —(Sus+Son) +usle, 08— wi(n, 1) $=0 (4.27)
and _
T, 0 + %(ﬁg-i- Ton) +usll, ) Ty —ui(n, £) 7,=0. (4.28)

Thus, the time evolution of the full Fourier transforms of the
inverse problem data for the Ishimori-II equation is given by the
simple linear differential equations which contain the boundaries
ui(n, t) and uz(§, f) as the potentials.

Equations (4.27) and (4.28) play a fundamental role for all fur-
ther constructions. Note that they contain the first order derivatives
over & and v in contrast to the DS-I equation case.

Equations (4.27) and (4.28) are closely connected with the Ishi-
mori-1I equation in the weak fields limit. Indeed, in the weak limil
881=81<1, 8S2=8:<1 and 8S;=0 (since S.-68=0). Neglec-
ting the nonlinear terms, one obtains from (1.5) the system of two
equations

S ii— %(SH-!-EE‘}—S_FWJ +usE, 1) § pr=—1ty(n, {) §+T,=0.

S_i+ ;;{5_;5-4—5_”.-,} +uodE, ) S i —ui(n,H S_,=0, (4.29)

where S, =38, 4-i8,.

So, equations (4.27), (4.28) which define the time evolution of
the inverse problem data coincide with the linearized Ishimori-II
equation.

The exact interrelation between the inverse problem data and
S+ and S_ follow from the definitions (2.17) and (4.25), (4.26). In
the weak fields limit the formulae (2.17) become

22

: £ 2 =
?S_(ﬂg—ﬂ“+ i‘) I?v'i; )

I
Tis (p, h) =~ ESS dE dn e -

o (p. %) = ——{f dedne

S‘u(a;—aw T) Xiv-  (4.30)

Then from the integral equations (2.6) it follows that in the weak
limit
ai"g’—]"]' I

( ’ c ~ [ -
11_2!!_:_ S d"l € ?S—(”E_ara"i" T) xXa22

Ty

wir =l— 5§ dn' S (0e—ay+ ) par
£ - o 7 i =
xn~— | dt’e  * ESJr(ﬁ;r—@ﬁ-T))x“. (4.31)
~+ oo
So
xie =0, yom=l, yq=I, Yo =0. (4.32)

Substituting (4.32) into (4.30), one gets

+ oo —i= 1k

I . .
Totp, N~ —\W-dtdne e
12 (P, 4) zng_gf L 23,
I+5m o el S
Ty (B A==V dEdne” * —8.,.. 433
91 (P ) En_mg T o7 ( )

Combination of (4.33) and (4.25), (4.26) gives rise to the following
interrelation between 8, T and B8

SEn ) =aSi(E 1),
f&.n, ) =nS_(E,n,1). (4.34)
The coincidence of the equation which define the time evolution
of the Fourier transform of the inverse problem data and linearized

soliton equation takes place also for the DS-I equation [10—12].
This is a general phenomenon.
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The formulae (4.33) and (4.34) allow us to describe the con-
strainst on the inverse problem data which correspond to the real
field S(E, 0, ?).

[ndeed, for real S one has S, =S8%. Then the relations (4.33)
and (4.34) imply

ATg (L, A) = —I1(Tx A1) (4.35)
and

SEn.0="1"¢ 01,
SEnty="F(En1. (4.36)

[terating the formulae (2.17), we conclude that the constraints
(4.35), (4.36) take place also for the nonweak real S.

5. EXACT FORMULAE FOR THE GENERAL COHERENT
STRUCTURES OF THE ISHIMORI-Il EQUATION

The linear equations (4.27), (4.28) are the key equations in the
whole method of the study of the coherent structures for the Ishimo-
ri-II equation. In what follows we will consider the case of the real
functions S(&, m, ). In virtue of (4.36), (4.35), in this case it is
sufficient to study the single equation:

i8+ %-fﬁgﬁt SoyFiudt ) & = iui(h ) §,=0" (5.1)

Our aim here is to derive the general formulae for the exact
solutions of the Ishimori-1l equation via the solutions of equation
(5.1)

S(}luti{)ns of equation (5.1) can be constructed by the method of
the separation of the variables

S(E . ) =X(E 1) Y(n, 1) (5.2)

similar to the DS-1 equation [10—12]. In our case the functions X
and Y obey the equations

iX; 4 —;—ng—l—iuz{g. 8 Xy 0, (5.3)
s % Yon—iti{n, 1) Youel). (5.4)
94

The combination of the exact formulae (3.14) — (3.16) and the
factorized solutions of equation (5.1) will allow us to construct the
localized solitons of the Ishimori-11 equation.

The general factorized solution of (5.1) is of the form

SE ) =2x) pyXi(&, 1) Yiin, 1), (5.5)
if

where p; are constants and X;(E, ), Y;(n, £) are the solutions of
equations (5.3) and (5.4) respectively.
The equivalent form of § is

SE =23} un, 0T 1) (5.6)
with
. =) pi¥i(n. 1),
]
Tl§, 1) =X (&, 1) . (5.7)
For such a S(&, n, f) one has
+ oo .
‘__|_%L
T =~ | ”M”ZA’ GO Op e’ ' o
—Zr ) Ti(h, 1) (5.8)
where
+ oo &
an
Tl sy pi S e " Yiln b
} Zj f_m —Vrg_ﬂ !
Vool e
Tih, f) = g Bt e 0. (5.9)
A v‘gn
Using (4.35), one also gets
-+ oo 4+ oo i
“ b ﬂr’f' % i ﬂ.r'l] - i
T %) plte S S _xte S Vi e
5 Z:': i L : _mw'%
=) S0 Si(9, (5.10)



where
+ oo i
Sl 1) = S e LA .
ald%
o : Wy
Sih ) =Y i g ML Ve . (5.11)
j y2n A

— X3

The formulae (5.8) — (5.11) give the concrete expressions for the
degenerated inverse problem data. Using these formulae, one can
obtain the concrete expressions for the other needed quantities from
the section 3. Taking into account that

st i Lpr—g)

(Th e *) =—= S dE’ X&' ) e * (5.12)
'\/251 A
-+ oo
and
# in o i . =)
(Sk[}h, f) e ") = : Z ki S dn'e * Yin'it), (5.13)
one gets
a;{e, =X, (L 1),
i, =) puVYe(n, 1),
ke
&Ljp = Z 0jt Pkm @im=(pap ™) jx ,
T| : ;
Ga= | dn Yu(',Hd, Yi(v', ),
Bu=bu=— | d& Xu¥', ) 0u XI (&', 1), (5.14)

— oo

R S 1

(Tiktye ') ——= Xt 1),
Vin

F

Using these expressions and the formulae (3.14), we obtain

Y (pap™t)up X5 (E. 1)
Fi=Y (b=pap*b);'| * S
J Zk( pap™b) (ZPH}Q{]}‘!) ) et
{
= —boaot) = XD : 5.16
G, };(1 pap )nz (Zbk;pm Yaln, 1) ) }

Further the formulae (3.16) give
g=1"(A=0)=

—_—( | —(X,(1—pap™b)~! papTX"), (Y, pt(l — bpap J_IX-:’) (5.17)
— (X, (I—pap*b) ~'p¥), 14+ (¥, pF*(1—bpap*)~' bpY) }’

where we denote (X,Y)=) X;Y. At last, rewriting the reconstruc-

tion formulae (2.23), (2.31) in the components % (L=0), we get

5o e 2 %22(0) y21(0)
%11(0) %22(0) —%12(0) 32:(0)

o 2.:{11(5] %12{0) : (5.18)
111(0) %22(0) —%12(0) %21(0)

Saz ok t{ﬂ'} xzz(ﬂ) +‘J{,|2[U} ;{m{ﬂ) ,
' %11(0) %22(0) —%12(0) x21(0)

and
P&, M, 1) =2i In (11(0) %22(0) — 312(0) x21(0)) +

£ 1
+2 | dE usE,t) 42 { dn uin, 1) (5.19)

— ] ——

The formulae (5.18), (5.19), (5.17) are the main result of the
present paper. They allow us to construct explicit exact solutions of
the Ishimori-II equation with the nontrivial boundaries using the
exact solutions of the linear equations (5.3), (5.4). Emphasize that
the indices in (5.15), (5.16), (5.17) may be also a continuous one.
They correspond to any set of the exact solutions of equations (5.3),
(0.4). At this point the situation is similar to the DS-I equation
[10—12].

An essential difference between the Ishimori-II and DS-1 equa-
tions is that in our case the linear equations (5.3), (5.4) contain the
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first order derivatives over & and n and the pure imaginary poten-
tials iuy(n, t) and ius(§, 1).

For the DS-I equation the corresponding linear equation is the
one-dimensional nonstationary Schrodinger equation [10—12]. This
last equation is associated with the IST integration of the Kadom-
tsev — Petviashvili (KP) equation [10—12], [1 —4]. In our case the
linear problem (5.3) (or (5.4)) is associated with the IST integrabi-
lity of the modified KP equation. Indeed, the modified KP equation
120]

1

sttt 02w T 120 Fp 4= 100 8, e (5.20)

is equivalent to the commutativity condition [L;, L2] =0 ol the ope-
rators [21]
Ly =2id,4 0%+ 2iud,,
Lo=0+440% £ 1203+ (4 6iu, £ 1200, ' u,) — 6u?) 3,4+C.  (5.21)

This fact becomes not so suprising if one takes into account the for-
mal gauge equivalence between Ishimori and DS equations mentio-
ned in [15, 16] and the gauge equivalence between KP and mKP
equations studied in [20]. Indeed, it is easy to see that equations
(5.3), (5.4), convert into the nonstationary Schrédinger equations

%X+ Kee+ (s +iuge+ 28 ugy (2, 1)) X=0,
2 Y4 Vo4 (uf —iseg,—20," uyy (', 1)) F=0. (5.22)

under the gauge transformations

] :
—i | dn'min’. f

o i
i 'f, dE uaE, 1)
e

X=Xe

We see that the solution of the general initial-boundary value
problem for the Ishimori-II equation is connected with the solution
of the initial value problem for the modified KP equation. This last
problem will be considered in the separate paper.

6. TIME INDEPENDENT BOUNDARIES

In this paper we restrict ourseives by the case of the time inde-
pendent boundaries u;=u:(n), do=u-{(E). In this case we will be
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able to use the previously known results for the special Zakha-
rov— Shabat spectral problem.

For the stationary boundaries u;(n) and us({) equation (5.1)
admits the full separation of variables

S(&. . ) =T(t) X(E) Y(n) . (6.1)
The functions T, X and Y obey the following linear equations:
Te(t) + ;;(12+ A% T=0,

Xee +2ius(E) Xe+A°X(E) =0; (6.2)
Yan—2iti(n) Yy 4-2"%Y(n) =0, (6.3)

where A and A’ are parameters.

The one-dimensional spectral problems (6.2) — (6.3) can be
investigated by the different methods. Here we will use their equiva-
lence to the specialized Zakharov— Shabat spectral problem. Firstly

we note that the spectral problems (6.2) and (6.3) are equivalent
to the problems |

Kot + (W 3 (B) —iug: (8)) X =0 (6.4)
and

Fun+ 02+ ui (n) +iu,(n) F=0 (6.5)

via the gauge transformations

—i E dE sl i 'i} dy'ui(n’)

XE=X®e ~~ , Ym)=¥(n)e " : (6.6)

So, the problems (6.2) and (6.3) are gauge equivalent to the
spectral problems of the Schrédinger type

@y + (3 + u(p) £ iuylp)) D*(p, 1) =0 (6.7)
with the very special potential
Vip) = —(4*(p) Liuylp)) , (6.8)

where u (p) is a real function.
Then, it is not difficult to see that the spectral problem (6.7)
can be rewritten in the following matrix form
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‘{’,p—t—fullﬂ =A%, ;
M G S0 (6.9)

Indeed, the elimination of Wy or W, irom (6.9) gives rise to the sca-
lar equations

W+ (AL 4+ u® +iug) ¥i1=0,
Wopo+ (A 4 u?—iu,) ¥y=0. (6.10)
So one can identify
DT(p) =Wilp), @ (p)="Y:p). (6.11)

At last, transiting to the variables

. ¥ +iv¥, B2 Wy —i's
— 2:

B s 2

v

(6.12)

we arrive at the specialized Zakharov— Shabat spectral problem
: gy, =W 7 S
l( e —f.i',.) (EJ-:!) mh(m) ' o)
It follows from all these formulae that
X(g) = —uvyE) —ioyE), ¥(q)= —uv(n) —ivan), (6.14)

where v; and vs are the solutions of the spectral problem (6.13).

So we able to use the exact results associated with the problem
(6.13) for the construction of the exact solutions of the problems
(6.2), (6.3). Of course, for the calculation of the function X(£) we
must use ug(g) as the potential u is (6.13) and for calculating the
function Y(n) one must use u;(n) as u in (6.13).

The spectral problem (5.13) has been studied in detail in the
papers [18, 22] in connection with the IST integration of the modi-
fied KdV equation. It has been shown in [I8, 22] that the spectrum
ol the problem (6.13) contains the continuous part defined on the
real axis ImA=0 and the discrete part which consists from the
points located symmetrically with respect to the imaginary axis
Re A,=0. The points laying on the imaginary axis correspond to the
soliton potentials u and each pair of the points +a+4-if correspond
to the breathers. Since the problem (6.13) is not selfadjoint then the
discrete spectrum of (6.13) contains also a multiple points which
associated with the multi-poles of the reflection coefficients [23].
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The eigeniunctions v, and the potentials ¥ which correspond to
the discrete spectrum are found as usually [1—4] explicitly in the
closed form.

General soliton-breather eigenfunction which corresponds to N,
solitons and N: breathers is of the form [18, 22]

onlp) =00 M) =L (1M i { () () LMuse™ ) (6.15)
m k

where (Ni<42N3) X (Ni+2N2) matrix M looks like

e | (A = 5..,1-:-u a
o Lm

hoe A

Moum = {ﬁlﬁ}

where n,m=1,2,..., Ni+2N: and A,= 4a,+iB,. The correspon-
ding general transparent N,-solition- Ns-breather potential u is
given by the formula

Im det{l 4iM)
Re det (1 4iM) °

u[;.n}:Z-—q—Imln det(]—i—iﬂf!]=2iarctg (6.17)
dp dp

F4
uz(p}=f—iln det (14 M) .
o

If all An=ip.(ImA,=0) then the formula (6.17) gives the general
Ni-soliton potential. At all Ay=4a,+ifs (IMma,=Imp,=0) we
have the general Nj-breather potential. Correspondingly the formula
(6.15) gives the N,-soliton eigeniunction and Ns-breather eigenfunc-
tion.

The formulae (6.15) — (6.17) allow us to construct the exact
solutions of the problems (6.2), (6.3). For the potential u2(&) and
ui(n) given by the formula (6.17) the eigenifunctions X and Y are
of the form

E

—i | deuap)
Xiv, v () =(—va(hn, E) —ivi(An, E)) e —7 : (6.18a)
i i
Yig, g () =(vi(hn, n) +-ivefhn, m)) e =~ ; (6.18b)

where the function v, and v are given by the formula (6.15). Note
that the function Xy u,() corresponds to the N,-soliton -+ Na-brea-
ther boundary function wu2(f) while Y 5n) correspond to the
N\-soliton + Ns-breather boundary function u,(v). Now using the
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formulae (5.14) — (5.19), (6.15) — (6.18), we obtain the exact expli-
cit solutions of the Ishimori-II equation with the general stationary
transparent boundaries us(E) and u;(n).

These solutions are defined by the arbitrary N,-soliton 4+ Ns-bre-
ather boundary function wus(E), Ni-soliton-+ Ns-breather boundary
function #,;(n) and arbitrary constants p;. The matrices a and b
involved in the formula (5.17) can be represented in a more com-
pact form. Indeed, taking into account (6.18), one gets

1
am=§ A0 Yo, 0", )0, YO, W', 1) =

= { d V0, 0, 1) (T (s 0, £) +iwa(m) F(hey ') =

1

=k | dn’ P(a, v, 0) X0, 0, 1) (6.19)
and
3
b= — \ d¥' X(he, &, )05 X" (M, B, 1) =
= — | Al X &8 (R E, )+ i) X B ) =
*® E' 1 ¥,
=i | db X0 8.0 V008, 1) (6.20)
So one has
Gl 1)) =X Cmln) B ==he TSl (6.21)
where
i}
clp) = | dp’ X(w p') V(M p) - (6.22)

— &3

Emphasize one more, that C,;(n) is calculated via the functions
(Y(%, m), X(h, n))=(¥:, ¥2) which correspond to the potential
u=uwui(n) in (6.9) while Ci(§) associated with the potential
H=u2(§).

The solitons (s) and breather (b) are quite different transparent
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potentials. As a result, we have four different types of the exact
solutions of the Ishimori-11 equation:

Sevmy &M D, Sawm@Enb, SenmGEn 8. SesvrnEnd,

which correspond to the choices of X and Y as the soliton’s or brea-
ther’s eigenfunctions. The solutions S« and S, are, obviously, rela-
ted by the interchange E<»v. So, we have the three essentially diife-
rent types of the exact solutions

—

gs:i[."n‘, M) » Ssbin, M) » ghbm‘.m ; (6.23)

where the intergers N and M correspond the N-soliton (breather)
boundary u2(§) and M-soliton (breather) boundary uz(n).

All these solutions can be calculated explicitly. Here we present
the simplest examples of such exact solutions. Using the formulae

given in the Appendix, one gets the simplest (5.5) localized soliton
with N=M=1:

) 2
St (5 M t) =841 (B, 1) cos ({i%ﬂ + D1, 1) (s '])) i

™

B TR
Sssr,y2l& M [} =841 (B, M) sin (LL;I—;—}-“ + D1, 1y (€, T]}) A

¥

21X% Y,
S:;.',-_"' ‘ g,'l’ :_I+ =_1
HIIJH( !) ”—ﬂnf}n“ +
— HE— 2y
fi'e | Dk 9 j.wge 2 o C & [624}
o e 1 SR ot i T
(imve +m’ I) +(21’(' +2u€ )

where

Sss1 (B:1) =V Sew 11+ Sa.n2 =\/1—3iu.n3{§, q) =2 MV

2

d —~2vq L - 2ui ' ';;i —dpE—2vy e :
x\/(?ve Ey,f J +(4m-‘e E&_—i_l)

cid —2uE —2vy uy )z d 2y c —2pk :
— e e | — —e )
(4;1,1.:' e cd +(?v + 21

d o C _—ou

— —_——

J 2v 2
@y, 1 (£ 1) S=arctg — ;

— 2y —2uk ¥
S o 1
dpv Cd T
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L E_2F§+ ie_z‘”! :
2d b
@1, 1) (B, M) = — 2 arctg t: sk
o pv

(1o ) () e ey

_2‘”') ~+ const

+4 arctg (ie _EPE) + 4 arctg (ie
2n 2v

where u= 0. v>> 0 and C, d are real constants. It is easy see that,

this solution is of the breather type in finite ¢.
The simplest (s, b)-type localized soliton for the Ishimori-11

equation is (N=M=1):

1
I=(0)=(3) oot =an.
Pz 0

_'52_” ) + D g1, 1y (8. 7, E}J '

p1jYi="Y1,

2
Souinel&em =841 (B.n.Hcos [[q

T BE 9 "
Seott, nelEe M) =8g 1 (E. 0, 1) Siﬂ({rx ﬁE B —I_{Dsb[].l}{;unrﬂ)-

21 X:1° ¥il?
s
[1—ay b |?

SsinaEmH=—1+4

g THETRBY (o (981 + W) —sin(2an 49— b)) , (6.25)

ip fpfee i) ¥+ 2apt 8

|(c.n{2|3n+qf) + sin(2om+¢—) (%e —2-'*3+f:) — et
where

__I_

e o ‘
.:_\/S.qm,|3|+s_-n.l,n:z =V1—Sfmimf§7ﬂsf} ,

2B+ ¥

SRFJ 1 {E: r]; f)
sin{an4¢—8) —e COS amn

cos(an—+g—=08) —¢

D1 1) (B, m, £) =arctg

TR
; sin an

—;Le Z“Echﬂiﬁn—i—‘lf}—}—%sin{zmn+¢_5}_4_ﬂ} W Qe
+arctg -+ :

o d B e o T+
h (2 LY i A e M + 2
ch(2fn+ W) Euae b1n¢2a1}+{|—{3} 4r1'|3

o . sin (2an 4 ¢p—
o ch(2fn+ W)
ia hi2fn+V) — —-ﬁ—SIﬂ (2aen4+¢—08) + — Le
2u 4d
H d
o iy,

q3'm|.!;~[§,‘r]}:—SHrctg —I—S rLtg(—e zua)_
' 2p

W e fht

—4arctg

g€ isin(2an+¢—8) +ch (2pn + W) — 4{;:113“2&&

where
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r=_ltl2 _  atip=val+ple’®, C=I[Cle

g 28/’ + B2

In the formulas for this (s, &) solution A=ip, p=> 0 is the pole of
the reflection coefficient for the problem (6.13) which corresponds
to soliton, d —real parameter of soliton A} ;= + a-+ip are the poles
of the reflection coefficient for the problem (6.13) which correspond
r to breather, C —complex parameter of the breather.
At last, the simplest N=N=1 localized soliton of the (b,b)

type is of the form:
i PH pl2=ﬂ'1' +=ﬂzzﬂ
4 (pm [‘lm) ({} 0)1 pee (U {}) ;
Seoir, 191 (& 1. £) =Spp 1 (E, M) cos (@®—B%) {4+ Dy 1y (E, 1)),
Seorr,12(8, . £) = Sps 1 (B, 1) sin ((a® —p?) 4D 1y(Eim))

2 z
S, naEon)=—14 215171 Y, =—14

7
| i-—ag by

+(e™ TV (ch (2BE+Ws) + sin (2ak + g2 —8)) (ch (2Bn+ W) +

+ sin(2an +¢; —8))}/ !(ch(?[:h]—[-%) % iﬂ?sin{?mn+cp| —a)) X

X(ch{?ﬂ’g—l—‘h}—l—~Lﬁsin(2u5+wg—ﬁ)) {“lgf e+ (6.26)

where

Sep1 (8 M) ::_\/Sf?bl;],l 1+S§a{| he== \/1—-5§a nq(g,ﬂ},

cos (aE+go—8) +e™ " 'sin—ak
sin (g 4 gz — }—i—eEﬁH% — ak

@pp1,1)(E. M) = —arctg

sin (o + ¢ —8) + e+ ¥ cos an
cos (an 4 @ —8) + 2" Visin an

—arctg
J arctg{ —E—(ch{2|3§+ Wy)sin(2an + i — 8) — ch(2Bn + ¥ 1)sin(2ak 4+ g2 — 8)) +

4 % e ""z} /ch (2BE + ¥5) ch (2fn+ W) +

+ﬁ_""bm(2a§+¢2_a} sin (2an =+ @1 — 6) + (ajﬁ_ﬁfz] it

B sin(2an4- g —9) 5 Bierei B sin(2of 42 — 8) +
a ch(2pn4 W) a ch(2pE+Y¥s)
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@por, 1y (8, m) = —8Barctg —



| farctg { E—gch 21+ W) sin (2aE + g2 —8) +
+ ch (2aE + ¥2) sin (2an 4 ¢ —6)) } /ch (2pn + W1) ch (2BE+ Wo) —
b

2 2 -
ot ES]-H {2&.%-{-(pz—f}} 5in {Z{x'rl +{Pl—lﬁ} + ITEII:;{E; ) 5 ""'%,
¥

where
— Wy | Cel a

2Val+p

e

Ce=1Cle™, (8=1,2); a+ip=\Va®+p®e”.

In the formulas for this (b, b) solution My =a+if, as= —a +ip
are the poles of the reflection coefficient of the problem (6.13)
which correspond to breather us(E). Ai=a+ip, M= —a-+if are
the poles of the reflection coefficient of the problem (6.13) which
correspond to breather u;(n). C,, C; are complex parameters of the
breathers.

Let us note that the poles of the reflection coefficient which
determine the breathers u,(n) and u2(E) are choosen in the formu-
las (6.26) of (b, b) solution to be the same: M =ij=a-+ip,
Ao=Ap = — ot +iP.

All these solutions are of the breather type, all of them decrease
exponentially at E*4n’—>o0 at all directions, but their forms are
quite different. The solution S,s is obtained irom S, by the inter-
change E<»n.

These examples demonstrate the richness of the types of the
coherent structures for the Ishimori-Il equation. In more detail the
properties of the localized solitons for the Ishimori-1I equation, the
case of the time dependent boundaries and the scattering of the
localized solitons will be considered elsewhere.
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APPENDIX

Here we present for completeness some intermediate formulae
which are needed for the calculation of the exact solutions of the
Ishimori-11 equation. _

The simplest soliton potential for the spectral problem (6.13)

b
corresponds to Ni=1, No=0, A=ip (p>0) and ¢ = af;;}):
=ic(Ime=0) [18, 22, 3]. It is of the form
d A 2usgnc
=2 —arcig| — M) = — ; (A.l
“p) dp e g(En : ) ch (2pup -+ po) k.
where exppo= % The corresponding eigenfunction X is
C
—i'un+f'1—12:-t-
Xp)=—i=< . (A.2)
giue—”“uf
The quantites a and b are
az_'i__l_._, g,=__£___]_' (A.3)
d %e—ﬂw]_{_i : c _iﬁ';:e _ng—{—f
The functions X,(§) and Y,(n) are
e b et
=" v =—2 . (A4)

Firic iy L P
2u 2v

Using the formulae (A.2) —(A.4) and choosing p=1, one obtains
from the formulae (5.17) — (5.18) the solution (6.24). |
The simplest breather potential corresponds to N =0, N:=1,

. T Mg} -
M=a+if, he=—a+ip, a, p>0, ¢;= E%%zm‘ o aj(;)} g
[18, 22, 3]. It looks like
ot i B sin (2ep +¢—38) A
u(p) . dp s ach(28p+ W) L)
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e 2V +p°
whe e = = |¢|e' : ~ '
. re tg % exp ¥ TR c=|cle"™. The corresponding
eigenfunction ¥,(p) is of the form ¥
5 - dmp b B W » —lap—pp—ip4ib
Fip) = ——Lo— e 7 7" . (A.6)
2ch(2fp4+ W) —Eigsin (2ap—b64q)
The function ¥, (p) looks like
3 : tapbip N o —iap - fp—ip4-ib
Yilp) = B [ i (A7)
2¢h(2Bp+ W) +25% Sin(2ep — 8+ @)

We present here also one general formulae. Using the formula
(6.15) for vi, ve and the formula (6.17) for u, it is not difficult to

sh'ow that the functions X, and Y, are representable in the follo-
wing compact form

" £

i -;'w-n;;- __khnt

Xal€, t) = X(hn, §, £) = _'_Z“ —Lf‘r"” rz;!f:‘ g —i [ dE uslE) —
"
gt 5 34 _iM) et (det(l—iM))” :
%‘ : det(1+im) (A.8)
sk 7 i 1 caay —1 Fai .”ft —J:ild'r'rt.!'r'ﬂl
Fm“'], f\:l T Y{.ﬁ"-’”' Ill* I'I ZLZI:]- +£1’Wj‘lnp 2 e bl f]
i
=le =Y (b e Sethil Rt &%)

(det {1 —iM))"

p

These formulae essentially simplify all calculations.

38

—

13,

13.
14.
15.

16.

E¥:
18.
19.
20.
2L
22.
23.

REFERENCES

V_E. Zakharov. S.V. Manakov, S.P. Novikov, L.P. Pitaevski. Theory of Solitons.
The Inverse Problem Method, Nauka, Moscow, 1980. Consultant Bureau, 1984.
M.J. Ablowitz, H. Segur. Solitons and Inverse Scattering Transform, SIAM, Phi-
ladelphia, 1981.

R.K. Dodd, 1.C. Eilbeck, I.D. Gibbon, H.C. Morris. Solilons and Nonlinear
Waves, Academic Press, New York, 1982,

Y. Satsuma, J. Phys. Soc. Japan, 40 (1976) 286.

L.A. Bordag, A.R. Its, V.B. Matveev, S.V. Manakov, V.E. Zakharov. Phys. Lett,
63A (1979) 205.

H. Cornille. J. Math. Phys., 20 (1979) 144.

M. Boili, 1.1.-P.Leon, L. Martina, F. Pempineili. Phys. Lett., 132A (1988) 432.
M. Boiii, 1.1-P.Leon, F. Pempinelli. Phys. Lett., 141A (1989) 101

M. Boiti, JJ.-P.Leon, L. Martina, F. Pempinelli. Preprints Montpellier,
PM/88-40, 1988; PM/88-44, 1988; PM/89-17, 1989; PM/90-04, 1990.

A.S. Fokas, P.M. Sanlini. Phys. Rev. Lett, 63 (1989) 1329.

. A.S. Fokas, P.M. Saniini. Coherent Structures and Boundary Value Problem for

the Davey— Stewartson Equation. Preprint INS 121, Clarkson University, 1989;
Physica D.

P.M. Saniini, A.S. Fokas. The Inital-Boundary Value Problem for the Davey—
Stewartson Equation... Preprint 684, Universita di Roma, 1898.

P M. Santini. Physica D, 41 (1990) 26.

Y. Ishimori. Progr. Theor. Phys., 72 (1984) 33.

B.G. Konopelchenko, B.T. Matkarimou. Phys. Lett., 135A (1989) 183.

B.G. Konopelchenko, B.T. Matkarimov. J. Math. Phys., 1990; Preprint Saclay
SPhT/88/229, 1988.

R. Beals, R.R. Coifman. Inverse Problems, 5 (1989) 81.

M. Wadati. J. Phys. Soc., Japan, 32 (1972) 168.

B.G. Konopelchenko, B.T. Matkarimov. Stud. Appl. Math., 82 (1990) 319.

B.G. Konopelchenko. Phys. Lett.,, 92A (1982) 323.

B.G. Konepelchenko, V.G. Dubrovsky. Phys. Lett., 102A (1984) 15.

M. Wadati. J. Phys. Soc., Japan, 34 (1973) 1289,

M. Wadali, K. Ohkuma. Journ. Phys. Soc., Japan, 51 (1982) 2029.



V.G. Dubrovsky. B.G. Konopelchenko

Coherent Structures
for the Ishimori Equation.
I. Localized Solitons
with the Stationary Boundaries

B.I'. lybpoeckuii, b.I'. Kononeasuenko

KorepenTthbie crpykrypsl gis HumumopH.
i. JlokanuzoBaHHbIE CONHTOHD

CO CTALHOHAPHBIMH IPAHKUAMHU

OreercrBenuniit 3a Buinyck C.I.1Tonos

Pabora noctynuna 21 mas 1990 r,
IMognucano B neuats 25.06 1990 r. MH 02338
Dopmar Gymaru 6090 1/16 O6wem 2,9 ney.n., 2.4 YU.-H3L.J.
Tupax 250 3k3. Becnaatno. 3akas Ne 76

Habpano & asromarusuposannoi cucreme wa 6ase oro-
Hatopuozo astomara PAIO00 u IBM «Iaexrporuxar u
OTne4arano wa poranpunte Hucruryra adeproid dusuku
CO AH CCCP,

Hosocubupck, 630090, np. akademuxa Jaspentvesa, 11.




