UHCTUTYT A0EPHOM ®U3UKHU O AH CCCp

N. Dikansky, D. Pestrikoy

NONLINEAR COHERENT BEAM-BEAM
OSCILLATIONS
IN THE RIGID BUNCH MODEL

PREPRINT 90-14

HOBOCUBUPCK =



Nonlinear Coherent Beam-Beam
Oscillations
In the Rigid Bunch Model

N. Dikansky, D. Pestrikov

Institute of Nuclear Physics
630090, Novosibirsk, USSR

ABSTRACT

Within the framework ol the rigid bunch model cohe-

rent oscillations of strong-strong colliding bunc‘hes are

described by equations which are specific for the

weak-strong beam case. In this paper some predictimlm

of the model for properties of nonlinear coherent oscil-

lations as well as for associated limitations of the
luminosity are discussed.
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I. INTRODUCTION

It is well known, that the luminosity of a collider can be limited
by the beam-beam interaction —the distortion of the particles’ mo-
tion due to fields of the counter-moving beam. In fact this phenome-
non is very complicated and many effects can be responsible for the
limitation of the luminosity in particular conditions. Therefore, some
simplifying assumptions should be used to get definite predictions
concerning the beam-beam interaction. One of the widely used
approaches, based on the so-called weak-strong beam approxima-
tion. Within the framework of this approach the motion of one par-
ticle from the weak beam is traced under perturbations due to given
fields of the counter-moving strong beam. The periodicity and
strong nonlinearity of such perturbations manifest the importance of
nonlinear resonances for the beam-beam instability in this case.

In spite of very important predictions the weak-strong model
obviously gives a limiting view on the problem. Once the interaction
perturbs the motion of particles in both colliding beams they evolve
in a seli-consistent way—the disturbance of the beam changes the
fields, which disturb the counter-moving beam. Such a self-consis-
tent behaviour of colliding beams becomes especially important in
the case of a strong-strong interaction and gives additional effects,
which must be described by the theory. One of the simplest and
most important problems is that of collective stability of colliding
beams [I—5]. It can be treated in the linear approximation on
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amplitudes of coherent oscillations and hence can be solved exactly.
The employment of various techniques predicts both suitable posi-
tions for the working point of the machine and thresholds of insta-
bilities.

Nevertheless both experimental results and multiparticle
tracking (see, for instance, Refs [6—8] definitely indicate the
importance of theoretical study of nonlinear coherent phenomena. In
fact, this is many-fold problem, which is directly related to the
behaviour of colliding beams on large times and therefore to limita-
tions of the ring luminosity. Since general description of nonlinear
coherent phenomena is out of analytical methods, in this paper we
shall consider the description of nonlinear coherent oscillations of
colliding beams within the framework of the so-called rigid bunch
model. This means that we shall interest in the behaviour of cohe-
rent oscillations, which are far away from the statistical equilibri-
um. Due to its simplicity the rigid bunch model is frequently used
to study coherent beam-beam effects. Recently it was done in
Rei. [9] for the calculation of nonlinear corrections to the beam-
beam coherent tune shift for the beam parameters diagnostic based
on the measurement of beam response spectra. The exitation of non-
linear beam-beam resonances can disturb results of such measure-
ments. Initial calculations concerning that limitations were done in
Ref. [10] and will be discussed in this paper in more details. Com-
puter simulations in Refs [7, 8] actually used the fields in the form
specific for this model.

2. GENERAL EQUATIONS

In the rigid bunch model coherent oscillations of a bunch are
described by the displacement of its distribution function f(r, p, t)
as a whole. If F is the total force acting on a particle and the evo-
lution of the distribution function is governed by the Vlasov’s equa-
tion:

LA X
.c‘ir—i_ﬂ&F—i—F&ﬁ = (1)
one can easily obtain the equations:
i P (T L R e ol
STy = Sdlr(vﬂr—]—}?aﬁ) (7Y,  dh=d%d°,

4

g g a 7
4 (py=—{drp (U—f—l—ﬁn—f_)-———{f‘), (2)
for the dipole moments of f(r, p, {):
(7y={ dTF7[(7. 7. 1)

(py=\dUFf(7.p.1), (3)

7 is the momentum of a particle.

Since (F) generally depends on the higher order momenta of
the distribution function "

aF A
Ia —
Ora - pidas 2 Or.drp

(Fy=F0)+ (rafp) + -

eqs (2) are not closed. For instance, we have (p,=ymuv., y is rela-
tivistic factor):

d ;2
o E y=2(2v:) ; i{zﬂg}={ﬂf)+ #{zlpz};

d : .
E<U§>=T—rn—<Uze>, (4}

and therefore

Lot— L () —2(2) 2 (2) =2((20:) = (2)(v:)).
%g;:g{(pg}_sz(m %f;m =2((p: Fz) — (p:) (F2)).

Nevertheless, if the distribution function has the form, specific for
the rigid bunch approximation

HE B0 = o F s CEES AT (D)) (5)

o and o, (as well as higher order spreads) will be conserved,
whereas higher order momenta of f(7, p, {) can be calculated via
(Z), (uU,) and those constant spreads. Therefore, the rigid bunch
model by means of eqs (2) describes coherent oscillations of the
bunch with constant sizes and shape. It is certainly clear that the
distribution (5) is quite unrealistic. Due to the nonlinearity of forces
disturbing the motion of particies, once centered around (z({=0))
and (p.(t=0) ), the distribution will dilute in phases of oscillations
with corresponding decay of (z), (p.) and enlargement of the
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bunch effective emittance. This means that the model will give an
adequate description of coherent oscillations only during the time
intervals, which are limited

At ] /Aw

by the frequency spread in the beam Aw (or, probably, by the rise
time of the instability).

I we shall describe the motion of a particle in the storage ring
in the smooth approximation, the force F,., can be written in the
form

Pty i OF,

where E=vymc® is the particle energy and o,.,=wev,, are the fre-
quencies of betatron oscillations. Hence, in the rigid bunch model
coherent betatron oscillations are described by the following (well
known) equations:

{E}—{—-ﬁﬂi(x}z?l—m{ﬁﬂ},
(2) +ol(z) = — (8F,). (6)
v

Let us now apply eqs (6) to the description of betatron coherent
oscillations of colliding beams. For the sake of simplicity we shall
assume that two relativistic (y>1) bunches with densities N,p'”
and N2p® move in the same ring and collide at one interaction
point [IP]. The force distorting the motion of particles from the
counter-moving beam is determined by the Lagrangian:

. A, S S (7)
ar ;
L1.2=m Ui oF . ), eea=—e’;
- 2nk
)= Y 8(1—=2), (8)
k;—m ﬂ}ﬂ

’ {lﬂf i, ]
Uyz =\ &5 exp 7)) o (R.1)

p? (&, t) =\ d’r | exp(—ikF ) p® (7L, 1). (9)
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Once the model describes the oscillations of the bunch by the distri-
bution function (5), instead of (9) one has .

. P (R) =exp (—ik (7 (1))) pt? (k) ,"
and therefore [9]:

(BFDy =§ drpld (7L — (FI")) =2 Lya =

25 2 : T T = 4
a0 gdk ol (B) 8" (— k) ikexp ik (¢rDy — (FPY)] =

c nk? =

__ Nee®6p(f) 0
c ab

dk T ph, ek i e
S —exp (ikb) py” (F) po ' (—F) ,

nk?

(10)

b= (r' )y — (7P m)y.

Using eq. (10) we can rewrite eqs (6) for, 'say, vertical betatron
coherent oscillations in the following form:

Noe®5.(1) 0

(3) + o2y = Ui.2(8). i
ymc - db.
(3 4oy = — HaChie 22 Ug 1 (B) , (13)
yme  ab, '
2 = e
Uro={ 25 exp @B of (—B) o (B). (14)

From eqs (12), (13), one can see that for beams moving in the
same ring the beam-beam interaction affects only the relative mo-
tion of colliding beams (n-mode). Such oscillations are described by
the impact parameter &, which satisfies the following equation:

Pibetor—t0E gonh %1 (5) . (15)
: yrc 0b.
where
UB) =2 [ NaUss + MUz | N=(Ny+N) /2. (16)

It is remarkable that eq. (15) describing the interaction of two
generally strong-strong colliding bunches has exactly the same form
as the equation of motion for single particle in the weak-strong
beam approximation (but with the special distribution of particles

I 1 b A 4 r : . 2
ol = 357 Vool (=) of? (B)+ Ni o (— ) ol B
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in the strong beam). Hence, all the results of the weak-strong
theory can be applied for the description of coherent oscillations of
strong-strong beams within the framework of the rigid bunch
model. In particular, if p“'z‘ are Gaussian distributions

(1) ¢~ kial  kIg?
(T 3 H—- (_ be. u.)j
Po " (R) p 5 3

(2) kgl k2l
= —pX el e T 2:) ;
pg (k) F'( . =

p,ﬁff is also Gaussian [9]

B2 93 | >
2 ;s 2 )

oF 2 2 o 2 2
Lﬁ:_ﬁ]x T+ 02, 2*§=‘jlz +ag,
and the results for the strong-strong case can be obtained from

weak-strong calculations using simple scale transformation.
Let us note also that eq. (15) is generated by the Hamiltonian:

A 2 -
2Be S8 U (17)

(
yme

H=~é~]5§—i—m§b§]—

The unperturbed coherent oscillations are described by the following
formulae

b.=(2/ ) cos ¢, I:’va =db/d0= —v, (2/B)*siny:
Yl=v;, O=uwol, P=Rajve, (18)
which generate the canonical transformation from variables (4, )

to action-phase variables (/, ¢). In these variables the Hamiltonian
takes the form:

2Nry

H{J,¢)=v, ] — 87(8) U (b), (19)

where ro=e*/mc* and 2aR, is the perimeter of the orbit.

3. COHERENT OSCILLATIONS WITH SMALL AMPLITUDES

First, let us consider the case, when colliding beams have small
vertical coherent oscillations. We shall assume that the densities in

8

both beams are Gaussian:

e . @ a2 :
o (R exp [— = = eh i (20)

2no; o, o o b

The Hamiltonian (19) takes the form:

H{'rrr w) =Y, .{-‘— Eﬁ.rﬂ GT“]) U{b} ;
ids :52 ;
U(b,) = PR T 9 .
: §\/(;+cr3}(s+crfj P( 4|.~;+g_%;) (21)

For small oscillations |b,| <6, factor U can be ex;ﬁanded into the

series over the powers of b,. In the lowest order approximation
one has 3 :

747 B - NSO
2 o:(0¢40;)

The substitution of this expression into (21) yields

o0

H{, ¥) =vid +8J (14 cos2¢) ¥ exp(—inb), (22)
where s
35 Nr"n f.'f_'
5 200, (0x 4 0.) ()

is the beam-beam parameter for vertical coherent oscillations. Here
it coincides with that for individual partieles [9]. The twice large
value for &, can be obtained after linearization of motion equations
lor individual particles over 7®— (7®) and subsequent averaging
of these equations. The same result can be also obtained by the
direct solution of linearized Vlasov's equations [3, 5, 6]. This
discrepancy is caused by the contribution (22) from the nonlinear
part of the force acting on a particle at the (IP) [10].

From (22) one can deduce that coherent oscillations of colliding
beams have nontrivial behaviour provided the tune v. is a close to
the resonant value v,=n/2 (n=1, 2, ...). In the resonant case the
usage of the first approximation of the averaging method [L1] gives
new Hamiltonian, which in slow variables / and ¢=vy—n/2 has the
form



H(J, @) =AJ+ It (14cos2¢),” A=v—n/2. (24)

The main features of the motion described by this Hamiltonian
are very simple. Due to the conservation of H, along the phase
trajectory J changes from the line (see Fig. 1)

Hy=H(cos2p=1)=(A+2E.) J (25)

to the line
H_=H(cos2pg=—1)=A-/ (26)

and back. As can be seen from Fig. l,a,b,c this motion will be
unstable provided

A0, — 1A==28, (27)

which corresponds to open Hamiltonians H_, (see Fig. 1,¢). This
stability condition certainly argees with that obtained by direct solu-
tion of linearized eq. (15). Since in this approach the beam-beam
parameters for coherent oscillations and for the motion ol individual
particles coincide, the motion of individual particles becomes unstab-
le exactly inside the stopbands (27). This fact obviously breaks the
initial assumption, that the beam distributions are unaltered, at
least, during the rise time of the instability. The contradiction is
caused by the mentioned contribution into (22) from nonlinearities
of the beam-beam forces. Hence more consistent calculations within
the framework of the rigid bunch model should take into account
nonlinear dependence of Hamiltonian (22) on b..

For small coherent oscillations the first nonlinear correction to
(22) is determined by

5U_i{:_;__ H_"_rt?& (28)

oy

48 o3 (o,t0,) g+ a-

the cubic nonlinearity of the beam-beam force. It is well known that
generally such a nonlinearity: stabilizes resonances up to the 4th
order. For resonances v.,~n/2, (28) modifies the Hamiltonian® (22)
in the following way:

H:ﬂa+§u+m52¢}1—§;—"ﬁ, 62 =288, (29)
E:

It is clear from (29), that nonlinear part closes Hamiltonians H _,

which causes the stabilization of oscillations. Nevertheless, due to
very weak dependence of H on J? it is clear also that the model

10

Fig. 1. Hamiltonians H _ [or resonances v==n/2:
A0 (a); A<<—ZE (b); —2E<A<0 (c).
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can give predictions consistent with the small amplitude approxima-
tion /< e. only in special conditions. Introducing new variables

A de. 4

i e sl by o(30)
28, g

= Taple o VBt uapir

® wl

one can easy find from (29) equations for phase trajectories:

u=gq—sin® g V(g —sin’g)’— g% . (31)
These values will occur in the region of small amplitudes provided
g&l, h>»—I1 (32)

(slightly above the lower border of the stopband (27)), or
g—1<€l, hg(g—1)? (33)

(slightly above the higher border of the stopband and small initial

amplitudes).
Let us consider first the motion of beams, which are tuned in-

side the stopband (27). From eq. (31) one can see, that specific

0.4

-
)

Fig.2. One quarter of phase trajectories corresponding to eq. (31):

! —oscillation captured into the buchet, g=0.1, h=0.1; 2—oscillations with infinite motion in
phase ¢, g=0.1, h=—1.

features of such coherent oscillations strongly depend on the sign of
h. Namely, if h<C0, oscillations of J are accompanied by the infinite

increase of the slow phase ¢ (see Fig. 2).
In contrast to that, if A= 0 the phase ¢ makes finite oscillations

12

|a[p5garcsin{-\/(1_ l;;'){l-_..xfﬁ} (34)

within one of two buckets, which have centers at
Us=q=1—-"—  g,=0,n (35)
and sizes
bu=2u;; Agp=arcsin+/g. (36)

Periods of phase oscillations

I

AQ = S &
2 N H—H) (H—H_)

, Hy(lL)=H, (37)

"generally depend on their amplitudes (H):
2 l—-ﬁ | /4
- K{ ) } b s

1
EV20 Vi1 —n \/ L +1—h
. 2

where K(k) is the complete elliptic integral of the first kind [12].
Using Q=2n/A6 one can easily find from (38), for the frequency
of small phase oscillations:

Q=28\/2¢g : (38)

and for the frequency near the bucket (hl):

AE =

It

Q~E ;
= In(16/h)

(40)

Since for small coherent oscillations the irequency spreads in col-
liding beams are of the order of &, the calculations presented here
will give reliable predictions only for the very beginning of the pro-
cess (A®<1/E;). For such time intervals and for particles starting
ffmm H the expansion of Hamiltonian (29) near J=J_ and ¢=0
in tl;e lowest order approximation yields the suppression of incre-
ments:

2k 64e, t41)

due to the nonlinearity of the beam-beam interaction. Such 2 satura-
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tion of increments by the finite values of amplitudes is specific for
coherent oscillations with weak turbulence (see, for instance, in
[13]).

Except for the stabilization of resonances v,=n/2, the cubic
nonlinearity of the beam-beam force also generates resonances
v,=n/4. We shall not discuss this case in detail. Let us note only
that it gives no unstable solutions and that the model predicts for
such resonances coherent oscillations with small amplitudes (J<e;)
provided |A+E:| <E..

4. LARGE AMPLITUDES

To simplify the calculations for coherent oscillations with large
amplitudes (/=¢) we shall use the model, which assumes the spe-
cial distributions in both beams

(x, 2) mE LI exp ( — f—’-—) : (42)

-\/ﬁ G 2¢*

and that only horizontal coherent oscillations are excited in beams
(b,=0). Under these assumptions coherent oscillations of colliding
beams near a resonance v.=n/m are descrlbed by the following
Hamiltonian:

’ (1 2)

) i f2
Amd 448U, (E) 1) ""*8ke U ( %) cosmyp, m=2[
H™ ] gy = (43)
| ﬁn;f—}—‘l-tiﬁbrn(;—a), m=2{+1
Here Am=v—na/m; og=v— (n/m)0;
-+ NIs
%R 2avyce i
is the beam-beam parameter for horizontal oscillations;
e l—e! i = —x}l"
Uu(xj—gdf £ —Inx+C—Ei(—x) Z (45)

0 k=0
Fi(x) is the exponential-integral function [12], C~0.577 is the
I 4

Fig. 3. Hamiltonians H _ for resonances v=n/2:

AfE=—0.1.(1);

AJE=—05 (2); 8/E=—15 (3).
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Fig. 4. One quarter of phase trajectories corresponding to the Hamiltonian (48):
A/E= —05:
h=1 (1): h=0 (2); h=—0.1 (), h=—1 (4).

Euler constant:
™2 Tim /2
Un () = =2 Fm/2; m+41; —x) (46)

Fl{::zT B, x) is the confluent hypergeometric function [12]. For some
particular values of m, the Hamiltonian (43) can be simplified. Say,
for m=2 (vz~n/2), using new variables

/ : hqm]: H™)

K=
4e 4te i
one can rewrite (43) in the form
@ A ; |l —e™*
_h _?,E+ngx}+2(l— . )cns?q:. (48)

G'eneral pmper.ties of the motion described by this Hamiltonian (see
Fig. 3) were discussed in the previous section except only that now
the amplitudes of coherent oscillations can be large (/=¢). Since
an® | —e*

dx BE I

Av=

e

(49)

W has the bucket (h=0) provided the working point is tuned
inside the stopband (27) (—2E<<A<0). As it was found in the
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previous section, in the close vicinity of the lower side of the stop-
band both the center and size of this bucket can be in the region of
small amplitudes. On the contrary, tuning the working point
towards the upper side of the stopband these parameters increase
and can reach very high values (see Fig. 4):
~ 5 . dx ~ s In £ =

Xs . ;
|Al | Al Al

§> 1Al (50)

The frequency of small phase oscillations for this bucket can be
estimated by

2 2
0= 2(‘”) (‘”‘) ~8 |A|Z. 51
% n‘?xﬂ g t]'(i]? 5 1 | {D}

These results indicate that the stabilization of the resonance v=n/2
by the nonlinearity of the beam-beam force in fact is very weak.
Even starting from small amplitudes (|h] < 1) coherent oscillations
in a time AB~1/§ will enter the region /= ¢ and spend there signi-
ficant time. From Fig. 5 one can see that situation is better (but
not very much) for beams tuned slightly above the resonance
(A =0), :

Let us discuss now in more detail the motion near higher order
resonances (v~n/m, m=4,..,2l). Since at small amplitudes
Un~x"? Hamiltonians A" will approximately follow the bone

curve (see Fig. 6) hn(x)=%x+ﬂﬂ(x} unless /= 4e&. This means,

that near such resonances coherent oscillations can reach the region
of large amplitudes only due to strong initial excitation. Hamiltoni-
an (43) yields the coherent tune shift in the form

2

= 4 m}
(fby (22 2 v avi),
Fels) : 2n  dg

= -

(52)

Av( =g =2
X

Once Av(x) is positive the true resonant condition {dp/d6) =0 can
be valid only in the region

—E<An<<0, (93)
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{ 2
Fig. 5. The same for A/E=0.1:
h=0.1 (1): h=05 (2); h=1 (3).
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when the equation
Av(x) = — An (54)

determines the amplitude of synchronous oscillations x,. Provided
£>> |Anl, it occurs in the region of large amplitudes, where

fﬁ.v(xs}:i-——l,ﬂmh i :

Xg E | Aml
_DP(m/?) g
w2 O (14001 /5)] = (55)

and therefore (43) can be rewritten in the form (m=2I)

=
=

i
™~ ’—ﬁ— x+Inx— L_—;J—% cos 2{p. (56)
_Typical behaviour of Hamiltonians h'" is shown in Fig. 6. It indi-
cates the existence of buckets, which are centered around x; and
corresponding values g, il
4

=
AM=h =In =2 e —,
F A i)

As can be seen from Fig. 6 the sizes of these buckets in x are large
enough. This means that the excitation of coherent oscillation with
even modest amplitudes (say, 2-+3c) can transport particles into
the region of large amplitudes.

The frequency interval, which is occupied by the bucket, is deter-
mined by the frequency of small phase oscillations

{-2 i — '2 | -""\rr.' | j-.,-'lla [5?]
via :
Ly i
Sy Zm _ 218 (58)
m 4/ m

and generally cannot be wide in the region 2> [Anl.

Let us now briefly discuss the action of damping -on the develop-
ment of coherent oscillations. Such a damping can be caused, for
instance, either by cooling or by frequency spreads in the beams.
For cooled beams coherent oscillations in n-mode are described by
the following equations:
ght" e A n

¢'&=E B (59)

X'=—)x—E
dx PH

dg :
19
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: . Al Vie
of f e | \ oo
Fig. 6. Hamiltonians H_ for resonances vn/6:
A/E=—0.1 (1); A/5=—025 (2): §/2=—05 (3); v~n/8, AJi= —0.] (4).
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where A is the cooling decrement divided by the revolution fre-
quency s Since in the region x> 1, ﬂh“‘"}/&q:nwi and typically
§> A, the cooling will not destroy buckets outside the beam. Under
these conditions the direction of relaxation can be found in the fol-
lowing way [14]. Using

(m} ()
B o
do dx

one can get that in a perim:l of phase oscillations ©

&
AR™M= — 3| 86x
0

ght™
ax D

M do x(g). (60)

For working points above resonances (A,>>0) the function
dh"™ /3x> 0 along the phase trajectory. Therefore, here AA™ <0 and
cooling will damp cohierent oscillations towards the origin
(A™), x—0). __ :

For working points placed below resonances (A,<<0) the sigh
of AR will be different in"different regions, which are marked in
Fig. 6. In the region I and III for the same reasons we obviously
have respectively Ah'"™ <20 and AA‘™= 0. Hence coherént oscillations
from region I will be damped towards the origin and from region
[II —towards- the bucket. The direction of relaxation inside the
bucket (region II, see Fig. 6) depends on the ratio between A and
Qn. I A>Q, the cooling destroys the bucket and damps oscilla-
tions towards the origin. On the contrary, if the cooling is not so
strong:

AL Cn=2|Amlm (61)

the oscillations will be damped towards the bottom of the bucket
(x—-x;). :

Within the framework of the rigid bunch model the influence of
frequency spreads in the beams cannot be calculated in any
straightiorward way. Nevertheless, for rough estimation one may
assume that it can be described by the replacement in eqs. (59) A
by the frequency spread 6v. In the region of large amplitudes

Avine ~ 25€
j 5
e e o E AL
T el s R e R
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Oy < 5 8m

this will give weak damping from the region III (see Fig. 6)
towards x;, if An<<0 . |

”

5. DISCUSSION

Let us summarize some results of the paper. The calculations
presented indicate that within the framework of the rigid bunch
model coherent oscillations of strong-strong colliding bunches can
be described using results of weak-strong theory, or multiparticle
tracking with simple scale transformation. This can be done for
both linear and nonlinear coherent oscillations. Nonlinear coherent
oscillations of a couple of colliding beams can be captured into one
of the buckets but if the number of bunches is more than 2 another

buckets corresponding to the symmetry of the resonance can be also
occupied. In the last case dipole oscillations can excite multipole
and generally unstable coherent oscillations.

The rigid bunch model itself is adequate to the behaviour of real
beams only in special conditions. Even provided the irequency
spreads in beams are small enough, coherent oscillations can bring
very strong modulations into single particle motion, disturbing the
distributions of particles in beams [l4], which breaks initial
assumptions of the model. Practically this means that the model can
work only for limited time intervals.

The excitation of coherent oscillations decreases the luminosity of
the collider. For separated round Gaussian beams the luminosity is

2 2
L= Foexp ( T bx+2bz) ;
2a

Nf?
dng

Fo=Ja

” (62)

Its value, averaged over periods of oscillations can be estimated by

F=Fal.G. .
i J
Go= e A o g =x, 2z, 3
exp-( '8&:) 3 (8&) i (83)
22

)

(4

fo(x) is the modilied Bessel function [12]. Without damping of
coherent oscillations suppressing factors G, in eq. (63) depend on
initial amplitudes of coherent oscillations only.

This situation changes if oscillations are damped by any mecha-
nism (say, cooling, frequency spreads, etc.). If beams are tuned
above resonances, the oscillations can decay due to damping and
after this the luminosity will reach <,.

For beams tuned below resonances the results depend on the
resonance, the strength of the kick and the ratio between damping
time and the period of phase oscillations. If damping is faster than
phase oscillations in the bucket, coherent oscillations will decay and
the luminosity will tend to 2. On the contrary, if damping is slow
this will take place only for small initial kicks unless the beams are
tuned below v=n/2. Outside this region, as it was mentioned in the
previous section, coherent oscillations will relax towards J,. If
> |Aml and therefore J;/4e ~E/|Anl, this yields:

ex s i Xs m#
= ”(2)_1ML

and so, for flat beams &, >E,:

Aul (64)

nE,

f—*fﬁ

whereas for round beams and two-dimensional oscillations:

7, o
nE :

-y (65)

Note that, if such regimes are realized, the saturation of the lumino-
sity will not be accompanied by the increase of beam sizes. From
this point of view the resonance v~n/2 remains the most dan-
gerous.
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