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ABSTRACT

The contribution of the vacuum polarization to the
quadrupole moment of a heavy nucleus is considered.
The leading term is obtained exactly in Za, using the
electron Green function in the Coulomb field. This
term contains the large logarithm of the ratio X/R,
where R is the nucleus radius. The spatial distri-
butions of the induced charge and potential are- dis-
cussed also. :
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The vacuum polarization gives rise to measurable shifts of
energy levels in atoms. Until recently only the spherically-symmet-
ric part of the induced vacuum charge distribution was taken into
account in the analysis of such shifts. A lot of papers is devoted to
the study of this phenomenon (see, e. g., the review [1] and litera-
ture cited therein). In particular, the modification of the Coulomb
potential due to the vacuum polarization was considered for a nuc-
leus with the charge Zl|e| (e is the charge of the electron,
a—e>=1/137 is the fine structure constant; we set h=c=1). In
the pioneer work [2] the Laplace transform of the product p(r)r?,
where p(r) is the vacuum charge density, was found exactly in Za.
In the work [3] the density p(r) itself was determined. The p(r)
behavior at small distances was studied in Ref. [4] by operator
methods. The numerical calculations of some particular contribu-
tions to the vacuum polarization were undertaken also (see [1]).
The induced charge potential was used for the calculation of the
shifts of energy levels (see, e. g., [56]).

At the same time, heavy nuclei exist owning large multipole
moments. The field of these nuclei may induce corresponding
moments in the vacuum. Contrary to the full induced charge, which
is zero due to electro-neutralness of the vacuum, higher multipole
induced moments can be (and, in fact, are) nonzero. Moreover, the
leading contribution to an induced multipole moment in the limit
R/%—0 is proportional to the large logarithm In(%/R) of the ratio
of the electron Compton wavelength % to the nucleus radius R. We
shall discuss the last statement further.
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In the previous paper [6] we have calculated the logarithmic
contribution to the induced magnetic moment of a nucleus exactly in
Za. This contribution grows considerably with Za. When Za=+/3/2,
the induced magnetic moment formally turns out to be infinite. As
will be discussed further, this infinity transforms into one more
logarithm In(X/R) when the finiteness of R is taken into account
more accurately. The present paper is devoted to the analogous
calculation for the electric quadrupole moment.

The quadrupole part of a nucleus electrostatic potential is of the
form:

0=Qi 5, )
where Qy; is the tensor of the nucleus quadrupolé moment, A=r/r.

The corresponding electric field induces the charge distribution in
the vacuum of electrons:
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where G(7, 7
as follows: .

|¢) is the electron Green function, which we present
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. where y, are the Dirac matrices. According to the Feynman rules,
the contour of integration over the energy ¢ in (2) goes from — oo
to 4 oo below the real axis in the left half-plane of the variable ¢
and above the axis in the right one. The quadrupnle moment due to
the vacuum charge dlstrlbutmn 2

Q,-,-:Edrp f'} r 3:’1;’ ﬂj—'ﬁ,«‘f) ‘ : [4}

Evidently, this tensor is proportional to Q;: Qi;=¢Q;. Expanding
the Green function G with respect to ¢ and taking the linear term we
get from (2) and (4) the following expression for the coefficient g:

g= ;]I: gdﬂ.gdfﬁ?’ (r")2Pa(x) Tr oG (7, 77 1) yo Ge(F’, 7 | &) , (9)

where G, is the electron Green function in the Cnﬁlnmb fieid,.
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x=nn’', and Ps(x)=(3x>—1)/2 is the Legendre polynomial. As
will-be shown below, the first term of the expansion of the renorma-
lized quantity ¢ with respect to Za is proportional to (Za)?. There-
fore we have to subtract from the integrand for g in (5) the value
of this integrand at Z=0. In the following such a subtraction is
implicitly assumed and we take it into account in the explicit form
in the final result. After this subtraction we, nevertheless, have to
regularize the integral in (5) since it diverges lngarlthmmally at
small distances. We perform regularization introducing the ultravio-
let cut-off equal to the nucleus radius R. All further calculations
are carried out with the logarithmic accuracy. Therefore one can set
the electron mass m in (5) to be equal to zero, cutting off the large
distance radial integration at &. Makmg in such a way we obtain
the coefficient at the logarithm exactly in Ze.

Using the analytic properties of the Green function we deform
the contour of integration over ¢ in (5) so that it coincides finally
with the imaginary axis. Using the formula (19) of Ref. [7] we
obtain the following expression for the Green function at m=0 and
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Here fgiy} is the modified Bessel function of the first kind, n—r/r
r'/r, y=2|E|~rr’/sh (s), x=R 7,

AW = (P +P1 (), BE) = -(Pi(v) —Pi_y (),

P, are the Legendre polynomials, vz\/IE—(Zm)ﬂ . Proceeding from
the integration over r to that over r|E|, one can easily perform the
integration over £ which gives the logarithm mentioned above. It is
convenient to represent (5) in the following form:
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Taklng trace over y—matrices and mtegratmg over directions 7
and n’, we obtain:

=
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We used in (8) the symmetry with 'respect to the permutation <>/’
So, here we have «nondiagonal» transitions of two types: with
['=I[+1 and I'=1[+2 , together with «diagonal» ones (/'=/).

After integration by parts in terms, proportional to ic-Za, we
introduce the variables T=s-+}s’, y=2\/rr’/sh(s), y= Q\f; /sh(s’)
and u=-yr /r The integral takes the form:

f=12 Eeydy iﬂy’ dy’ ?d? S u'du cos(2ZaT) X
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The further way ol integration is similar to that in Ref. [6].

Finally we represent [ in the form

dx
g
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F(a, b; c; x) is the hypergeometric function.

Thus we obtain the value of the induced quadrupole moment in
the field of a nucleus. The Figure shows the dependence of the ratio
f(Za) /(Za)* on Za. The contributions of the transitions with Al=0
and Al=2 to this ratio compensate each other to the considerable
degree. Their sum constitutes less than 3 per cent and slowly varies
with respect to Za«. At the same time, as one can see irom the Figu-
re, the ratio under discussion increases rapidly in the vicinity of the
point Za=-/15/4. The origin of such behavior is connected with the
presence of the pole in the expressmn (11) for f at v+v'=2, which
corresponds to (=1, I'=2, Za=-/15/4. This pole arises due to the
singularity in the matrlx element of the interaction with. the quadru-
pole potential calculated with the Dirac wavefunctions in the Cou-
lomb field. Indeed, these wavefunctions behave as r'"', where

vz'\/fi-—-(Zc:c)Q, at small distances, and the matrix element of inte-
raction with the potential is proportional to (v+4v'—2)~'.'Of cour-
se, in the vicinity of the point Za=+/15/4 the finite size of a nucle-
us should be taken into account more accurately. One can verily
that the formula (11) is valid at (v+v'—2)> 1/In(X/R) and that
just at the point Zo=-/15/4 the divergent integral {dx/x should be

]

exchanged by (1/2)In(%X/R). Thus the net result at the point
Zo.=-/15/4 contains the contribution proportional to In*(%/R).
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As we can see, the appearance of the logarithm In(%/R) in the
- results for induced multipole moments is the quite common fact. It
can be easily understood on the dimensional grounds. Really, we

calculate the dimensionless quantity (g in the present work, g in .

Ref. [6]) as some integral, whose integrand is the homogeneous
functon of integration parameters (remind, that we work in the
limit m=0). This integrand is the product of massless propagators
and potentials, which are the homogeneous functions of their argu-
ments. A dimensionless integral from a homogeneous function of

4 5(;1,)/(“),,

z |
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The dependence of f(Za)/(Za)? on Za.

dimensionful arguments has to be logarithmically divergent. As was
discussed earlier, this divergence is cutting off at R in the ultravio- .

let region and at % in the inirared one.

- Now we can easily answer the question about the dependence of
the potential, induced by the vacuum charge and currents, on r
(just this function enters the calculations of energy shifts in
atoms). On the same dimensional grounds, the induced charge den-
sity is at R<r <« X:

o a Qi inj
p{r}: 48312 ffo_‘L) T:

(12)
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where j(Za) is defined in (7). Just this charge density gives rise to

‘the induced quadrupole moment ¢Q;;, with ¢ from (7), being integ-

rated according to (3) in the range R< r< . When r>%, the indu-
ced density is : :

o(7) = 22Za) 51 Qurmy, e AT)

15m* £
L

The simplest way to obtain this asymptotics is to use the

- Euler —Heisenberg lagrangian for the electromagnetic field (see,

e. g., [8, sect.129]). The corresponding potential calculated with
the logarithmic accuracy has the form:

when R<r<ik, (14)

(F) = % 7y Qutiny | L)
{F{F} 30 H‘ZR) 9,3 i (R
and
oF) = = f(Za) m—Q"fE’ig”f In (%) when r>7%. (2)
By I

Let us discuss now the lowest-order contribution to the induced
potentials. Using the standard relation between the bare charge dis-
tribution and the induced one in the lowest order [8, sect. 114], it
can be easily shown that in the momentum representation the indu-
ced magnetic dipole potential due to the bare nucleus magnetic

moment W is:

T i P(—ER? 4nm
AR)= —iiXFk {{—E?}}fﬁ

(16)

and the induced electric quadrupole potential is

P(—k?) ‘4n
(—k%  R?

§E) = — — Qi (17)

where 2 (k?) is the lowest-order polarization operator. Hence, in the
spatial representation we have correspondingly

Aip sy 2. L (18)
| Zel

and
D(r)
Zle]

¢{7}=1?fo Vi V; - (19)

Here @ (r) is the Uehling potential [9]. At small distances r<x
0




this potential behaves like (2a/3m)In(%/r) times the Coulomb poten-
tial of a nucleus, and like (a/4+/m) exp(—2mr)/(mr)®* times the

Coulomb potential, at large distances. Thus, at r>7% the lowest-or-

der contribution to the induced potentials decays exponentially and
hence does not operate in the calculations of the induced moments.
At the same time, the potentials (18) and (19) have considerable
values at small distances.

Discuss now briefly the possibilities of the experimental observa-
tion of the effect. The r dependence of the induced potential found
by us enables one to calculate the shifts of energy levels in atoms

with the logarithmic accuracy. In heavy mu-mesoatoms these shifts
are nontrivial functions of quantum numbers for the states with

the size of the muonic cloud less than X. Measuring the hyperfine
intervals for different levels, and taking the ratio of these intervals,
one can exclude the value of the bare quadrupole moment Q;;, which
cannot be derived with enough accuracy from the present theory.
The value of this ratio, extracted from the experimental data, can be
compared with our results.
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