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ABSTRACT

The continuous time limit of the tetrad-connection for-

mulation of Regge calculus is found. The shift and

lapse functions take on their values loosely. In the

continuous space limit the action obtained is reduced
to the continuous general relafivity action.

© Hucruryr adeprot ¢usuku CO AH CCCP

This paper continues the preceding author’s work [1] which
develops the approach to the Regge calculus based on the discrete
moving frame formalism by Bander [2]. It is shown in [1] that
using the discrete analogs of the tetrad and connection introduced
in [2] the action can be formulated in terms of independent vari-
ables of this type. Excluding connections via the equations of motion
leads to the Regge action as function of link lengths only. (The
problem of uniqueness of the solution of these equations was consi-
dered in [1] and will not be addressed here.)

Now we construct the 3+ 1 continuous time Regge calculus in
the tetrad representation [l]. The continuous time formalism was
studied in a number of works [3—10], see also [11]. We follow
the idea of [4, 9]: this formalism should be the limit of the 4-di-
mensional Regge calculus when the distance between the spacelike
leaves e tends to zero. The difference between these works and the
present one is both the formal (using the new variables simplifying
the action) and the essential one—analogs of the shift and lapse
functions are freely chosen. This is achieved by assuming the angle
defects on the spacelike bones being nonzero at e—>0. This does not
contradict to finiteness of the action [9] since the closely located at
e—0 such defects cancel each other. (This possibility naturally

_arises in the tetrad-connection variables.)

Regge spacetime we consider is that of simplest periodic struc-
ture [12]. Apart from the degrees of freedom which turn to the tet-
rad in the continuous spacetime limit there are extra degrees of fre-
edom (some defects) inessential in this limit but making the analy-
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sis quite difficult. Freezing them we get the simplest Regge minisu-
perspace system [13] being able to approximate any continuous
spacetime. To simplify geometrical interpretation we assume the
metric being positively defined although the results can be easily
modified for the pseudo-Riemannian manifold. Passing to the conti-
nuous time limit means that the orders in & are ascribed to the set”
of quantities in a consistent way. For example, we can imagine a
sequence of Regge manifolds with an arbitrarily small e inscribed
in a fixed smooth 4-surface in an Euclidean space of suificiently
high dimension [14]. From now on the terms «timelike» and «space-
like» will be referred to the further specified k-simplices (links at
k=1) of measure (lerigth at k=1) O(e) and O (1), respectively.

Let us give notations concerning the Regge manifold [12] and
the formalism [2, 1]. Topologically, the Regge manifold periodic
cell is a 4-cube divided into 24 4-simplices sharing the hyperbody
diagonal. Let the indices u, v, A,...=1, 2, 3, 4 label the cube edges
emerging [rom a vertex O, the edge 4 being the timelike one. The
T., To'=T, are operators of the translations to the neighbouring
vertices in, the direction p. The 1-simplices o, (links) will be label-
led by multiindices M, N, P, ..., the unordered sequences of (diffe-
‘rent) indices: M= (pv...A). By definition, link M connects O and
T O=T,T,..T50. The k-simplex o* labelled by ordered sequence of
multiindexes  [M;M...M] is spanned by the links M,
(M1Ma),..., {M1M2.HM,§). It is -SPHCEHRE if Ml, Mﬂ,...,Mfg:":L and
timelike if it has the form [..4...]. Ii confusion can not appear, the
round and square brackets will be omitted. There are the following
a*, 1<<k<C4, at the given vertex O: (i) 15 links p, nv, uvk, 1234;
(ii) 50 2-simplices (bones) v, (pv)A, p(vh), p(vip), (uv) (Ap)
(uvA)p; (iii) 60 3-simplices pvh, (uv)Aip=:dhp, n(vh)p=:pdp,
uv (Ap) =:uvd (d means «diagonal»); (iv) 24 4-simplices pvip. The
2-simplices w(vAp), (uv) (Ap), (nvh)p and 3-simplices ...d... meeting
at the diagonal 1234 will be called the internal ones: they are con-.
tained in the interior of the 4-cube. In the same sence all the 4-sim-
plices are internal simplices. The 3-dimensional indexes a, §,
v,..=1, 2, 3 and multiindexes A, B, C,... refer to the spacelike
leaves which are themselves Regge manifolds of the type [12]. The
[AiAs..A,_| means both the (k—1)-simplex ¢ 7' 'and the k-prism
with the bases o' and Ty """ :

Basic quantities are the link vectors [9, bone bivectors Vi and
curvatures R iy connections {MNP)*® (denoted as Q(o¢®) in [1]) on
the 3-simplices. Euclidean vector indexes a, b, c,... are related to the
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local frames associated with the separate 4-simplices o; this relation
for a quantity Q“° will be denoted by vertical bar: Qv The
(}-matrixes {MNP} are O (4)-rotations relating the local frames of
any two 4-simplices sharing the (oriented) 3-face [MNP]. To each
link M the 4-simplex o(M) is assigned so that [,;=1,m iS consi-
dered as independent variable. The bivector V iy can be constructed
in three distinet ways of three pairs of the triangle MN edge
vectors; we choose '

et e L B R L BT e . el )

for some o=o([MN]). In general {3, [yn,are functions of
and {}, and so V is. Here {} are still not independent variables but
rather a particular set { } (/) of the Regge manifold connections [I].
Let o(M), o([MN]) be attributed to the same vertex O as M,
[MN] are. Then only internal connections {...d...} (/) are required to
define V. These ones follow from the equations

Ryl -d. J()) =exploy Vi)  CVV:=e" VD), (2)
“MHIH_'{MIU}EITM ff‘w ; [3}

where the subscript M at R, V, ¢ means MN at N=(1234\M) (an
internal bone), ¢, are the parameters. Due to the Bianchi identity
[15, 12] for the hyperbody diagonal the 14 internal curvatures are
parametrized by 13 matrixes {...d..}; let the other {...d...}({)’s be tri-
vial. This means that the local frame is maximally extended on the
whole 4-cube with the cuts across the internal bones..A choice of
the cuts and of o(M) is shown in Fig. 1. This picture results from
projection of the 4-cube simplices on the 3-plane orthogonal to /234
by intersecting it with a 2-sphere centered at O. This scheme leads
to the following R-dependent bivectors:

Vige=[Ruzy Rz Ri lia, Lisz], - Viuzy=[ Ruoss Rz Ri Ruagy by, l142] ,
' Viagy=][ 11, Ruz) hiag] ,
V y93=[ Ri234) R23) R2, R 24) Rio4) Rz Ri Ry s, lasa]
V{24}3=[R[234] R{ﬂﬁ} R2 524-5243] ’ V427=[R[124]E(12}R1 R(ldj la, 542] y | (4)

: V2[43]=[ 12. E(gg; II!:M:!.] » V43={ R{zga}] R{Qa] R'z ngq,] R{_|24} R{l:{j Rl R(H] Lt, 343] 1

V{34jg :[ R{gH} R{31] R{IEE] RB {34. !5341] ¥ VHI :[ 53‘ ﬁ[ma} 531] 1
l"(3|[a11}=[ fagﬁuzajfemnfhﬂ :
)




Fig. 1. The scheme of cuts in the 4-cube. The internal k-simplices are shown as the

(k—2)-simplices on the 2-sphere. In particular, the 3-simplices on which the connec-

tion is nontrivial are shown by solid line, the other ones are by dashed one. The

bivectors [y, lizas] are shown as vertices, the numerals meaning M. The bolded point
indicates an edge of the cut on which [y is defined.

All other bivectors take the simple form

VMH:‘{ i,w: lfﬂ.rr.«.r| . g {5}

To define a set of independent tetrad variables let us examine
the eqs (2), (3) using the above parametrization of {..d...} in terms
of Ry(l). Eqs (2) are already in the desired form with exception of
that the Bianchi identity should be also taken into account,

R4R[314] Rr_.’iiy RUEB] R R{:id] R{234] R{EE}] R R(Ef}} R{lﬂfl} R{I2J R R{H]: 1 {b)

(in fact, R=R({}) is a general solution of the Bianchi identities).
Eq. (6) is equivalent to three scalar equations (in the 3-plane
orthogonal to li34). Therefore the 11 of 14 parameters ¢, are inde-
pendent ones. The 11 eqs (3) for MN appearing in (4) form a mini-
mal set required to express these ¢'s in tefms of the link vectors
(thereby (4) is a minimal set of R-dependent bivectors). Given the
tetrad /2 and 5 of 11 parameters ¢y at each vertex the remaining 44
components /4 and six ¢y can be found from 50 egs (3). We can
find that generally ¢, @uy=0(1) at e—>0, A=~ (123). It is consis-
tent with the reasoning of [9, 11] which concludes from vanishing
the spacelike defects’ at e>0 and from the Bianchi identities Tor the
link (A4) that the planes of [A4] and [4A] coincide thus imposing
4 constraint on the tetrad. We have succeeded in finding an explicit
form of the Lagrangian for the particular values of 5 parameters ¢.
Namely, at e—=0 we denote

eN“: =14, E-qui-_—fm—f,q- @:1123;1=ITP:;|23]E~ P4: = P4F , (Pﬁlzim"f‘q?m‘;}(?}

with finite N, N, $ua, ¢s. Using ¢, instead of ¢y we put
: Puzy Pa=0, A=1,2,(12),(23). (8)

Then (6) gives {54={p5=tp’;31]={l Since R 4 u=1[,+0(e) all the
bivectors are, accurate to the leading order in &, independent on R.
The 6 remaining parameters ¢, A== (123) enter (and  can be found
from) only the 6 equations (3) at MN= (ad)B, oa(4B),
o(4p), ap=12, 23, 31 (see (4)) which therefore can be omitted.
Eqs (3) present the bilinear system of constraints on i '

(Uy—lun)’=Tyly, MN==(@4)p, a4p), «p=12,2331. (9)

*) The defect &= p . where @ is the area of o”.
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In the continuous time notations this reads
(Lag—1la) Napg=TylgNg (AB=£12,23,31), (Lag— L) °=Tal%,
(Las—1a) (Nap— N =T4lgly (AB+£12,23,31), Ni=T,N*, (10)
IA{NHH_}VS:;AIA'
This system is uniquely solvable for [, N% in terms of=l%: NS asiit

was checked for small variations about flat spacetime where
la: Ne —const, |
=) &, N—N

asA

Return to the finite & case. Regge action in the tetrad represen-
tation takes the form

SU{N=—Y Y nuysin="tr[ UnyRun(( })/2]

n MN

(UMF';.'___ VMNI”MN} 1 {l 1 }

where n= (n', n?, n®, n') label the vertices, pyy is the area- of

[MN] The curvature matrix Ryy({}) is the product of {a°},
o> [MN], ordered along the loop which encloses [MN]. Assuming
a definite orientation of faces write R, in some definite 4-simplices
o in the following form:

Ry =[413] (T2 {2417 ) (T2s[d41]) (T3{341}) {412} {414},

el S

R o3 =[4d1] [423] (T {14d}) {432},
Ro3=1{23d] {231 (T4 (423]) (T:4{d23}(T:{123}) {234},
Rous=12d1] [234] (T:{12d}) (243],

R{zq_m:{dm} [243] (T\{143)) {423}, e 2)

Rys2y={132] (Ta(41d}) {123} {1d4},

R sz ={1d4} {12d) {143} {14d) [1d2] [13d} i
R[Mj{aﬂ}z{ 14did{d23} {41d] {d32}-1

... (cyclic permutationsof 1, 2, 3) ...,

Rz =(443) (4247 (4d1) (73] (4d2) (AT

" The rest of R-matrices can be obtained by index group per-

mutations: if R[il v}{}____p]:HT[m]{...'.L.f"l.??l..“.p...} then R{l___'p] (L. v)
=IIT ,{...A...pp...v...}. The action presents the sum of contributions
from the groups of (closely located at ¢—>0) timelike A4, 44 and
spacelike AB, A(4B), (A4)B bones which will be called contribu-
tmna of the 2-prisms A and 3-prisms AB, respectively.

Next consider the limit e—0 in the connection sector of the

theory. If M, N, Ps~4 then

(MNP} =1-4¢fynp, fuvp=—F mnp=0(1), (13)

which is an analog of the continuum connection for the parallel vec-
tor transport at a distance O(e) (orthogonally to the spacelike leai
of the foliation). Let M, N==4. The Ry is shown above to admit
the general form exp{O(l) the finite contribution is given here by
the connections {...4...}. For the limiting Lagrangian bemg finite the
sum of O(1) contrlbutmns to the action of the 3-prisms attributed
to the vertices of any spacelike leaf, '

z Z IJ'AEZ sin

f AB MN

'(CUAR(MN)Y*/2), | (14)

should vanish where a= (n', n® n’); MN=AB, A(4B), (A4)B;
(AB):=[ABT] (4AB), (A(4B)):=[A4B](AB4), ((A1)B):=

—[4AB)] {A4B). The (MN) is an O(1) part of Ryy. In lact, finite-

ness of the Lagrangian follows from the equations of motion.
Indeed, O (e)-fluctuations of {} in (14), S{MNP}=eMNP}o yyn
® sinp= — @ yyp=0(1), generally resuit in the finite terms in the
action. Equations of motion for o sy take the form of the following
constraints:

I-I"I-'T."L"PVHB—|_ Vﬂﬂfjﬂ!\r‘p:]fdﬂir r;“:‘]‘ﬁ"f)? MNPszB, r’-‘lﬂl-B, iq.B‘q', {15}
where '

4a={AB) [cos o 5— {(A4) B) [0S ot(ay) (QSm a:="U"R").

Solving (15) with taking into account the identity
(AB) ( (A4)B} (A(B4)) =1 leads in any given 3-prism AB to

- (MN) =exp(@uy Vast OunVas)

Z %mr:._z “pun=0,

o pn =P My My (16)
MN MN :

thereby making (14) vanish. Thus, indépendent 3-prism connection
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variables are a matrix {AB) (let {AB}:={4AB}) and four of the
parameters @y, ¢@uy (We choose MN=AB, (A44)B). Unlike this
situation the analogous quantities ¢ appearing above in the tetrad
sector serve simply to parametrize the link vectors.

Let us proceed to computing the Lagrangian. Now we take into
account the O(e)-corrections dR yy=(AB)ryydt (dt:=¢e, ryy=
— —ryy),diyy, AU yy modifying the 3-prism action (14): '

Z pdt=—2 (n-+dp) sin~ ' tr[(U4dU) { ) (1 +rdi)/2] (17)

(the summation variable MN being -suppressed). Taking into
account (16) and the identities tr(dU( ))=0, tr(U{ )r)=
—tr ("Ur) coso. we obtain

2F 1gdt=3 @dp’—tr (VI r)dt, (18)

y 2 2 2 2 2
2 qpdp ={Pf,q4jﬁ(H{A4}B_HA[4ﬁﬁ' + @ap(Rag— Raus) -

The (V+dV)’s depend on () in the order O(e) in the 3-prisms
12. 23, 31 (see (4)). Therefore to define the area differences the
following formula is useful:

2 e (3 I
dp = Hf: (‘Eiﬁ I?HN? Ty !‘f.,_,} ,

ME(SI,SL 53)=2 [5152+3253—|—3351} =3 S?—S%——S% . (19)

In the other 3-prisms sufficient is the formula
; =2 Ll > =L hav— U Lu)” (20)

The matrices r linearly depend on the time derivatives
(AB} = (1—Ts) {ABJe~' and on the matrices [ (see (13)) summed
over the 4-prisms afy:

oy = [apy + Fapy = Fady—+ Fapa - (21)
The curvature on the timelike bene A4 or 4A is the product of

(..4..)’s and thus it is parametrized by ¢ “ouy and {AB}.
The resulting Lagrangian takes the form -

L=) (H1+Zit+Zy+Z N R D)
0= — I8 1% "([32] (32))* — 185 13 °((23] (23))" —
— U 1§ (T (1)) — 183 Lhao "([@T] (d1)) +- ... (23)

2= 2 (83— (35 T3 423 15— Ta({21} L) ({21} le_)b] *h§§:+
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o
=
i

-

[ 82 (54 ((d3) Li2s)® ((d3) L) +({1d) L) ({1d) Lizs)’ —

— Ty ({23} 16)°((23} 2)"] “hizs+ ..., (24)

erpﬂ{q}fgz N{Qfa%—h{Paz N%2 352) M%E—l—(qu Nioi— Prd Nia3 a?ra} Hﬁri—
+ (% N32 0%2 — g1 Ni2s 0723) |L1§1—EP23 [ (T2 15 N3) (T2 03) -+ (83 N33 03] nis+
+ @3 {18 N§ 03 +[ T2 15 ([s— N3)?} (T2 03)) uist+..., (25)

Where 0% —ajalo T, =20 at in).

: fw=uusin“'~;—vﬂ’ [ {T3] (T, {21y [21]) (Tas A1y {d1}) X -

X (T5(31) (3TY) {12} {1d}]* +

e e ———] e

0% (CI3Y T3] (Ta(21 (1)) (Taa(dl Y [@IT) X

+ g sin~!

X (Ts{31)(31)) (12} (12 {1d) (1dY |+

+H4{23}5iﬂ_1 % Ufigaj ‘Hdl} W(Tl {1d} m_}f) {32”M+

e ] T
—+ I(23)4 SIN 1?U[%3j4><

X [(ATy @] (285 (23] (T (1d) < 1d)) (32) C32H] 4+

- paay i~ - Uit (03] (2] (a1) (34T (42) (1) +

+ s sin~! — Ulibys (43} (B (2d) (2] {d1) {dT) X

X (3dy [3d] (d2) (d2) (1d} {1d})®. (26)

Here <AB>I:=<(A4?B>= Pap: = @48} (MN) is given by (16);
Uy=[N. 1] ( NJA]J/Q:‘EU{ U =[Ny, ([NAJAIE/Z)_”E* for
W, see (19), (20); 'd means «diagonal» (in three dimensions):
1d:=1(23) and so on; dots mean the two cyclic permutations of 1,
9. 3 in the preceding terms. The field variables are [, N N’ para-
metrized by N° [4 via the constraints (10), [AB)**= ({AB})™')%,
h;g?z——hig? and @um @my at MN=AB, (A4)B. The symmetry of
the formalism w.r.t. the odd permutations of indices I, 2. 3 is bro-
ken spontaneously while choosing an edge of a 4-cube cut to define
a link vector on it (see Fig. 1). :

The equation of motion for a connection {MNP} expresses (mo-
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dulo extra conditions of the type RVR=V) vanishing the bivector
sum over 2-faces of the 3-simplex MNP [1]. Now the fqp, is a mul-
tiplier of the constraint which presents such property for the spaceli-
ke 3-simplex apy. The equation for {AB} proves to require vanishing

the bivector sum for the 3-prism AB under extra conditions of the

type RunVunRuv=Vuy, MN=A4, 4A. Under the same conditions

the equations for ‘@ claim the two spacelike 2-faces of the timelike
3-simplex being in the same 3-plane and ¢ equations relate the area
difference between these faces to the area of projection onto them of
the two timelike faces of this 3-simplex.

Finally, the continuous Einshtein—Hilbert action can be repro-
duced if the spacelike link length scale a tends to zero. In this limit

the different objects have the following orders in a
({AB} = :expo 4p) :
L N:Nﬂghuﬂvﬂpl*q}""l} I‘q, U}ABNQ; -ﬁA':T‘q—f""‘"a {2?}

In these orders

Na=N, hopy=lpoy=hap=:h, ©15=0py,

b= Yo e A=Y A 3 (28)

a=A = A

The terms O(a’) should be retained in L. Within this accuracy o, i
do not enter L and ®4; can be grouped in ., given by

get
S={ dty a6 e N L2 "(Apoy+ wpoy) ¥ +

A (Aat® [ @, 7% )2 2 (nvﬂb; s __;__ g2b [ sg) . (29)

i

Redenote e2:=/%a""', e}:=N° 0i:=h" and introduce the world
coordinates x* coinciding with n%a at the vertices n. Eq. (29) takes
the form : :

2S=— | d'xewcae"™ efiel[ Grt 01, dpt+,]*+0(@), -  (30)

o
2

which is just- the Einshtein—Hilbert action in the variables e, o
[16]. ' . -
The Lagrangian (22) supplemented with the system of constra-

12

@)= W23+ 0., — 03, and cyclic permutations of 1, 2, 3 in it. So we

ints (10) is a starting point for constructing the Hamiltonian for-
malism and canonical quantization of Regge spacetime, which we
expect to consider in a separate publication. Unlike it's continuum
limit the discrete space action depends on the analogs of lapse and
shift functions N*= (N, N*) nonlinearly. Another interesting feature
of the formalism is the presence of the tetrad velocities [, in both
the Lagrangian (25) and constraints (10).

The auther is grateful to Ya. Kogan and A. Zhitnitsky for the
interested discussion.
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