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ABSTRACT

The new device for damping the longitudinal single
bunch instability in storage rings is proposed. This
simple device is the dielectric canal insert of definite
length in vacuum chamber. The structure of wake -
fields, induced by intensive bunch in such a canal is
that, that backward action on bunch particles not only
preserves but also decreases bunch length, i e. leads
to bunch selffocussing. The conditions under which
this phenomenon reveals itsell and can be applied to
electron-positron factories are considered.
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1. INTRODUCTION

The growth of a bunch longitudinal phase volume with the
increasing of the number of particles—that is sc called bunch
lengthening —was observed at different high energy storage rings.
The reason for it is the bunch particles interaction with inhomoge-
neous vacuum chamber. The description of bunch lengthening effect
based on wide-band impedance model was considered by many
authors. Nevertheless the proposal how to avoid this effect was only
given in the report [1] and for the first time. There, in particular
the steady state distribution was shown to be selffocussed and
stable, if the wake potential is a step-like function. In this case the
bunch is compressed without energy widening when one increases
the number of particles in it.

According to [1] step-like function W(z) is the function, which
Fourier transform-impedance Z (k)

Z (k) :‘f W(z)e *dz
]

satisfies the following requirements:
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where
Zsiep(R) = Wa/ik

is the Fourier transform of the exact step-function

| for 2>0
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and s is the effective step-like function length above which the diffe-
rence between W(z>s) and We.,(2) is not relatively small; zo is
the coherent bunch displacement due to energy loss; o is r.m.s.
bunch length; o is r.m.s. bunch lepgth at zero current. In this defi-
nitions impedance is dimensionless: one unit of dimensionless impe-
dance is equal to 30 Ohms.

What real vacuum chamber structure can present wake potential
of step-like type? It may be noticed that step-likeness means finite
energy loss of a point charge travelling in some kind of electrody-
namic structure. This is occured in a dielectric canal (Fig. 1),
where maximum frequency of Cherenkov radiation is limited by
inner radius a. So it may be supposed that dielectric canal is cha-
racterized by wake potential of required type.

9. WAKE POTENTIAL OF DIELECTRIC CANAL

Let us derive the fields induced by a point charge travelling
alorig the axis of cylindrically symmetric dielectric canal, presented
in Fig. 1. The outer surface of the canal is covered by ideal metal.
We assume that the bunch velocity is equal to that of light.
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Fig. 1. Dielectric canal.
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Substitute
Ey=Hp=#,=0picocrm Lo L= — O
at oz
plr,t)=p(r ) 8(z—1); [=np(r,i)

into Maxwell equations one obtain a set of equations for nonzero

component of electromagnetic field E,, E,, H,=H in vacuum part of
canal

aE, aE. aH
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and in dielectric tube
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Hence, in vacuum:
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and in dielectric:
a’E, P a’E,
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On the boundary between vacuum and dielectric (for r=a) electro-

magnetic iield components E. and H have to satisfy the condition of
continuity : .

Eifa, 2= E(z),
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Next step for solving (2) together with (3) is to carry Fourier
transformation, taking into account the principle of causality
(E{z=> 0) =0); -

0
E:f:ar]-_— S Blr, e az; (4)
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one can find
Ek{r}:ﬂ},‘}i’g(kr \g‘t—l) 2

where #o(x) is the solution of Bessel equation.

The requirement of boundary condition on metal surface
(Ex(b) =0) gives the following expression for Ho(ur):

Fo(ur)=HY (nr) HE () — HE (wr) Hy (xb) ,

w=hk\Ve—1 ,

where H{'(x), H.f_}{x) are Hankel functions [2].
Constant € and Fourier component of E, in vacuum can be eva-
luated by using boundary condition (3):

o 2ive—1 | , (5]
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Functions &, and &, can be described by Neiman (No, M) and
Bessel (Jq, J1) functions, so that

A | Fa i3 Ny I::H.ﬂjl fg{%bl'l — 0 {&EE]I No {;’.b] {'El]

Ko No (#a) Jo(xb) —Jo (xa) No(xb)

For xa>1 the asymplotic expression for (6) is given by

L) —=ctg(x(b—a)) . (7)

It is clear that Ei(r) for r>a is a regular function in upper
hali-plane of complex k. It means that the causality condition is
satisfied. _

The field E(—z) is calculated by reverse Fourier trasformation
of (b):

E(—2)={Ereedt.

i &

The contour of integration is lying above all singularities of E,, in
the particular above the cut, connected with N, , multisignificance.
It is suitable to make the cut along the negative imaginary
hali-axis. When moving the contour of integration to lower hali-
plane it catches the cut and also poles, lying on the real axis, where

& | il
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Thus the contour is transformed to that presented in Fig. 2. The
dominant part of the integral over the cut is in the region

Ixall.

Outside this region the difference between integrated function at

opposite edges of the cut is exponentially small. For |z| <aVe—1
the integral is independent of z. Taking into account Bessel function
properties one can show that inside mentivned above region the dif-
ference of contributed values of integral over the left and right
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Fig. 2. Contour of integration.




parts of contour is of the same order as the value itseli, so the esti-
mation of integral over the cut is

E ,...,- Eﬂ\fa_m—-l 54 e
g Qe a‘\fE;_l gt

For [z|> a‘\/r:—l the integral decreases when z is increasing.

Next step is to evaluate the pole contribution to the total integ-
ral. The number of poles is infinite and all of them are simple and
located on the real axis, The poles that give dominated contribution
into integral are concentrated in the region

il
— 1.
Qﬂi

Supposing that
2e > | (8)

one can use asymptotic expression for Bessel functions (7). When
the dielectric layer is thick enough,

Bices g S e - (9)
D¢

the derivative of the denominator in the pole is

. (ctgx(b—a) e i’ﬁ) s (b -=a) (1 +(§}2) ;

dxt 2e
And if
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(b—a)\e—1

‘the phases of neighbouring addenda differ not too much and the
sum of series can be changed by integral. In the result one can eva-
luate the pole contribution to longitudinal field

Ep(—2) =5 €7, (10)

)

where s is the effective length

L ==

(11)
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E

Under the condition (9) E, is antiperiodical function:
8
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E(—z—(b—a)Ve—1 ) =—Ex(—2).

Finally the total wake potential for a charge travelling in a dielec!
ric canal is

Wt"?}i _Er_f} L= ﬁj" (E—E.-".t_.__ _f“)
a

2e
for _ S
O<z<<ae—1, (b—a)\o—1, (12
where L is the canal length, f is the constant. The value of | ob
tained by numerical calculation is

fe:37

As it could be seen the wake potential of dielectric canal ﬁ’f‘{;’-; )
is a step-like function. Its impedance Z(k) under the conditici
ks> 1 is pure capacitive:

41
ik a*

Z (k) =

It is clear from (11) that the optimum value of dielectric constani
is ¢ =2, in this case the step length achieves its maximum

Smax = /4 .

The problem of wake field calculation was also treated by
numerical method for Maxwell equations. Calculations for longitudi-
nal wake fields that act upon particles in the Gaussian bunch tra-
velling along dielectric canal were carried and the results for some
particular cases are given in Fig. 3 and Fig. 4.

The bunch density distribution is presented by dashed curve,
solid curve describes the wake field obtained by the numerical
method and dotted one is the result of convolution of the wake
potential (12) and bunch density distribution. Parameters of dielect-
ric canal for the case presented in Fig. 3 are that, that the conditi-
ons of analytic approach (8) and (9) are satisfied well enough. The
agreement between numerical and analytical solutions is so good
that it is practically impossible to watch the difference. It's interes-

ting to note the good agreement also takes place in the case
(Fig. 4) when the conditions (8) and (9) are nol satisfied.
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Fig. 3. Wake Tield of Gaussian bunch in dielectric canal (thick dielectric layer).
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Fig. 4. Wake field of Gaussian bunch in dielectric canal (thin dielectric layer).
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3. BUNCH STEADY STATE FORMED BY DIELECTRIC CANAL

According to (1) the main condition for bunch selfiocussing is
that, that wide-band impedance of dielectric canal must be higher
than parasitic one due to inhomogeneity of vacuum chamber. Using
the derived estimation (14} ihis condition takes ihe following form:

b i l"l':: - 5 | o
ey T S (15)
a‘R i Ppar g

where R is the average radius ol a storage ring, [Z/n|.- is parasi-
tic impedance.

Also it is needed the coherent displacemen! z; fo be not much
higher then wake step length s. In order to get exact guantitative
expression for this condition the bunch steady state equation (Hais-
sinski equation [3]) for wake potential of dieleciric canal {12) was
solved numerically. One of ‘the results for proper wake potential is
shown in Fig. 5, where bunch density distribution is presented. The
analytical solution for step function [1] is shown in this figure by
dotted curve and the density distribution at low current is demonst-
rated by dashed curve.

When the coherent displacement z is increasing the bunch shape
is changing: new local condensations of particles arise and grow,
as it is shown in Fig. 6.

Due to this shape reconstruction the bunch r.m.s. length o is
increasing and the selffocussing effect is iransiormed to bunch
lengthening. Fig. 7 demonstrates r.m.s. bunch length dependence vs
its coherent displacement zo for different values of wake step length
s. All values are measured in units of natural bunch length o As it
can be seen from the Fig. 7 the minimum bunch length is achieved at

Zo=~3s .

-

Thus the second condition for parameter zo of wake step-like func-
tion is
205538 . (16)

4. REQUIERED PARAMETERS

The coherent displacement 2z, is determined by external RF
rigidity ®ge:
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Fig. 5. Steady state charge distribution (selffocussing).
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Fig. 7. Bunch length vs coherent displacement.
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and in its turn the rigidity is depended upon RF harmonic number
gge and voltage amplitude Ugg

— dzr eUgp ;

KRF
R

Conditions (15), (16) are also can be presented in the following
way:

N 1/3 » 74
A s (17)
(H!h ) g 20? % A
where
A=?£131‘4
R | n lpar

and Ny is the threshold of bunch lengthening due to parasitic impe-
dance:

'\”I'En g4 GH
N in = [ P
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e’ 1Zfnlpa R
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It is wise to note that under the condition (17) the bunch length o
will be less then natural one o,

Considering only left and right terms in (17) one can obtain the
requirement on canal length

L NNz
R b(ﬁm) |f1

pﬂr-
For example, if parasitic impedance

|| == (1 Onm)
n lpar 30

and N/Nu=3 the requirement length is
LZ=R/3.

The main drawback of presented method is an additional RF
power expenditure, that does not depend upon specification of the
device (dielectric canal or other system that gives step-like wake
potential). The value of additional average power needed for com-
pensation the energy loss due to coherent radiation of M bunches
with N particles in each is

p— *re2o NMc (Ne)*MLc i3 (Ne)*Mc ’£
: .

=— v #
2nR nRa’ 4767 par

To get numerical data one can evaluate the additional power for
B-factory (one of possible projects, INP). If one proposes to use
M=2-150 bunches with N=6-10'"" particles in each and r.m.s.
bunch length ¢,=0.75 cm, and if the vacuum chamber will have
parasitic impedance |Z/n|,e,=0.3 Ohm, then additional RF power
would be of order P=1 MW. The required RF power seems to be
high enough, however it permits to avoid bunch lengthening and
approach to very high luminosity of the electron-positron factory.
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