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ABSTRACT

This preprint contains discussion of the correlation
functions in QCD vacuum. Section 4.1 deals with
different forms of the sum rules and their physical
meaning, it is important for the first reading. Other
sections 4.2—4.4 contain more technical information
on operator product expansion method, examples of
the analytical evaluation of the correlators and review
of numerical methods for the evaluation of propaga-
tors in arbitrary external fields.



4.CORRELATORS AND SUM RULES. THE METHODS

The standard method of investigations of the structure of any
kind of matter (say, solids, liquides or atomic nuclei) is based on
its perturbation by some weak external «probes» with subsequent
observation of the system (linear) response to it. Results of such
experiments are wusually expressed in terms of the so-called
«correlators», depending on the properties of the «probes» and their
locations. Probably no examples are needed as far as we discuss
ordinary matter. However, for the QCD vacuum the underlying
physics is essentially the same, and studies of the correlation
functions are the subject of this and the next chapters.

Important general feature of such approach is connected with
close connections between the correlators and the properties of
elementary excitations of the system. The well known
Kramers-Kronig dispersion relations connects the real part of the
correlator with its imaginary part, the so-called physical spectral
density. The latter prescribes at which frequencies the matter may
absorb energy from the «probes» and with what intensity. Since
this energy is spent to produce certain elementary excitations (say,
phonons in solids) we may learn a lot about them by investigations
of the correlators.

These general ideas are now widely used in order to connect
the information on elementary excitations of the QCD vacuum (the
hadrons) available from multiple experimental data with some the-
oretical evaluation of the correlators. Unfortunately, the latter ones
are rather limited by the fact that only Euclidean formulation of
the theory can at the moment be used, so we calculate only real
part of the ce@rrelators. In other terms, we can only describe ex-
periments in which the probes &re placed outside the light cone, so
that only virtual intermediate states are allowed. As a result, we
are able to study only the lowest excited states in each channel.
However, even in this restricted region we have a lot of facts to be
explained.

The general introduction into the sum rule method is contained
in section 4.1. The readers which are not much interested in
technical detaila may omit other sections of this chapter and
proceed directly to applications discussed in chapter 5.

Section 4.2 is intended to be a kind of technical introduction
into the operator product expansion (OPE) method originally
suggested by K.G. Wilson, which is nowdays widely used for the
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evaluation of the correlators. It was emphasized in the Introduction
that in the review paper being so wide as the present one it is
technically impossible to derive all results explicitely, so we only
outline the main ideas. However, in this more technical section we
somewhat deviate from this style and discuss few simplest
examples in more details, demonstrating how the method works.
When this paper was nearly completed, much more detailed
technical review of the OPE methods have appeared [4.22] which
may be recommended to interested readers.

The OPE methods discussed in section 4.2 make no assumptions
about quark and gluon fields present in the QCD vacuum and
affecting the correlators, but parametrize them by a set of operator
average values. However, their applications are limited by
sufficiently small distances. More insight into correlator behaviour
and OPE applicability region can be obtained by few examples of
particular field configurations for which the correlators can be
found analytically for any distances. Their discussion is made in
section 4.3. Let me also comment that the qualitative understanding
of the correlator behaviour in different field configurations is not in
well developed stage at the moment, so probably more efforts are
needed at this point.

Finally, in section 4.4 we consider numerical methods for the
evaluation of the propagators in (arbitrary) external fields, which
are now developing very fast. With sufficiently effective algorithm
at hand it becomes possible to understand what particular
properties of the vacuum fields are necessary in order to reproduce
available data for the correlators.

4.1. The sum rules

As it was noted above, this method is based on general
relations, following from analytical properties of the correlators,
being in turn the direct consequences of causality. Probably, there
is no need to go in details at this point.

Considering this method from more practical side we may say
that it is based on the comparison of experimental data on the
correlators with their theoretical description. As we already noted
above, so far theory can only provide the correlators outside the
light cone, where they do not oscillate but decay exponentially.
Moreover, even with the Euclidean correlators our ability is rather
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restricted by some limited range of the distances. Note that ex-
perimental data are more precise at large (time-like) intervals
between the positions of the currents: here the correlators can be
considered as being due to the exchange by the lightest hadrons
with suitable quantum numbers. To give an example, we may recall
the Ukawa theory of nuclear forces. At large enough distances
between the nucleons they are described by the one-pion exchange
and, therefore, relatively well understood. At smaller distances one
should consider more complicated exchanges, respectively the theory
becomes more uncertain.

Theoretical methods used by the sum rules are based on the
asymptotic freedom property of QCD, and therefore they are most
accurate at small space-time intervals. In this limit the correlators
can in first approximation be considered just as free propagation of
quarks and gluons, and in the second one as some small
corrections induced by nontrivial structure of the QCD vacuum. As
it was noted in the pioneer work by Shiiman, Vainstein and Zak-
harov [4.4], the general way to make it is provided by the operator
product expansion (OPE) method originally suggested by Wilson
[4.12], to be discussed in the next section.

Quite different approach is used nowdays in lattice calculations,
which in principle can produce the correlators at any  distances.
However, in practice they are strongly limited from below by lattice
spacing and from above by the lattice size and the statistical
accuracy needed in order to observe very weak signal (fo say
nothing on other approximations made), see section 4.4.

It is probably useful to start with the explanation where the ex-
perimental data on the correlators in the QCD vacuum come from.
Let me recollect in this connection more familiar case, say studies
of the nucleon structure by means of inclusive deep inelastic
electron scattering. It produces an amplitude of the nucleon state
transition into all other states wunder the influence of
electromagnetic current operator j,(x). In this amplitude squared it
is possible to sum over all intermediate states and obtain the
spectral density for the following two-current correlator inside the
nucleon:

Kulq)=i § dx €% (N T{j(x)i»(0)}| N) (4.1)

where ¢ is the momentum transfered to the electron. Note that at
large g one has small x, and that is why we are sure that
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perturbative QCD methods are applicable for deep_inelastic scat-
tering. It is hardly necessary to say more on this well known

example. : _ :
Note that in the example considered the particular properties o

the nucleon state are not important, thus it can well be s_ubstituted
by any other one, say the vacuum state. Electrnmagnetl-::‘c_urrf:nt
excites the hadronic vacuum in the process of ete™ annihilation
into hadrons, so these data can be converted into the two-current

correlator

Kiuv(x) = (O T{ju(x)j(0)}1 0) (4.2)

Introducing the standard polarization operator II(g?)
[1(9°)(qugv— 4°gw) = £ § dx €K u(x) (4.3)

we may write down the standard dispersion relation for it

w1 (ImIS)dS
Hidye ?FS S+Q?
Q*=—¢q’ (4.4)

and connect its spectral density Im(Il) to physical cross section
R Fgs (4.5)
Im H(S_]—mﬁ(f e 4 q)

where e, is the electric charge of the particular quarl:{ flavour (it is
assumed that experimentally such cross sections can be
distinguished). Unfortunately, we do not have many other «probes»
as good as the electromagnetic current. Howeven.frnm tau leptf:)n
decay we know some part of the spectral density of the axial
current. In many other cases masses of the lowest states are well
known, say for the pseudoscalar current

j=iuy.d (4.6)
it is the negative pion. Moreover, we know also its coupling to
pseudoscalar and axial currents from a—-uv decay

(™ (p)l u yuysd| 0) = —ip,fa

S oS (4.7)
(m(p)iu v5d| 0) = P I -

Thus, altheugh we can not experimentally excite the vacuum by
the current (4.6), we know something about the relevant correlator.
Similar artificial. currents can be introduced also in many other
cases, say recently much attention was given to those producing
the baryons. Such information can also be used for the test of the-
oretical calculations. ‘

Particular form of the sum rules used are determined by the
condition that they should be sensitive mostly to lowest excitations:
otherwise their predictive power becomes too low. First types of
sum rules [4.1-—4.3] were indeed not S0 easy to use, and some
improvements were suggested in [4.4]. The [irst idea is to use the
so-called moments of the spectral density, connected with n-th
derivative of the polarization operator at g=0:

X

M,= %S Im 11(s) -5, Ak
0

It is most useful to consider the ratio of subsequent moments, it is

clear that at large enough n it becomes connected only with the
mass of the lowest state m,,

Mot/ Mo——1/mb, (4.9)

which is usually very well known. This type ol analysis is widely
used for heavy quarkoniums.

Another useful suggestion made in [4.4] is connected with the
so-called Borel transformation

Bf(sj= lim [\f—l_i}f(__ %) nf(:::)] (4.10)

S0 =
fF—=00
m* =5/ n=const

which leads to sum rules of the type

[(m?) = Bli(s) = ;_ § Im I1(s) exp (—s/m?)ds (4.11)

where m is the so-called Borel parameter. Roughly speaking, 1/m
plays the role of the distance between the applied currents. This
form of the sum rules is traditional in applications to light quarks.

In the case when one (or more) quarks excited by the current
is heavy it is possible to use more familiar nonrelativistic language
[4.5, 4.6], explicitly analogous to Kramers-Kronig relation (in
Euclidean time): 5
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[I(r) = BII(E) = ?1; { Im TI(E) exp (— E1)E (4.12)

Here E is the nonrelativistic energy and t is just the space-time
interval separating the moments of the applications of the currents.

In many cases, say in analytical models of the vacuum fields or
in various numerical calculations it is very convenient to work
directly in coordinate representation, rather than perform Fourier
and other integral transiormations. In such case one may apply the
sum rules suggested in Rel. [4.7]

[1(x?) = % { ImIi(s) D( /5™, Y—==ds

(4}
D(m, T)E 41121

K,(m7) (4.13)
where K,(x) is the Bessel function of imaginary argument. Note
that D(m, t) is just the propagator of a scalar particle, so its
physical meaning is selfevident.

Finally, let me mention also the sum rules suggested in Rei.
[4.8]. In contrast to other ones considered above it is intended to
study not the lowest states, but the spectral density in some
particular region of energies. The main idea is that one may
approach physical cut in the Q* complex plane not only along its
real (negative) values, but also from other directions. Uncertainty
principles tell us that being at some distance from the physical
region we deal with virtual phenomena so one may hope to use
perturbative arguments. Presumably, such estimates should be com-
pared to «smoothed» cross section, in which details connected with
«large time physics» are assumed to be absent. In some works (see
for example [4.9]) such analysis was applied to ete™ data. In
particular, it is shown that the average cross section above charm
threshold is somewhat larger than the asymptotic value predicted

- by lowest order QCD. In Ref. [4.10] it was speculated that strong

enough instanton-type fluctuations in vacuum may explain the
physical cross section in this region but no explicite fit to data was
in fact demonstrated.

Apart from other details, the main idea of this approach is rat-
her uncertain, for we do not really know whether «large distance
physics» is indeed excluded by suggested «smoothening»
prescriptions. For example, in section 4.3 we demonstrate that weak
(Euclidean) electric field weakly affects the «small distance
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physics» and usual sum rules, while it leads to infinite mass
renormalization and, therefore, vanishing spectral density in the
physical region. This example (although not quite physical by
itself) clearly demonstrates that attempts to calculate explicitely
the (smoothed) cross sections are very uncertain.

Finally, few words about some useful parametrization being
now standard in applications of the sum rules. We always have the
lowest resonance and «something else», which can be parametrized
as follows

Im 11(s) =228 (s—m?;) + 0 (s— W?) Im I17*7(s) (4.14)

where Im(I1™"") stands for perturbatively evaluated spectral
density. In this formula we have three free parameters: A, m,s and
W. At large distances all is governed by the lowest state, so two

first parameters can be determined. At small distances due to the

asymptotical freedom the second term produces correct asymptotic
behaviour. Let us discuss this point in more details, using for
example the coordinate representation (4.13). Let us write down
the physical correlator at small distances as the perturbative one
plus small nonperturbative correction

) 1m D) V5, )+ 11rr)

l
1

'] [s =]
=A2D(t1res, T)+ %S Im IP"(s)D( y/s , t)ds
w’ﬂ

[t is natural to cancel integrals over large energies at both sides
(related to most singular at v—0 contributions) and to write the
remaining condition as follows

ur,.-l
%S Im T17"(s)D( Vs, t)ds + I (1) = A2 D15, T) (4.15)

0

This relation reminds naive «duality condition»: the contribution of
the resonance is equal to that of the gap «eaten up» by the
resonance. Note however, that this relation is now better grounded.
In particular, it includes the (calculatable) nonperturbative
corrections. With relation like (4.15) one may easily estimate the
value of W. This parameter is important, for it fixes the energy
scale at which asymptotic freedom is violated by some vacuum
effects.
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4.2. Operator product expansion

The general idea of this method (by the way, as of many other
works by K.G. Wilson) is the explicite separation of physical
phenomena characterized by different scales. In the problem under
consideration, evaluation of the correlation between two currents,
one scale is given by distance x (assumed to be the smallest one)
and the second one corresponds to some typical correlation length
in the QCD vacuum. «Expansion» implies that nonlocal quantity is
expressed in terms of local properties of the QCD vacuum, while
the word «operators. means that no specific assumptions about the
vacuum fields are made. Its general form can be written as
follows:

j(x)j(0) = X Ci(x) 0(0) (4.16)

where (x-depending) coefficients C, are some numbers while Oy are
the (local) operators composed out of all fields of the theory, taken
at the point x=0. With small parameter x at hand we should first
consider effects leading to singular at x—0 terms in the
correlators. Below we show that it can effectively be done in mo-
mentum representation as an expansion over powers of 1/Q where
Q is large momentum transfered by the currents. Somewhat more
subtle point is the evaluation of ferms regular at small x, and
recently there was. some activity concerning these questions in the

framework of exactly solvable two-dimensional models, see Refs
[4.14, 4.15]. Note however, that usually the leading singularity is
rather strong (say, the correlator of currents made of two massless
quarks starts from 1/x® term due to their free propagation), so
regular terms are not very important quantitatively at sufficiently
small x.

If one includes the radiative corrections (loop diagrams) he
introduces all intermediate scales. Then one should prescribe more
definitely which of them he includes in coefficients and which in the
operators. Usually only logarithmic eifects are considered, therefore
only the order of magnitude of some intermediate «normalization
point» p should be fixed. By definition, all virtual momenta with
k*<pu® we include in the operators (resulting in log (n/A)) and all
large momenta k?>p? in the coefficients (resulting in log (x-u)).
Since the introduced quantity p is completely artificial, the sum
(4.16) should not depend on it.
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So far it was only some convention, thus it is meaningless to
ask whether it was right or wrong. The situation is changed when
one makes some particular calculations in which definite physical
assumptions are made. In QCD we believe that «small scale
physics» can be approximately controlled by the perturbation
theory, while the (so far unclear) nonperturbative phenomena are
connected with the «large scale physics» and can be attributed to
the operators. This standard assumption has, of course, some
accuracy which can be discussed. |

Generally speaking, this assumption does not hold because there
may exist nonperturbative fluctuations of the size g~1/p and even
smaller, so by definition there exist nonperturbative effects in the
coefficients as well. However, at sufficiently large p (e.g. >1 GeV)
they are very small (see for example the instanton density
considered in chapter 2). More detailed discussion of this point can
be found in Ref. [4.13].

Another side of the coin is that in pure perturbative calculations
with loops one should not forget to exclude the integration over
momenta k*<p?. This in general leads to contributions into the
OPE coefficients being some powers of p, which are sensitive to
particular «scale separation» prescription. Of course, such
p-dependent terms should be canceled by similar terms in the
operators, producing physical p-independent results. The very
fortunate feature of QCD (which may well be absent in other the-
ories) is that vacuum expectations values of main operators are so
large that with typical p of the order of 1 GeV or smaller one can
safely ignore powers of p. This comment will become more clear
after examples considered below, see also [4.22].

Coming to particular examples I would like to recollect the
Fermi saying «What is the hydrogen atom of this problem?». It
seems that in this case the simplest problem is that strongly
resembling the hydrogen atom by itself, for it is connected with
current producing one very heavy and one light quark (antiquark)
[5.37]. The virtue of heavy quark is connected with the possibility
to apply more familiar nonrelativistic language, while the virtue of
the light one is that one may ignore Coulomb-type interaction
between quarks, being important for quarkonium currents (see
section 5.6). Thus our current looks as follows:

s =0Ty (4.17)

where I' is some gamma matrix. At sufficiently small distances the
11



polarization operator is given by the loop made of free propagators

I3 (x) =Tr [T, S5°°(0, x) 585 (x, 0)] (4.18)
where x may be taken along Euclidean time axes and x?=—12 so

that the relevant propagators look as follows
S,‘E;EE(T)=( 1+% E?“) exp (—mgt)/(2nmyt)*? |
i (v) =—v,/ (2r°7) (4.19)

At small x the first nonperturbative correction to this simple
calculation is connected with the nonzero quark condensate.
Roughly speaking, it implies that there are plenty of light quarks in
vacuum, so the second current does not-—necessary pick up the
quark produced by the first one. In order to account for such «ex-
change interaction» with the condensate one has to include in the
light quark propagator the following constant term:

S,=8l*=i(0lqql0) +... . (4.20)
and the related correction is immediately found:
I (v) =T (x) [1 + P- 212 (0|gql0) v+ ...] (4.21)

So, we have found the OPE coefficient for the operator WW. (P ap-
pearing in this relation is the state parity.) Note that splitting in
parity (say between pseudoscalar and scalar channels) appears
only with the account of chiral symmetry breaking (we return to
this point in discussion of the quark effective mass in section 6.1).
All gluon-induced interactions between quarks or with vacuum
fields are in parity-conjugate channels identical. (They can produce
other splittings though, say between pseudoscalar and vector
channels. This is of course the «hyperfine splittings related to
spin-spin interaction being of the order of 1/M where M is the
heavy quark mass.)

Perturbative evaluation of the OPE coefficients for gluonic
operators can in principle be made with ordinary Feynman
diagrams containing external gluonic lines. However, it is
extremely inadequate way of making such calculations. First of all
separate diagrams are not gauge invariant, only their complete
sum is. Second, covariant operators contain terms of different order
in coupling constant, so in case of several operators one should
make next order calculations in order to distinquish them. Finally,
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familiar diagrammatic calculations are made in momentum
representation and one should be careful in separation of small and
large scale physics. For example, soft gluon emission from external
lines is, of course, the large distance effect. However, such
diagrams also contain «contact terms» which should be included in
the coefficients. Because of all these complications it turns out that
it is more convenient to use other methods, based on the ideas
previously suggested by Schwinger in QED framework (see e.g.
the classical paper [4.16]).

The so-called operator formalism considers particle propagation
in some external «backgrounds field G which is arbitrary (in
particular, it is not assumed to be weak). Its very useful features
are gauge invariance of the calculations at all stages of the
calculations and the fact that calculations are made in coordinate
representation. Its more detailed discussion is made in Rei. [4.22].

Let us introduce the formal basis of coordinate states |x), being
the eigenvectors of the coordinate operator X

Xulx) =x,)x) (4.22)

as well as momentum operator P, acting in this basis as a
covariant derivative

APy =—i T 8(x—y)+ T AL (x—) (4.23)

where the colour generator 7° here is assumed to be in the
representation corresponding to particle under consideration. This
operator satisfies the following commutation rules:

[PuX:] =igyy, [P.P,] =igTGyy _ (4.24)

In such formalism the propagator can be written as
I

St )=l g—1y),  P=wp, (4.25)

Its Fourier transform can be written as follows:
1 1
S(g)= \ dx ¢ -
(9) S ﬂmlﬂ} Sd.-t {ﬂmiﬂ_) (4.26)

where the following identities were used:
¥ Py (Pt gy) X
13



et =10y =|0)

The formula (4.26) is very convenient for OPE, one may say that
there is large (numerical) part of the momentum ¢ and small
(operator) one P, so it is tempting to expand in P/g (for simplisity
we put m=0)

1 1 1 1

e i e
Note that as soon as P is the differential operator we have indeed
expanded the nonlocal object, the propagator, over the local ones.
All what is left to do are some algebraic manipulations in order to
rewrite the result in more familiar notations. Let us demonstrate
how this method works with the example considered above, the
correlator for a current made of light and heavy quark.
Introducing also the operator W acting as

Wlx) =¢ (x)|x) (4.28)

My

where ¥ (x) is some wave function satisfying the equation of motion
in the background field

iDap(x) =0 (4.29)

while its particular form is irrelevant. Substituting into the
correlator light quark field operators and heavy quark propagator
in simbolic form one obtains

1

Ki= (¥ Ty 5x—
= VT

%] 0) (4.30)

as our starting point. First, let us for simplisity consider heavy
quark mass to be very large and use the nonrelativistic
approximation

~ )
Sg 2 2'(PD_GE) _ (4.31)

where E is the nonrelativistic energy, E=g,—mj.

Expanding (4.31) in P,/E we observe that zero order term was
already used above while the next nontrivial correction appears
only in second order. It is clear that nonzero vacuum average
values are present only for Lorents scalars, thus
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<Tpgw>=%<ﬁpﬁw>=_r‘€< Wigous Got)V) | (4.32)
where in the last step we have used Dirac equation in its squared
form. Further manipulations of this kind produce the following
result [5.37] (for Qiysg current):

_ TV | (F(gGunGit)Y) (¥ (vut’g DY Gu)¥)

S oF 32E° 253 F*

e (4.33)

It is true, one should spend some time in order to master these
formalism, but he will spend more making diagramatic derivation
of the same results.

Another useful method of evaluation of OPE coefficients is
based on the propagator expansion in the so-called fixed point
gauge:

xpAyu(x) =0 (4.34)
which was independently suggested by Fock, Schwinger and many
others [4.18, 4.19]. In this gauge there is very convenient formula

expressing potential in terms of the field and its covariant
derivatives:

Au(x)=x, § do oG, (xa)=
0

1
=Z BTy “eor-xu Dar-- DusG) S (4.35)

k=0
(see its detailed discussion in Shifman work [4.20] or in [4.22], a
little bit complicated point here is the substitution of ordinary
derivatives in (4.35) by the covariant ones). In particular, from
(4.35) it follows that A,(0) =0.

In order to demonstrate utility of these relations let me start
with the simplest example, the propagator of scalar massless
particle in external field [4.21]:

D{g)= S di txh (p—iq')? 10Y (4.36)

Expanding as above in P/Q
15
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1 L _2Pq , 4Pg) P’
[

I S A I B
P2Pg)+(2Pq)P* 8(P :
+ ( ‘?)qﬁ( s i (q;?)s +O(PY) (4.37)

we obtain some polinomials in P. Note that each covariant
derivative consists of two parts, the ordinary derivative and the
term with A,. The former gives zero acting to the left in (4.36)

§dx (x16,...10) = §dx dy 3ud(x—y) (yl...] 0) (4.38)

while A, gives zero acting to the right
Au(x)10) =A,(0)|0) (4.39)

All one has to do is to move all derivatives to the left and all po-
tentials to the right, with only the commutators (derivatives of A)
surviving. For their evaluation (4.35) is of great use, giving
covariant expressions for these derivatives. For example, one finds:

§dx (x| P2P,10) = %{Dﬂaﬂﬂ)
{ dx (x| PP 0y = — g (DpGpa) (4.40)

which leads to the following result

2

— q [
gy~ —5 = e DiGusg)— L Va6
(q) & 345 (DaGapgp) 258 GaqyGapGpy+

+ 4 G|~ Z@D) 069+ o) (8.41)

Now, let us also give for applications analogous formulae for
spinor and gluon propagators derived by this method in Ref.
[4.21]:

1 : ot
S(a)= 7 — %{qcmﬁ 3%[qzwav}—q(ma)_(w)(qﬂw—
—3i(gD) (g Gyyps] + fg[m%qn}w Gy)—ig(qD)(DGg)—
—i(gD)(gGv)+2gD) (g Gy)ys— % D*(gGvy)ys— —g— 9(9GGg)+

+ 4 994 CuGrs), v~ £ 4°.[GepG] 12+ O(P) (442)
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where G,,.= G}t is colour matrix. In gluonic propgator it is more
convenient to use other notation G2 =7**“G%,. The result looks as
follows:

1
(9+ P)'gm—2gGyp

Dy(g)= S dx {x| 10y =

g , 2¢ 4ig 2ig
=SB L 28 Gt D)G,, g:{DGg)+
g A (¢D)G, 37 w(DGq

2 2
+ 25 (aD) (DG + o [4°D*Cu—4(aD) G+

2 2
+ 2y gl 0" Ghr—4(0a0up)]+ ‘ziﬁ GaGay+ O(P®) (4.43)

Let us ask the following (somewhat strange) question: what
happens if one try to average these formulae over fields,
considering them as vacuum ones so that only scalar combinations
survive? It can be easily seen that no corrections in the
approximation considered so far appear in scalar and spinor cases,
while in the gluon case it appears due to «magnetic moments
effect. Analogous cancellation takes place in the selfdual field
Giv=iG%, for which the stress tensor

v ia 1 i

po Sya

is identically zero. We return to these observations in the next
section, while here it can be used in order to simplify the
calculations of «gluon condensate» effects, very important for
applications. As the simplest example we take vector current made
of light quarks j,=W¥vy,¥ and consider the two-current correlator in
coordinate representation. Eiffects of the order of G? can appear
either from O(G) effects in both propagators, or from 0(G?)
correction in one of them. The observation made above shows that
the second possibility produces zero effect, so it is sufficient to use
O(G) correction. Rewriting (4.42) in coordinate representation:

i)

S(6)=— 577 — ﬁfgxﬂ (xGy)vs + O(In x) (4.45)

One easily obtains
17
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Mpw(x) = €01 T{j(x)i»(0)}1 0) = — m( 2% Xy — GuuX”)—
— qia OEGFI0N2xues + gur?) (4.46)

(Note that Oully,y=0 as it should be.) This result corresponds to
that originally obtained in Ref. [4.4] by much more complicated
diagrammatic calculation, while that given above [4.21] takes only
few minutes! This method was later used for rather complicated
calculations [5.49] of O(G®) and O(G*) corrections for heavy
quarks.

Another sufficiently simple application of the fixed-point gauge
was made by Shifman [4.20] and it corresponds to OPE expansion
of the average value of the Wilson loop:

W(c)=<{ % PP [% § At dx, | ) (4.47)

which is.assumed to be small as compared to the correlation length
in QCD vacuum. These formulae are now used in order to extract
local properties of the QCD vacuum from lattice calculations.

Substituting into (4.47) potential in the form (4.35) we expand
in terms of the fields. The first nontrivial correction [4.20] looks as
follows

Wie)=1— SR 1) ax d)—x )y )] (4.48)

For plane contour the latter integral is just 442 where A4 is its
area. It was also pointed out in [4.20] that further corrections also
depend on the area rather than on the contour shape, say the next
correction is as follows

dpabc a b I ;
AW = SET700 00 o) (§ 130y 4+ 47(y)— 2% dx i) ] (4.49)

where the integral is equal to const-A® where const=4/x for round
contour and 4/3 for the square one. Unfortunately, simplest fac-
torization hypothesis concerning vacuum fields leads to oscillating
rather than exponentially decreasing behaviour at large A (Wilson
criterium for confinement), see details in [4.20].

Our last pedagogical example is simple derivation of the
famous «triangular anomaly» relation for divergence of the axial
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current:

R 6‘1{ ﬁfi’x.—i— E)?u'fﬁ[exp S igf“A;’(y)dyu]‘l’(x“s} } (4.50)

Xn

where Schwinger splitting prescription was used. Applying the
fixed-point gauge and the quark propagator in O(G) approximation
(4.45) one easily finds the well known relation

§2 a5
6ufﬂ = 1—51;_2 Guﬂ ﬁﬂ

4.3. Analytical estimates of the correlators

In this section we discuss two examples, in which the
correlators can be found analytically. The first one is rather simple,
it is connected with the nonrelativistic motion in homogeneous
electric field. The second one is more complicated, it deals with
instantons, but presumably it can be used in realistic applications. 1
hope that these consideration provide some insight into qualitative
behaviour of the correlators.

The first problem [4.23] considers heavy quark-antiquark pair
in abelian homogeneous electric field E(t) depending on Euclidean
time . The corresponding action looks as follows:

Ty

s i
S= S [% + r_né_x_ﬁr + %E{r)(xq—xq-)]dr (4.51)

0

It is well known that path integral method can produce the
analytic solution for the propagator, because the relevant integrals
are Gaussian. All one has to make is to find the extreme path from
classical (Euclidean) equation of motion '

T T" T L 3
xd(v, )= & [ng d—:'§ dv” E(x")— i_ﬂg d-r'GS dr” E(r”)] (4.52)

and to calculate the action S[xa], which directly provides the
modification factor for free propagators:

M (x) =117 (x) exp {—28 [ (TE)] + 28 [xu(x, 0) ]} (4.53)
The simplest case is that of the constant field
— TT1free gzg%a
MEx)=0 (x}-exp(—agm—“) (4.54)
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With these expressions at hand, we may make some physical
observations. Recall that the field considered is assumed to model
that of nonperturbative fluctuations in the QCD vacuum. The
known sign of the gluon condensate corresponds (in ordinary
Minkowski space-time) to real magnetic but imaginary electric
field:

(ERY =—(HR) =— (G2 /2<0 (4.55)

With such sign one observes that in constant field the correlator is
rapidly decreasing at large distances. Comparing this result with
exp (—energy-t) one concludes that such field excites the quark to
arbitrarily large energy. (For real constant field such conclusion
simply corresponds to the fact that in linear potential the energy is
not limited from below.) One may say that it is «superconfinement»
or, more precisely, an infinite mass renormalization. Obviously, this
result is due to unphysical assumption that field is the same at
arbitrarily large distances.

At suificiently small distances compared to the correlation
length in vacuum such model may be reasonable. One may use it
in order to test convergence of the OPE series, which in this simple
case are just the Tailor expansion of E(t) in powers of T, with
-application of (4.52, 4.53). We do not give here general formulae
for they are somewhat lengthy, and only make few remarks. It
turns out that it is very difficult to reconstruct the correlator from
the OPE series at distances at which E(t) is significantly changed:
many terms are comparable, of different sign and, worst of all,
very sensitive to the field used. One may think that the correlator
is also sensitive to such details, but it is not true. Three subsequent
integrations in (4.52, 4.53) very effectively wash out all inho-
mogeneities, so the correlator depends mainly on the average
intensity of the field. The moral is that OPE works well if one
correction is reasonably small and all the rest negligible, otherwise
one should look for other methods.

Finally let me comment that in slightly inhomogeneous field the
approach used above can be converted into approximate
(semiclassical) calculations, in which Gaussian fluctuations around
the extreme path are considered.

The semiclassical ideas can also be applied to gauge fields, as
discussed in chapter 2. We remind that it implies that they
relatively weakly fluctuate around some particular configurations
(the instantons). In this case calculations of the correlators are
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essentially simplified.

The simplest case is the evaluation of the correlators for opera-
tors constructed out of gluonic field. In such case the first
approximation is given just by the substitution of the «classical»
field into the operators in question. In section 5.8 we will return to
this point.

More important applications are connected with light quark
correlators. In this case the role ol classical field is played by
t"Hooit zero mode. In order to see this we remind that in the
leading order in quark mass m the quark propagator in the
instanton field [2.24] is simply given by

Solx, y)=— w“(x):;[y) (4.56)

(at first sight singularity at m—0 looks strange, but one should
not forget that such expression contribute to physical effects only in
combination with the instanton density, proportional to some power
of m). Note the specific chiral structure of this expression. Due to
it in the approximation (4.56) the polarisation operator

[;(x) =Tr [[:S4(0, x)T;S, (x, 0)] (4.57)
is zero for vector and axial currents.

Nonzero effect for pseudoscalar current will be considered in
detailes in section 5.7, and now we ©proceed to further
approximations in quark mass for the (practically important) vec-
tor channel. This calculations was made in Refs [4.25], and it
includes two next terms in the propagator

S(x, y)=Su(x, y)+ S\(x, y)+m $dz S,(x, 2)S(z, y)+ O(m?) (4.58)

which were found in Ref. [4.24]. Here the propagator part connec-
ted with nonzero modes is equal to

Si= Do, ) (15 )+ a0, ) B, 1512)

A(x, ) =[(x—y) 2+ (P + 1’ + infuxuyp 1)/ 2575 (x — y)* —

—szﬂxgyz]/[ilﬂﬂ(l _I_szxz)l;ﬂ(! +Q2/y2)”2] (459)
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where A(x, y) is the propagator of scalar particle in the instanton
field. Calculations with these formulae are rather cumbersome, and
the only nontrivial test is current conservation relation 9,I1,,=0 .
One more comment is that colour trace should correspond to
SU(2) group, that is why the result of [4.25] contains wrong extra
factor 3/2. Finally, the polarization operator is equal to

= 2 I 2
14(Q*) = —3 § dn*(o) [qu* = %5 dx xz( QWQ‘* ) ] (4.60)

Note first the presence of power (1/Q%) correction (the free
particle loop produces I~ log (Q)). In the preceeding section we
have calculated correction due to gluon condensate G? operator,
which is of the same dimension, so it is tempting to connect these
quite different calculations. This can indeed be done, but with small
complication due to another operator of dimension 4, namely
m-WW. [ts OI?E coefficient is equal to [5.13]

2myYy
r)

AL(Q%) = (4.61)

(deri'}ratinn of this result in Schwinger formalism is just simple
exercise). One should also substitute average values of these opera-
tors in the instanton field

(0l(gG)| 0y =32a* 3 (dn*
(0l mPW|0) = — 2 (dn* (4.62)

in (4.61) and the final conclusion is that power correction is indeed
exactly equal to that given by the OPE calculation. I emphasize
this point because historically it was a source of some
controversies.

One more puzzle connected with (4.60) is more striking: the
second term depends exponentially on Q, and no other power
effects are seen! So, where are al] operators of higher dimensions?
There were even doubts about relevance of OPE analysis in
general.

Rather unexpected answer was given in Ref. [4.19]. Everythin
is O.K. with OPE (its cnefficientsgare I‘IGIIZEI‘D)[, bu]t in sejiffduagl
field all matrix elements of all operators are canceled among
themselves! This statement follows from the following theorem
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[4.19], wvalid in the fixed-point gauge: in any selfdual
(antiselidual) field the propagators for massless spin 0, 1/2
particles can be written as

Dy 4:;!%:2 + D9(x)

S(s)= e EJIEI‘ 7 1 ﬁfﬂx_z (xé?)?ﬁ-l- S(reg)(x) (4*63)

where the former terms correspond to free propagators and the lat-
ter ones are regular at the origin. For gluon propagator there is no
so strong theorem.

If the instanton-type fluctuations are indeed important in QCD
vacuum than the Dubovikov-Smilga theorem may have real, not
only academic significance. It demonstrates how light quarks may
propagate in strong selfdual field without much effect (due to
cancellation), while it is not so for gluons. It is possible that this
consideration explains much stronger nonperturbative effects in
gluonic channels (say, relatively heavy glueball masses), etc.

The final (rather obvious) comment deals with instanton
corrections at large distances. The propagators seem to be strongly
modified, but they are not gauge invariant quantities and in
singular gauge this artifact disappears. Evidently, individual
instanton is not effecive at large distances. The «instanton liquied»
made of uncorrelated instantons produces finite mass
renormalization and no confinement. Too much correlated ones may
lead to «superconfinements, as the constant field considered above.
What are the correlations among instantons in real vacuum we do

not know.

4.4. Numerical evaluation of the propagators

The methods considered above are rather restricted, so it is
desirable to develope more universal numerical methods for the
calculation of particle propagators in arbitrary external gauge and
quark fields. Of course, it is especially true for lattice calculations,
in which gauge field configurations are themselves found
numerically. We start with this case and then proceed to
continuous case.

In lattice formulation coordinates are discretized, so Dirac
equation for the quark propagator
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M S(x, x') =8(x—x')
M=iD, +im (4.64)

can be considered as a problem of inversion of Dirac matrix:
S=1/M. Many numerical methods for matrix inversion are known,
but the problem is that the matrix M is very large: for n* lattice it
has n® elements, to say nothing on spin and colour degrees of
freedom.

The most powerful standard methods are the variants of Jacobi
relaxation methods, based on the auxiliary equation

%-S.;i = M Bt] (4.65)
With «time» going on, we approach the inverse matrix.
Gauss-Ziegel method substitute new S(i, j) into this process before
the whole matrix is summed up, and this makes convergernce
somewhat faster. There are also more engineous variants, say the
«conjugate gradients method advocated in [7.44]. The general
defect of them all is that convergence is not garanteed.

Matrix inversion is too complicated method, even at
supercomputers it takes about an hour per one matrix! On the ot-
her hand, the inverse matrix contains a lot of information: it
describes propagation amplitude from each point to any other one.
Often we do not need it, and are interested only in one particular
initial and final point (or only one matrix element). Obviously,
large information can partly be used by averaging, but still it is
desirable to have more effective algorithms.

The general idea is that instead of making some regular
straightforward calculations one should introduce some random
element in the calculation. One particular example based on
classical Neumann-Ulam expansion was suggested by J. Kuti
[4.28]. Let us write M=1—K and expand it in powers of K:

1
Sy= (rﬁ. )ij='ﬁ'ij+ Kij+ Ku K+ ... (4.66)
This formula can be understood as some random work over lattice
with the propagation amplitude K, while S(i, j) is a sum over all
paths leading from i to j. Similar idea is used in hopping parame-

ter expansion [4.30, 4.31] for Wilson quarks, the amplitude for one
step is here
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E(1—v.) Usy (4.67)

So contour of length L contains the factor &.

The general defect of all such methods is that paths are chosen
completely randomly, so for large enough L (many integration
variables) their efficiency becomes rather poor, as for «naive»
Monte-Carlo integration. Unfortunately, more effective methods like
Methropolis algorithm can not be used because the measure is not
positive. Still I think some partial importance sampling may turn
very useful here.

Now we return to continuous space-time and start with the
simplest case of the nonrelativistic particle without internal degrees
of freedom moving in some potential well. In this case stochastic
algorithms applied to Feynman path integrals give very good
results. The simplest possibility is to generate ensemble of
Gaussian free paths with subsequent averaging of the interaction
factor

G(x)=G"™(x){ exp (— § V(x)dr) ) (4.68)
0
where
G"** = exp (—mm,) [ (2nm,) (4.69)

However, if the averaged factor is too large or too small, such
averaging may need too large statistics. In such case one may use
the «adiabatic switching» method suggested in Ref. [4.32]. Let us
consider an action of the type:

S,=Ydr i’-‘g-z- + T]V(x)] (4.70)

where parameter n varies between 0 and 1. The average potential
can be obtained by derivative over n of the statistical sum:

{V),Iz—%[ln § Dxe ] 4.71)

Integrating over n backward one finds the relation
1
G(0, 0, 7)=G"*(0,0, v) exp(—§ dn(V),) (4.72)
1]
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where the subscript n mean averaging with the action (4.70). It is
convenient to increase n gradually, so that no relaxation be needed.
Since in this case the exponent is averaged, not the whole
correction factor, good results can be obtained even for very large
effects. -

Now we proceed to particles with internal degrees of freedom,
spin or colour, which make the propagator to become a matrix.
Say, for nonrelativistic particle in coloured field (7.68) is
generalized as

S(x)=S"*(x){ Pexp (% § Azt dx,.) ; (4.73)

Unfortunately, the second more effective method can nat be used
because Metropolis-type algorithms are inapplicable for non-positive
weights.

For relativistic propagators the immediate problem is that there
is no simple substitute for Feynman path-integral representation.
This question is a kind of «thegretical folklore», and it was many
times considered in literature (see papers mentioned in [4.33] and
many others). The most useful formalism is probably that using
proper time, as suggested by Fock and Schwinger long ago. At-
tempts to make effective numerical calculations in such framework
was recently made by Zhirov [4.34], based on the following
path-integral representation

32(1'54- im) S ds SDIM(T) Pexp {— § dt L[x(t)]}
: 0 0
LlAt)]=m®+ 1‘; — A % Oy Gut” (4.74)

(for the spinor case).

Finally we comment on very interesting idea suggested by
Parisi [4.35] which may allow to reduce the statistics needed in
stochastic calculation of sufficiently small correlators. This problem
is very severe for hadronic spectroscopy on the lattice, because
accurate evaluation of masses can only be made from the
correlator measurements at large enough distances.

Consider a system with the action

S, =S—58-0(,) (3.75)

where S, and S, are two actions which differ by some small term
26

and the operator O is averaged over all space:
O(to) = dx O(x, t,) (4.76)

and 6 is just some small parameter. Expanding the average of
O (t,) with action S, one obtains

(O(t) s, =€0(t)) )5, + 8L CO(t,) O(ty) ) s, —
—(O(t) )5, (O(to) )5, 1+ O(57) (4.77)

So at sufficiently small 6 the correlator may be estimated as the
difference of (O(¢#))1 and (O(¢,))0 divided by 8. Now, if one ma-
ke the calculation of both quantities in the same stochastic process,
the statistical noise can be essentially canceled. Evidently, in order
it to take place one should hold two processes to be as close as
possible, so small (Langevin) shifts should be made. More on this
method and its applications see in Refs [3.50, 3.68].
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