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ABSTRACT

Some aspects of the nonlinear dynamics are discussed
for the simple ome-dimensional and two-dimensional
models. The main attention is paid to the stochasticity
threshold due to the overlapping of nonlinear resonan- é
ces. The peculiarities of a round beam are investigated
in view of using the round beams in storage rings 1o

get high luminosity. 1. INTRODUCTION

One of the interesting possibility to reach high luminosity in sto-
A talk given at the International Workshop on Beam Dynamics, Novosibirsk, rage rings is to use the round beams with equal B-functions at inte-
1989. ractions points. Such approach has been already discussed in litera-
' ture (see, e. g. [1—3]), nevertheless; up to now the beam-beam
dynamics for this specific case seems to be quite unclear. This may
be explained by the fact that almost all facilities in operation have
the beams which are essentially elliptical in their transverse section.
For this reason, the main attention has been paid to the beam-beam
dynamics which is related to the specific properties of elliptical
beams (see, e. g. [4—6]). Recently, some interest has appeared
again to the, study of beam-beam dynamics of round or nearly
round beams [7a, 7b]. It is related to real projects of the construc-
tion of such storage rings. Here we discuss some aspects of nonli-
near dynamics of particle-beam interaction for the simple models of
the round and flat beams. '

2. THE SIMPLEST ONE-DIMENSIONAL BEAM-BEAM MODELS

¢ The first comparison between round and flat beams has been
performed using simplest one-dimensional models of a beam-beam
interaction (see, e. g., [8—9]). In these models the motion equa-
| tions for a particle of a weak beam under the influence of a strong
© Hucruryr adeproii ¢ususu CO AH CCCP beam can be effectively written in the form of two-dimensional map-
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pings. Such a simplification is possible, provided the longitudinal
size of a strong beam is small enough. Then, the perturbation from
a strong beam can be regarded as an instantoneous kick, therefore,
the transverse momentum p and displacement x after one period of
perturbation are changing through the relation

Pipi=— % sin p+pn cos p+f(xa) cosp,

X1 = %aC0S P+ Bpa Sin pA-Bf (xa) Sin . (2.1)

Here u is the betatron tune advance between two successive kicks, B
is the value of B-function in the interaction point (the first deriva-
tive of B-function is assumed to vanish in this point, B=0,
£=p=dx/ds, where s is the longitudinal coordinate). The parame-
ter u is related to the betatron frequency v by the expression
w=2nv/mo with mo being the number of interaction points over the
ring. The mapping (2.1) consists of two parts, the free betatron
oscillation between two kicks and the kicked perturbation which is
given by the nonlinear force f(x).

In what follows we shall use the well known expression for the
strength parameter E:

i SealioBoi 2.9
S,r vaﬁicr,(ﬂ?—l—cr,}* { )

which is one of the most important parameters to characterize the
beam-beam interaction. Here N is the number of particles in the
bunch, ro is the classical radius of electron and y is the relativistic
factor. As it is known, the value E is approximately equal to the
shift of betatron frequency Av for one interaction point for the par-
ticle with a small betatron amplitude (far enough from an integer
resonance). Then, for the round beam (o.=0,=0) one can write
) 8no’t 1 —exp(—x*/207)

fi(x) = ; T (2.3)

correspondingly, for the flat beam (0,=o0; o, o00) we have

i) = 4nk S Ao P (2.4)
0
Fig. 1 shows the shapes of f(x) for the round and flat beams
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depending on the transverse displacement x. Here, the value of £ is .
fixed, therefore, the density in the origin (x=0) for the round beam
is twice larger as compared to the flat beam. In the following we
shall use dimensionless variables X=x/o and P=pB/o.

The main problem is to find the maximal value of & which is
restricted by nonlinear effects. The strongest effect comes from the
overlapping of the main betatron nonlinear resonances resulting in
the fast diffusion of a narticle of weak beam in the phase space of

y $(X)
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Fig. 1. Nonlinear kick-forces for the round (/) and the flat (//) beams versus dimen-
sionless displacement X=x/o (see expressions (2.3) and (2.4)).

transverse motion. Numerious simulations have shown (see e. g.
[9] and references therein) that the critical value &, for over-
lapping of main resonances is quite large (£, ~0.2-+0.3) in compa-
rison with the values achieved in real experiments
(Ecr~0.04 =-0.08). For example, in [8] the dependence E. on the
betatron frequency has been numerically investigated both for the
round and flat beams. The main result is presented in Fig. 2 where,
for comparison, the condition for the linear stability of the origin
x=p=0 is also shown. For the convenience, the fractional part of
u/n is plotted along the horizontal axis. It allows to use this result
for the facilities with any value of unperturbed betatron frequency.
The critical value &, has been determined in [8] from the condition
for the touching of separatrices of main resonances in the region of
|X] << 10. For &> &, the strong instability of motion arizes, leading
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Fig. 2. The stochasticity threshold E. versus tune shift advance p is plotted for the

model (2.1) in case of round (curve /) and flat (curve [//[) beams. For the conveni-

ence, fractional part of p/n is used. The curve | shows the linear stability bdrder of

the origin; the curve [V is &, for the round beam with the modulation (3.1);
A;=1.50 and v;=0.01.

to the fast diffusion along stochastic layers between the resonances.
According to the numerical simulation, about 5-6 resonances start
to overlap simultaneuosly with a creation the large region of strong
diffusion in the phase space oi system.

The most essential conclusions made in [8] are:

1. In the large range of u the critical value & is only slightly
dependent on p/m.

2. The obtained values of &, are much larger than the critical
values of & observed in real experiments.

3. When {p/n} <1 the critical value &, is much larger due to
the fact that in this region of variation p/m there exist only reso-
‘nances of large harmonics.

4. The critical values &, are slightly less for the round beam
compared to the flat beam. However, as it was pointed out, the
charge density of the round beam is twice larger than for the flat
beam for the same value of £ (see (2. 5)). It was also found that
the regions of nonlinear resonances in phase space are larger for
the flat beam. It is related to the fact that in the same range of X

6

the nonlinearity for the flat beam is less than for the round beam
(see Fig. 1). For this reason, when nonlinear resonances touch to
each other the regions with a strong diffusion for the flat beam are
larger than for the round beam. This result is well seen when

investigating the structure of phase space of the model (2.1) (see
Fig. 3).

Fig. 3. The structure of phase space for the round and flat beams for the same
charge density in the origin. The scales are |X|<C30 and |P|<15; {n/m} =~0.08;
a—round beam, £E/0.20; b—flat beam, &~0.40.

3. THE INFLUENCE OF MODULATIONS
ON THE STOCHASTICITY LIMIT

One of the important factors that can decrease &, is the modula-
tion of model parameters. This was known long ago, here we only
remind some results which are important for the further discussion.
The first investigations [8] with the model (2.1) have revealed that
the modulation of betatron motion by a synchrotron one may lead
to a significant decrease of the current. One example is given in
Fig. 2 (curve IV) where possible modulation of the beam-beam inte-
raction point is taken into account

x—>Us=x+4 A sin (2nvsn / my) (3.1) .
Here A is the amplitude and v, is the frequency of synchrotron

qscillatiuns. Such a modulation occurs when dispersion energy func-
tion W at the interaction points does not vanish. In this case the
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orbit of a particle with non-equilibrium energy shiits on the value
Ax=WR-AE/E [8] where R is the mean radius of a ring. For this
reason, synchrotron oscillations result in the time modulation of
nonlinear force of a strong beam. As a result, in the model (2.1)
the force (2.3) (or (2.4)) has to be changed in accordance with
3.1). :

( Iz“rum the data presented in Fig. 2 it is seen that in case of large
synchrontron oscillations, As~ac, the critical value &, drops signifi-
cantly up to E,=~0.02-=-0.04. This result obtained in a very simple
model of beam-beam interaction, indicates that the synchrotron
oscillations can play an important role in the restriction of lumino-
sity. Further investigations with the more realistic models have been
confirmed this conclusion (see, e. g. [10—12] and references
therein).

The more detailed study has been performed in [13] where diffe-
rent types of modulations are compared from the point of view of
their influence on the decrease of E.. Analytical approach consists
in the analysis of resonance structure of the Hamiltonian

H=1Ivo+V({J,¢,0) 87(6) : (3.2)

corresponding to the mapping (2.1) in the «action-phase» variables
(x="\2/B cos ¢; p="2//Bsin g, see [9]). Here vo is the unpertur-
bed betatron frequency, 8,(0) is the periodic delta funcion which
depends on the phase 0 introduced instead of the azimuthal coordi-
nate s; 8=2mns/L (L is the interaction period). The external pertur-
bation V(J, ¢, 8) is determined by the period T=2n/mo and by the
nonlinear force f(x). For the round beam V has the form

1.

Vo T8 = — 4—-;5_-:? 5 ‘"’*”"’;_”*‘ZJ dz (3.3)

0

and for the flat beam
|

Vil o)== ‘*Eg &2 -;.- S | —oxpl oty (3.4)

23;"2

0

" From the experimental point of view, the most important modu-

lations are: + | e
1. The modulation caused by the non-vanishing value of disper-

sion function ¥ in the interaction points (see (3.1));
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2. The modulation of betatron phase shift p between the interac-
tion points. Such modulation arises due to the dependence of a rota-
tional period on the particle energy (see, also, [13]):

Ap=p—po= CAPAL U caclig = (Ap)osin (vsQof +68) =
p, mo p

=B sin (Em"n —|—6), {5.5]

My

where p, and Q are the transverse momentum and the angular fre-
quency of particle revolution; a is the momentum compaction factor
and Ap,/p,=(Ap,/p))osin(vsQi+8). Analogous modulation
occurs when magnetic field in a storage ring has periodic pulsa-
tions. It should be also noted that the particular case of betatron
phase modulation appears, due to inaccurate azimuthal adjustment
of the ring component [13]. In the latter case Ap varies kick-likely
which is formally corresponds to vs=0 in (3.5).

3. The modulation of perturbation strength due to azimuthal

dependence of a p-function in the gap where the beam-beam interac-
tion occurs

E=E (l + ;—;)”2. (3.6)

Here Po is the minimum value of B-function at the interaction point
and [ is the azimuthal deviation. Since for the round beam
E,.~B.,/0”> and o~~/B it is seen that under the condition B,=p,
the dependence of longitudinal coordinate dissappears, thereiore, the
modulation (3.6) is absent. For the analysis of the influence of
modulation (3.6) the expression

*E:Eu{l—kﬁucosz (2—”15 +a)}w (3.7)

Mo

is commonly used where A= (So/Bo)> with So being the amplitude
of oscillations of a particle with the non-equilibrium energy.

It is known that the decrease of critical value & in the presence
of modulations is caused by the appearence of additional nonlinear
resonances, which are located around the main betatron resonances -
in the frequency space (so-called side-band resonances). As an
example, let us consider the resonance condition for the round beam
taking into account the modulation of type (3.1):

9




gyl SRR Sl b @)

Here n, m, p, g, k are integers; k£ and n determine the main (beta-
tron) resonance and p, g, m characterize the modulation resonan-
ces. In the absence of synchrotron oscillations, p=g=m=0, there-
fore, the distance between the neighboring main resonances n and

n+1 equals Av,=—""___ Note that if the modulation does not

2n(n+1)
occur but the constant beam shift takes place (v,=0; A,50) addi-

tional resonances between the main ones arize, too. The condition

p+g=+1 corresponds to the nearest resonance of this kind, and
the distance between this resonance and the main one, n, equals

Mo
v on@2n+1)
nances (for n>>1). When synchrotron oscillations are taken into
account, vs<1, A;5£0, the distance from the main resonance and
the nearest side-band resonance is

which is twice less than between the main reso-

(ﬂv}ﬂs% E @f‘.’g :
n

The amplitude of side-band resonances is known to decrease with
an increase of p, g, m (at A;< o). However, since the distance bet-
ween these side-band resonances is very small they can overlap at
the value of &, which is less than it is necessary for the overlap-
ping of the main resonances. In this case, the overlapping of
side-band resonances creates a slow diffusion. If many of such reso-
nances overlap simultaneously, it can lead to the diffusion between
the main resonances and, therefore, to the noticeable decrease of Eer-

To obtain some analytical estimates of the critical value &, one
need to know the dependence of nonlinear frequency shift Av(a) on
the transverse energy. For A;< o this quantity Av(a) is approxima-
tely the same as in the absence of modulations [13]:

Avi(a) = "’”f (1—e—*Ioa)} ; (3.9a)
Ava(a) — z—f (1 —eIa)} + ﬁ% S fj%[ L —e~lo(z)] (3.9b)
3 8 2R : 0
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for the round and the flat beam, correspondingly. Here a= (x,/2¢)?
is the dimensionless transverse energy of a particle and /y(a) is the
modified Bessel function. At a<1 we get the known linear shift
Av =~ moE, while for a>>1 the shift Av vanishes as

Avim MO8, £y 2ok (3.10)

e er

One interesting conclusion was made [13] from the above
expressions. It is seen that for the same energy (or displacement)

the order n of resonances for the round beam is larger than for the

flat beam. This allows to expect that modulations are more dange-
rous for the flat beam. This conclusion is in a good agreement with
numerical simulations performed in [8, 13].

Detailed analysis of the resonance structure of Hamiltonian
(3.2) for the modulations (3.1), (3.5) and (3.6) have shown
[9, 13] that the modulation of the betatron phase shiit (see (3.5))
seems to be the most dangerous in comparison with other types of
modulation. This conclusion is based on the fact that for the modu-
lation (3.5) the amplitudes of side-band resonances are of the same
order in some frequency range unlike the modulation (3.1) where
the amplitude of side-band harmonics decreases apart from the
main resonance. Nevertheless, in real situation the result depends
on the specific values of parameters. For example, for the case of
VEPP-2M the B-funcion at the interaction point was quite large and
numerical data indicate [13] that the tune shift modulation (3.9)
turns out to be less important compared to the modulation (3.1)
which is caused by the presence of W-function.

It was also found in [13] that the joint effect of a few modula-

tions is not a trivial one. In particular, the result of the influence of
two modulations (3.1) and (3.5) have been numerically investiga-

ted. According to [13] the modulation (3.1) with A;=0.46 and
vs=0.01 causes in the decrease of &, from 0.2 to 0.1, i. e. by a fae-
tor 2. To compare with, the modulation (3.5) with B=0.005 chan-
ges &cr from 0.28 to 0.19, i. e, approximately by a factor of 1.5. The
combined effect of these two modulations has found to decrease &,
to the value E;,=0.05, i. e. approximately by a factor of 6. Hence,
both these modulations decrease the stochasticity threshold &,, inde-
pendently unlike other cases where one of the most important
modulation essentially determines &, (see details in [13]). This

result is explained by the difference in the resonance structure of
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perturbation for these modulations. More precisely, each of
side-band resonances, caused by the modulation (3.5), turns out to
be splitted by the sets of additional side-band resonances in the pre-
sence of the modulation (3.1). This simplifies very much the over-
lapping of resonances.

In spite of the fact that above analysis is made for the simplest
one-dimensional model, these data may be used in real situations
when one of the transverse direction is the most important in the
restriction of the luminosity. Such situations are quite common in
case of elliptical beams with a large aspect ratio, x=0./0.>1,
where o, and o, are transverse sizes of a beam with a bi-Gaussian

2 2
) (Seeiie. g

X Z
204 T, 5 yT

[4—6]). In the case of nearly round beam, x=s1, the situation

seems to be more complicated.

distribution of charge density p=poexp (—

4. STOCHASTISITY THRESHOLD FOR THE ROUND
BEAM ON THE MAIN COUPLING RESONANCE

The critical value E; found in the previous section for one-di-
mensional models is expected to be overestimated because of not
taking into account additional resonances due to other transverse
coordinate. At least, this is true for the elliptical beam; as for the
round beam, it is easy to show that the motion remains one-dimen-
sional when operating on the main coupliig resonance vy=v; (with
the additional condition B.=8.). Nevertheless, this situation is not
realistic provided some deviations in the values of vy, v. or for other
reasons (see further). Here we discuss some results of the investi-
gation made in [1] to clear up the importance of the second degree
of freedom in case of round beam.

The model of particle-beam interaction has the following appro-
ximations:

1) the bunch is short (thin lens approximation);

2) the interaction points are spaced in one period of the magne-
tic system;

3) the damping is not taken into account as well as quantum
fluctuations, i. e. only fast effects are considered compared to the
damping time; '

~ 4) the linear coupling is taking into account corresponding to
the presence of skew quadrupoles.

12

We use here the dimensionless variables X=x/o¢ and
P,=p:B:/o, correspondingly, Z=2z/0; P.=p.p./o. Then the kick
perturbation is described by the mapping

X?":XI; P.rg:Pn"*_?‘x.r
ZE=Z|; PI,EZPZI—I—:"F'H, {4]]
where
Fi=—4nEXF(R); F.=—4akZF(R);
1 —exp(—R?/2) 2__ y2 | 72
F(R)= : s =X+ Z°. 3
(R) rIE R + (4.2)
: Nr”ﬁx 2 ‘
The parameter & is equal §, .= MHFU;. (see (2.2)), therefore, the

condition &:/pP.=E&./P- is assumed.

The transformation for the free betatron rotation between the
interaction points and the action of the skew quadrupole has the
form

Xa=Xscos py+ P, sinpy;  Zs=Zscos p:+ P, sinp.;
P, = —Xssin py+ Py, cos p;
Xa=AXs3;

qui Pf:g—i_M.ﬁ'szS;

P,= —Zssin p.+ P,,cos . ;
Li=1Z3;

qu.=p2'3+ Mﬁzx'i: {43}

where ., is the betatron phase advance between the interaction
points, p,,=2nv, ./mo, M is the strength of skew quadrupole pro-
viding the linear coupling between the transverse oscillations.

The linear stability condition in the presence of additional skew
quadrupole coupling can be shown to have the form [1]:

| bx+bz iﬂ(bx‘“bz}zJﬁ QE l "::4 ]
g2 = 1M*B . sin py sin -,

(4.4)

bx=2c0S px—4nE:sinpe; b= 2 cos w.— 4n&; sin p..

Near the main coupling resonance (pr=~p.~p) this relation
(4.4) can be written in the more simple form (for p,=p.=p and

§1ﬁ§z=§}

2 ctg —;—:r:v 4nEFMp> —2tg —;—; for sinp=0;

13




—21g %‘,} dnEFMP=> 2 cig %; for sinp<<0;

This expression shows (see Fig. 4)) that in case of M=40 the
linear stability border becomes stronger as compared to the one-di-
mensional case.

147

-{?-5 =1

Fig. 4. Linear stability border (4.5) for the round beam with linear coupling Mp=1
(dashed area). The dotted curves correspond to M=0; (E<0 corresponds to the
' beams of the same charge).

As it is"known, the study of four-dimensional mapping is much
more difficult in comparison with two-dimensional mappings of type
(2.1). The main problem is that the resonances in four-dimensional
phase space are not visible in a two-dimensional projection. There is
special approach (see, e. g. [14]) which consists of the construction
oi the so-called Poincare section but it is quite complicated. In [1]

another rough procedure has been used where the time dependence
of transverse energy

W=V X+ 2+ PiA P (4.6)

have been examined. In the case when the stochasticity threshold
does not exceed, this quantity shows restricted ocsillations. In the
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opposite case of stochastic diifusion the energy W is increasing in
time. This fact has been used in [13] to define the critical value &
as the lowest value of & for which the energy W is increased by
AW =2 compared to the initial energy. To reduce the fluctuations,
W was averaged over some time Af=1000 (in the number of kicks)
with the total time of the motion of a particle ¢»,=10" (this corres-
ponds to the damping time in VEPP-2M). Typical dependence of the
averaged W is presented in Fig. 5 for a few different initial condi-
tions of a particle.

First we consider the case when the coupling is only due to the
interaction of a particle with a strong beam (M=0). If B,=p.=8§,
therefore, E,=§&.=E&, then the only difference from the one-dimensio-
nal case is related to non-equal values vy, v;, which corresponds to
real situation in storage rings because of technical reasons. Assu-
ming that e=wv.,—v,<1 the energy exchange between transverse
degrees of freedom appears, which may lead to the decrease of &
because of the interaction of beam coupling resonance (v.=v.) with
one-dimensional resonances over x and z directions. The main dis-
tinction of the nonlinear coupling resonance (beam coupling reso-
nance, £=0; M=0) from the pure linear resonance §=0; M==0) is
a strong dependence of motion on initial conditions. In particular,
the degree of exchange between x and z depends on how the initial
energy is shared between two degrees of freedom at a given detun-
ing . For this reason, it is necesserily to consider the diiferent initi-
al conditions X, Zo, P,, P., to get clear conclusions.

The result of numerical investigation is presented in Fig. 6 whe-
re &, is plotted versus the detuning & when linear coupling is
absent, M=0. The curve I corresponds to the case Xo=2;
Zo~0.02«1; P,=P.=0, when the initial energy is mainly con-
centrated in one degree of freedom. The other case (curve 2) repre-
sents the initial conditions under which the initial energy is shared
equally between two degrees of freedom (Xox=Zo=1; P, =P.=0).

As it was noted, the decrease of &, at large detuning is caused by

the two-dimensional character of motion. However, if the detuning
is smaller than the size of nonlinear beam resonance, clearly seen
in Fig. 6, it is natural to expect that the stochasticity threshold is
mainly determined by one-dimensional resonance structure. The
dependence of &, on the detuning e (Fig. 6) can be qualitatively
explained by the peculiarities of coupling resonance. Indeed, as it is
seen from Fig. 6, for the initial conditions, corresponding to the
curve / the resonance dependence is sharply asymmetric with the
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Fig. 5. The dependence of transverse energy W on time for the parameters

(ne/m) =0.0785; {p./n}=0.0815; E.=0.18; E,=0.18. Initial conditions are X¢=1.42;

Zo=140 (curve [); - Xo=2.82; Z;=2.80 (curve 2); Xo=4.22; Z;=4.20 (curve 3);
Ao=0.62; Zy=>0.60 (curve 4) In all cases P, =P, =0.

i

i el e 5+40

-ng. 6. The dependence of &, on the detuning e=v.—v. for M=0;

(nz/m) =0.08+¢/2; {pe/n}=0.08—e/2. The initial conditions are 2.0<Xo<6.0;
Zy=0.02; P,=P,=0 (curve I); 1.4<<Xo<<4.2; Zo=Xo+0.02; P, =P,=0.

absence of energy exchange between x and 2z for v.>v. and
Xo>Zo. This may be understood by the fact that in this case the
shift of betatron frequency over x is much smaller than over z.
Hence, for v.> v, (the right-hand of curve /) the operating point
(v Av,, vi+ Av,) shifts away from the coupling resonance reman-
ing the motion to be almost one-dimensional one. The contrary is
the case v,<- v, when the operating point shifts to the coupling reso-
nance resulting in two-dimensional character of motion. In the case
when the initial energy is shared between x and z, the betatron fre-
quences shift along the coupling resonance and the resonance curve
2 appears to be symmetric. _

Another question is how the linear coupling affects the critical
value of E, when the unperturbed betatron frequences are equal,
v,=~v,=v. The result of numerical simulation is shown in Fig. 7
where M=£0. The curves ! and 2 correspond, as in Fig. 6, to the
different initial conditions. It should be noted that additional linear
resonances v:=+v.=#k with k50 also appear. However, the influ-
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ence of these resonances near the main coupling resonance v.=Wv,
can be neglected. To discuss this case with M=£0, it is convenient
to pass to the normal coordinates and frequencies: |

| | :
F = — = [ p—— =
I 2 (XepZ) & Yoms qu..2_()'{ VA Bl
AT : I':"'q";'n'tirt . 25 "j'vmin .
‘*’1—. Y-t W e e el (4.7)

with Av_,,=Mp/n. Under such transformation the potential V of the
~beam perturbation doés not change its form due to the symmetric
expressions for the round beam. Therefore, in the normal coordina-
tes the linear coupling disappears and this case appears to be simi-
lar to the previous one with some rescaling of the frequencies,
vi#vs. In other words, the case with a linear coupling (M=s£0) for
vy=v. can be reduced to the case without coupling but with diffe-
rent normal frequencies v, and we. This is why the quantity
MB/n=v;—vs is plotted over the horisontal axis in Fig. 7. Corres-
pondingly, the initial conditions should be rescaled, in accordance to
(4.7), to compare with the data of Fig. 6.

A Eicp

e = +.4f 3 -
-4540" - 640 - 6407 1540 °

MR

Fig. :72 The dependence of E. on linear coupling MB/n for {p, ,/n} =0.08. The initial
cnn_diﬁﬂns are 2.0<CXo<C6.0; Zg-={]._lﬂ2; P,=P,=0 (curve I}; l4<<Xo<<4.2;
Zo=Xo+40.02; P =P,=0 (curve 2).
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From the comparison Fig. 6 with Fig. 7 a good qualitative cor-
respondence is seen which supports the above analysis. It should be
noted that the chosen initial conditions are regarded as typical ones,
representing the extreme cases of the transverse energy sharing. As
a result, these data give some indications for the values ¢ and M to
expect that the motion is close to one-dimensional one with a relati-
vely high value of &,. -

5. CONCLUDING REMARKS

The data presented here show that detuning e and linear coup-
ling M needed for the stochasticity limit &, to be determined by
one-dimensional effects are not too small and can be achieved in
modern storage rings. The more detailed discussion of the perspecti-
veness of using a magnetic structure with equal betatron frequences
and B-functions at the interaction points is presented in [1, 2, 7].
Nevertheless, all these results should be regarded as preliminary
ones. The beam-beam dynamics for nearly round beams is studied
much less than for ellyptical beams with the large aspect ratio
%x>>1. One of the interesting question is about the diffusion along a
coupling resonance which is the most important for the round
beams. As it was shown in [15—16], modulation of the parameiers
of a model gives rise to the thick layers surrounding the main coup-
ling resonance. Though these layers are small compared to the size
of resonance itself and does not produce strong diffusion across the
resonance, it leads to the diffusion along the resonance which may
be dangerous in some situations. In any case, it is a serious prob-
lem for the proton machines where the life time is very large and
all the weak diffusion processes are to be taken into account in-
cluding the Arnold diffusion.
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