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ABSTRACT

This preprint contains discussion of the Euclidean
formulation ol gauge theories on the four-dimentional
lattice. In order to make the presentation more
transparant we start with the simplest example ol
quantum mechanical system, namely a particle in
time-independent one-dimentional potential (see
section 3.1) and explain how numerical methods
currently used work in this case (see section 3.2).
Only then we pass to gauge theories on the lattice
and review some results obtained numerically, see
sections 3.3 and 3.4. Fipally we turn to complications
caused by the introduction of the quark fields.

©Hucruryr adeproid ¢pususu CO AH CCCP, 1983

3. QCD ON THE LATTICE

.The formulation and recent development of lattice gauge the-
ories have demonstrated once more how fruitiul some well known
method may happen to be in some completely new framework.
Mpst nf_ t.he ideas used in the considerations of lattice gauge the-
ories originate from the theory of critical phenomena in statistical
mechanics, especially of the spin systems. As far as these questions
are discussed in details in reviews [3.1—3.5], we consider them
very briefly in section 3.1. We use the simplest example of the
quant_um system, namely one particle in time-independent
one-dimensional potential, for which the statistical analog system in
lattice approximation can also be formulated.

Returning to QCD, one may say that lattice formulation has
revealed completely new aspects of this theory, connected with
strong coupling expansion, Wilson confinement on the lattice etc.
Huu.fever. the real turning point was the discovery of «early
scaling» phenomenon, due to which numerical simulations turn out
to be very practical method of investigations of complicated
quantum field theory problems. Many theorists put aside other met-
hods and took places at the computer terminals.

No:w few years have passed and, naturally, some primary
enthusiasm has disappeared. It is evident that this method is very
powerful indeed, for it allows to deal with quantum sysiems of
various types with thousends degrees of freedom! However, it beca-
me clear that straightforward applications to QCD problems is not
very practical at the moment due to the complications connected
with the presence of light quarks. In order to make adequate ac-
count for virtual quarks in the QCD vacuum one needs new ideas
(and, possibly, new computers).

However, there is a lot of other problems in physics, being
much simpler than those connected with the QCD vacuum, which
can be effectively solved by numerical simulations in similar
(«lattice») approximation. They include different cases in which we
hax_fe quantum system with several nonseparable
yarlaples—traditinnal methods based on Schredinger equation are
in this case very inadequate. With this in mind, we present some
introductory consideration of the method in section 3.2 using the
simplest quantum mechanical examples.

. Only after demonstration of the method performance in the
su_n[.?lest cases we come to gauge theories in section 3.3. The
original idea of lattice formulation is to regularize the theory in an
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exactly gauge invariant way. The next section 3.4 contains some
review of particular results obtained by numerical methods for pure
gauge systems, while the last section 3.5 deals with quarks on the
lattice. Recent attempts to make some spectroscopic calculations in
QCD are postponed till section 5.1.

Finally, 1 would like to make few remarks concerning some
psychological and organizational changes in our science connected
with wide application of numerical methods. The theorists now not
only have mastered the numerical methods developed previously,
but also actively participate in their development. This activity is
now recognized as a part of nowdays theoretical physics, as in last
century the development of analytical methods for the solution of
the «mathematical physics» equations. It seems that this process of
«computerization» is irreversible.

In principle, it reflects real situation. Many complicated
problems can now be solved starting from first principles, provided
suitable numerical method is developed. Moreover, in many cases
this is the only possible approach. However, doing such «numerical
experiments» one should keep in mind that their final aim is not
only the needed numbers, but also deeper understanding of the
phenomenon. This is especially true for the QCD vacuum problem,
for now we make only first steps toward its understanding and are
not able to answer even simplest qualitative questions.

There appear also important organizational changes, say rather
large collaborations, previously typical for experimental works.
Even in this respect theorists are going to have some leading
position: there are rumors about «grand unification» of these
groups into some unprecedent world-wide collaboration. And also,
one should pay attention to new progressive series of «Nuclear
physics» called «Field theory and statistical systems».

3.1. Lattice approximation in quantum mechanics

In this section we discuss some interesting correspondence
between the problems of quantum and statistical mechanics. In
very general terms their connections reflect the undeterministic,
statistical nature of quantities considered, being a subject for
quantum or thermal f[luctuations. Of course, there are also more
formal relations between them, allowing for fruitiul information ex-
change.

Evidently, these two disciplines consider completely different
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kind of problems. In quantum mechanics one is interested in time
development of some dynamical process. The calculated quantity is
the probability amplitude for transition between definite initial and
flna!‘ states. In statistical mechanics time independent (equilibrium)
configurations are usually considered, and one looks for the
probability of some definite state in the ensemble. However it is
possible in some cases to reformulate the problem from one
iang”uatge to another, with mutual benefit.
- Is reasonable to start with the simplest exam

systgm, being one particle in time-indepegdent nne-gilriei}lfsigl:;z?tgg
tential V(x). In section 2.1 we have already considered the first
necessary step—namely, transition from real time fy to imagina;y
one v, As a result, the evolution operator exp(ift,) is substituted
by exp(—Hzt,), similar to statistical Boltsmann factor. The second
step, necessary for numerical calculations, is the «lattices
approximation, in which the imaginary time To is split into N+ 1
steps of length a, so 1,= (M+1)+a. Thus, the time development of
our system (or the particle path) can be parametrized by N

numbers xx=x(t:), Ta=ak (the end points are so far fixed). Now
our problem can be reformulated as a statmechanical problem of
some anq]ng system, being in this case the one-dimensional lattice
w:th_«spms» xe at the sites, being arbitrary real numbers. The
Hamiltonian of this statistical system can be written as fol luw:s
N :
H= [%i[-ffz-r—:—xk)z-l*v[xk}ﬂ] (3.1)
k=0

where we have approximated time derivatives by simple difference
of neighbouring «spins». Of course, one mav wuse another
approximation for the derivative which is more pre:cis&, but in this
case ’r_he Hamiltonian (3.1) is substituted by some other and more
mn:pl:cqted -.;_-xtpression. The temperature of our statistical analog
system is put to unity (for the origi o
i Pi}ank consta}n}[, original quantum problem it is, in

It is quite evident by the construction that at small a limit all
such statls_.tica] analogs should produce essentially the same result
However, il one just starts with these systems without reference tr_;
quantum mechanics, such universality is not at all evident. This is
an example of the benefit for statmechanical problems resulting
from such analogies. : -
: pr, let us demonstrate their utility in other direction. It is
intuitively clear that for long enough lattice «Spins» forg.et the
boundary conditions and form some equilibrium distribution over x.
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In particular, the energy density per unite time t, tends to some
limit. The correlations between «spins» decay exponentially with
distance, so some well defined correlation length 1,  can be
defined. What all this means in terms of the quantum problem?
long time propagation amplitude really factorizes as follows

Long time propagation amplitude really factorizes as iollows
G, %7, T Yelx)¥ dxr) exp (—Eqo) (3.2)

where ¥, and E, are the wave function and energy of the ground
state. The energy density per unite 1, as it becomes clear from
(3.2) is just E,. The correlation length is the «mass gap», or the
distance between the ground and first excited state . This statement
was demonstrated in section 2.1, also by straightforward expansion
over the stationary states of the quantum problem.

The next comment is that not only «the long lattice» provides
valuable information: the finite one is also of great interest. Let us
choose periodic boundary conditions x;=x;=x and integrate over x.
Using the normalization condition of the wave function one finds

§ G(x,x,1) dx=73 exp (—Eato) (3.3)

which is the statistical sum for the quantum system at temperature
T=h/t,. Therefore, finite lattice with the periodic boundary
condition provides an information concerning quantum system at
nonzero temperature.

The last remark in this section deals with the limit a—0, in
which lattice is substituted by continuum case of interest. Clear
that in real calculation a should be small compared to typical time
scale of the problem. However, in terms of statistical analog
systems this natural condition looks rather nontrivial: we are

interested in special case in which the correlation length is much
larger than the lattice spacing a! In statistical systems such
long-range fluctuations take place only near phase transitions
(remember the classical example of critical opalescence). It is near
phase transitions where system behaviour becomes independent on
the details of the Hamiltonian at the «atomic» scale a. The last sta-
tement is highly nontrivial, its understanding was a great
achievement of the theory (say, it was marked by Nobel prize for
K.Wilson).

In the case of field theory in four-dimensional space-time the
statistical analog systems are usually formulated on
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four-dimensional lattices (although one may also use the so called
Hamiltonian formulation [3.18] with continuous time) and study
their phase transitions. As soon as they are found, the continuum
limit may be understood as some quantum field theory.

3.2. Numerical simulation of configuration ensemble

Feynman formulation of quantum field theory based on
functional integrals is very elegant and convenient for derivation of
various general formulae and therefore it is widely used in field
theory framework. However, only Gaussian functional integrals can
be calculate analytically, which make their applications rather
restricted.

Recently it was realised that it can also be a good framework
for application of powerful numerical methods, which are in
principle applicable for the integrals of general type. It is probably
useful to start with the explanation why it was not noticed much
earlier. The main question can well be posed in the framework of
the simplest statistical analog system, discussed in the preceeding
section. How many «spins» should be taken in order to have good
description of the ground state wave function?

There are two main conditions. First the typical time scale of

the problem (the correlation length) should be much larger than
lattice spacing

Teor 2>

The second necessary condition is that the whole length of the
lattice should be much larger than the correlation length

a- (N'l‘ 1] =Tg}Tmr

with two inequalities of such type one can see that it is hardly
possible to obtain good results with N less than, say, few
hundreds. Now, the statistical sum is taken over all «spins» x; and
therefore we have to compute the integral over all of them.
However, it can easily be checked that all «simple minded» met-
hods of integration fail in the case of so many variables. For
example, the ordinary Monte-Carlo method of «random argument»
works up to O(10) variables, but for O(100) ones most of the
points happen to be in the inessential integration region and
therefore application of this simple method is hopeless. Thus, one
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should select points not completely randomly, but making some -

importance sampling.

In the computer mathematics some suitable methods of such
selective type are known, which make such problem solvable up to
about million of variables at existing computers. Although they
were suggested about 30 years ago (and, in fact, by physicists
[3.42] ), they were not used for evaluation of functional integrals
untill recent pionear works by M. Creutz. I think the most obvious
explanation for this fact is that they were simply unknown for most
of the theorists occupied by quantum field theory problems. Now
the situation in this respect is improved, but still it is probably
reasonable to explain main ideas of these algorithms, for they are
rather simple. And also, as it was mentioned in the introduction of
this section, the method under consideration may have much wider
field of applications.

The first point is that instead of direct evaluation of the
integral we generate the ensemble of the points distributed ac-
cording to some probability function W (x). With such ensemble
average values of some functions [(x)

W d
<;>Em” (x) dx )

§ W(x) dx

can be calculated as simple arithmetic average value over the
ensemble. If W(x) is much more complicated than f[(x), this
approach is reasonable.

For one variable x this problem is solved by simple method
suggested at early days of computer mathematics. Let us take a
point on the plane (x,y) where x and W(x) are defined with ho-
mogeneous weight. If y<W(x), the point is below the curve, it is
taken into ensemble, otherwise it is rejected. It is however evident
that for many variables this method is inadequate due to the same
reason as simple Monte-Carlo integration: too large fraction of
points are rejected.

Now we come to the main idea of Metropolis et al. [3.42]: the
new trial point is taken by some small shiit of the previouse one,
after which the comparison between some auxiliary random
variable y and W (x) is made as explained above. As a result, the
point never goes too far from the essential region where W(x) is
large, therefore the method is very effective. It is clear that the
optimal variation of x is such that the weight is changed by the
order of unity.
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For spin systems (remember the analog system of the
preceeding section) the method «updates» each spin along the
lattice in some order, one after another. The updating of all
variables is called the «iteration» of the system. Calculations start
with some arbitrary configuration, than there is «relaxation»
process in which all averages tend toward their equilibrium values.
When they are reasonably stable, the «measurements» are made,
consisting in multiple updating and evaluation of the needed
average values (or recording of configurations) from time to time.
The process of ensemble generation is finished when the statistics
needed is collected.

Another method used is the heat bath method, in which new
value of some variable x; is found not from the old one, but
directly inverting the weight function at fixed other variables. It
produces relaxation per smaller amount of iterations, but leads to
more complicated calculations and in most cases Metropolis method
is faster. Last years Langevin equation is also much discussed
[3.50—3.52], which corresponds to Metropolis method in the limit
of very small displacements of the point x, so that its stochastic
trajectory in «computer time» { can be described by the differential
equation | |

A e e (3.5)

Here H is the Hamiltonian and n. random variable with Gaussian
distribution and the correlator

e () (17) ) =280 (1) (3.6)

The standard transition to Fokker-Plank equation for the
probability distribution leads to

dP(x,t) 9*°P(x,t) & (dH
e :Ec* _'E(_é?ﬂx’f)) 1)

It is easy to see that equilibrium distribution is indeed exp (~H (x)).
With smaller step the relaxation becomes longer, but it produces
more accurate correlators, see discussion of this idea in section 4.4.
Also analytic approach based on Langevin equation is now
developing, the so called stochastic quantization [1.8].

Now we turn to some examples of how this method works.
Field theory is postponed, and we start with simplest quantum
mechanical problems. First examples of this type were linear and
two-well nonlinear oscillators considered by Freedman and Creutz
[3.44], and some set of model examples of increasing complexity
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(up to two electron atoms and four nucleon nuclei) was discussed
by Zhirov and myself in [3.45].

At Fig.l we show equilibrium x distribution for the two-well
oscillator [3.44] compared to |W,(x)|°. In order to get such result
one needs about 200 points and few hundreds of iterations: even
for rather modest computers it takes less than a minute of CPU,

The second example deals with the operator average values, in
particular, with the average energy. Somewhat unexpected difficulty
is the fact that «naive» kinetic energy diverges at a—0. Really, co-
ordinate displacement per time a is (a/m)'/? and therefore

()~ (Ax®) Ja’ ~1 Jam — oo (3.8)
So one may either use «renormalized» definition [3.44]

P {{xk+1—xk:1£xk_xk—1]> (3.9)

or, which is much better, to use the virial theorem

—tim {8 y[*0V
fimtin (£3[28 vvio])
The ground state energy of the two-well oscillator, obtained in such
way, is shown at Fig.2. The action has one parameter f

S=§d‘t’ [‘—E;-l-[x*—-fziz] (L)

and we plot E as a function of (4/3)-f° the action of the instanton
solution. We have found completely diiferent dependence on the
lattice spacing a in case of narrow and wide barriers, see Fig.3
where data are shown for f=1.4 (transparent barrier) and [f=1.6
(wide barrier). Completely wrong results at large step a in case of
wide barrier is connected with the specific phenomenon, «lattice
instantons», known in more complicated framework as well. Due to
discrete time it is possible to jump over the potential barrier per
one step, so that no point is under it. Evidently, action is in this
case evaluated incorrectly and tunneling is not suppressed. In
order to overcome this phenomenon we have used the modified
action in which [V (xe) + V(xe+,)]/2 is changed to the integral over
straight line
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{;.S dt V(x=xk+ i— {xk+,—-x¢}) (3.12)

In betweer_l: this is sufficient to obtain much better results. Such
srmp_le +tr1cks can also be very important for field theory
appllcgtiops, where it is not possible technically to get rid of such
cﬂmph_catmn «by brut force», or very small a. The last example of
numerical calculations in quantum mechanics is shown at Fig.4
They correspond to measured correlation function 3

K(t) ={(x(7)x(0)) (3.13)

in the two-well oscillator [3.45]. The exponential behaviour at

large enough time is seen, and from its slo e th iy
' . : e splitting of
first states is evaluated, see Fig.l in chapter Ii)? : i

Finally, some comments on other ossible icati
ground state energies of simplest atomspand nuc?sipzz?thggzélyTE:
evaluateq by this method [3.45]. We have also observed particle
evaporation from these systems if To Was not large enough (th
Femperature F'=1/7, sufficiently large), which is also n% somg
interest fc:w_r applications. Method is also adequate for different
pmb!ems in which one is interested in tunneling through some
muttq:hmensmqat barrier—say in evaluation of the probability for
chemical reaction of some complicated molecules. In this case it is
also very helpful that nonzero temperature can be included in
simple way, while in traditional approach one has to compute
energy spectra and make explicite evaluation of statistical sums
fﬂimm?g dificulties of this approach we may mention account for
ld&[‘!.[lﬂ.al Fermions: the amplitudes should be antisymmetrized, but
statistical methods do not work for nonpositive weight funcfiuns.

3.3. Gauge fields on the lattice

In this section we consider formulation of

fie.lcl theory on the lattice in its simplest furr:]hesfgggtueg !;g;uﬁe
Wilson [3.4] (other possibilities are discussed in Refs‘
[3.10—'3.18]). It is defined on the oriented links of the cubic four
FllmEHS{D{]aI lattice, which are usually indicated as (x, pn) where x
is the initial point and n==*123,4 gives the direction. Note that
(xu +ae,, —p) has the orientation opposite to (x, u). We also will
need elementary squares or plaquettes, numerated as (x, i, V).
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Definition of the gauge field variables directly follows from the
original idea of Yang and Mills, the principle of local gauge
invariance. According to it, the direction of the axes in internal
space at each lattice site is completely arbitrary. Derivatives in
such theory enter only togather with veclor «compensating fields»
in covariant combinations

iD, =0, + %A‘; ¢ (3.14)
which have simpler (transformation law according to gauge
tranformations. This consideration explains why gauge fields are
defined on the links rather than sites, as «matter» flields.

[t is also clear that the needed variables should describe
relative orientation of axis in two neighbouring siles and be
therefore transformed as |

Uba=Q () U .8 (xa+ae,) (3.15)

at gauge transformation Q(x). For small a the relation to potential
is simple

S oy fg-flﬁt”a+0{uﬂ) (3.16)
while for finite length it is the so called path-ordered exponent
. N p
=% ﬁ aga =S | ﬁ OF o W40 A
U(e) Pexp( ; §Aut d.a:“) M’“E(H £ Asxy a,x) (3.17)

which depends on the path and has the transiormation law (3.15).
(By the way, interesting attempts to formulate gauge field theory
in terms of such «contour variables» are discussed in [1.46]).

As it follows Irom (3.14), for the formulation oi the gauge
invariant action one needs closed contours. The minimal possibility
is the elementary plaquette, so we come to Wilson action

= L +yg4

S[U]-?HE[I_ERETWUUU U }] | (3.18)
in which summation is rgade over the all plaquettes on the lattice.
Respectively, statistical sum contains the integration over all U,
at all links

Z=SH AU, exp [—S(U)] (3.19)
X.p

2

over the gauge group volume. Theory of such invariant integration
is known to mathematicians for a long time, but it may be

reasonable to outline it for most important SU(2) and SU(3)
gauge groups. In the former case one may use Euler angles

U=exp (ig'Ad/2)
A’=1, n;=cos B, n.=sin 6 cos ¢ o v

and the measure is just the element of the tree-dimensional sphere

Pady . ,q¢
e g .
dl Tr o e (3.21)

The SU(3) case also can be reduced to some spheres, in order

to show this it is helpful to write the matrix as three complex vec-
tors |

X; Xz %5
U=1§ y, Y y3 (3.22)
Z) 29 24

In such notations, unitarity means that
xx' =yy'=z2"=|

xy =xz =yz' =0 (3.23)

Nu*:u', th_e first condition means that 6 parameters of x lie on
5-dimensional sphere, y is orthogonal to x and lies on

3-dimensional sphere, and finally z is determined by x and u
uniquely: {

Zi=BinXi Yt (3.24)

This method can be generalized in the obvious way.
The next step is the demonstration of the fact that the action

(3.18) has correct continuous limit. Remind Stokes theorem for
abelian field

§ Audx,= \F, do,. . (3.25)
and apply it to elementary plaquette in some weakly varying field:

S{U}ﬁézexp [Fuva®+0(a®) ] (3.26)

so that at small a one has



S(U}m(—wa-]gj) gdxu;Fﬁv (3.27)

For nonabelian field one does not have (3.25), but more lengthy
calculation leads to the same result, which is essentially due to
gauge invariance. 17 -

As for the correctness of the statistical sum (3.19) in this limit,
we may only say that we do not precisely know what is the correct
continuum limit, so the lattice theory may be considered as its
constructive dciinition. Still one should define some pariicylar
limiting procedure, and also check whether the limit really exists.

The physical _ground for this definition is the obvious
consideration that physical quantities (like lambda parameter)
should be stable in such limit

s [_ 8’ const (3.28)
A== : exp . W g

which prescribe the particular behaviour of g(a) at small a. As
discussed in the section 3.1, existence of the limit can also be
expressed as the following question: does the statistical analog
system under consideration posess some second order ph‘ase
transition at zero coupling? So far we have only numerical
evidences that it is the case.

Finally at the end of this section we consider the confinement
problem for the lattice theories, again following Wilson’s work
[3.6]. He has pointed out that at large g one may expand over
/g, which is analogous to the so-called high temperature ex-
pansion in statistical mechanics. The so-called Wilson loop average
value is defined as follows:

W(C) = NL (Tr !lux,,‘> - Ni- <Tr Pexp[%g-fsgtlﬁf“ dxu] ) (3.29)

and for plain contour C it can easily be computa_zd in this
approximation. It is clear that average U is zero and in order to
have nozero result one needs n-th order in 1/g%(see Fig.5 for the
explanation) where n is the area (in unites ol a?).

Wic)~exp (—n- k) (3.30)

This result means confinement. In order to see this_ let us take
contour TXL with T being oriented along the time axis. II
'>L>a one has

14

Wic)~exp [—T-E(L)] (3.31)

where E(L) is by definition the energy of two charges at distance
L. Comparing to (3.29) one finds the famous linear potential

E(Ly=k-L : (3.32)

corresponding to a string with tension &.

In order to prove that this property is present in continuous
theory one still has to show that it is not lost when one comes
from large to small g. Recently this property at any f[inite g was
proven for SU(2) theory by Tomboulis [3.37], and even in the

limit of small g which is unfortunately somewhat weaker than that
needed for transition to continuum limit.

3.4. Numerical studies of lattice gauge theories

The simplest gauge theory is that with abelian U(l) internal
symmetry, so it was studied first. We remind the reader that
Wilson proof of confinement in strong coupling regime outlined
above corresponds to this case as well as for the nonabelian the-
ories, but at small coupling existence of free photons is naturally
expected. The obvious way out is some deconfinement phase
transition at finite coupling. Its discovery in Ref, [3.54] (see also
references therein) was thé first important result obtained by
numerical methods.

However, the turning point of this approach was the discovery
made by Creutz [3.48] of the so called «early scalings phenomenon
in the simpiest nonabelian SU(2) theory. It was very important
psychologically, for it has demonstrated thai some problems of
quantum field theory are solvable at available computers.

In this work Wilson confinement criterium considered in the
preceeding section was checked by evaluation of Wilson loop
average value over the configuration ensemble generated
numerically. Some helpful trick was suggested in this work: the
lollowing combination was measured

W, ) Wi—1,j—1)
Wi,i—1) W(i—1, j)

x{i ) = (3.33)
where W (i, j) stands for Wilson loop value for planar loop iXj (in
lattice unites a®). In the combination (3.33) two types of
divergencies (at small a) are canceled. They are mass
renormalization of the point charge (proportional to loop perimeter)
as well as the logarithmic singularity due to rapid turn of the
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charge at the loop corners.

The measured value of (3.33) directly provides the string
tension k values, plotted as a function of g at Fig.6. The
remarkable fact observed is some turn of this curve and reasonable
agreement with weak coupling behaviour fixed by the asimptotic
freedom

k= const- A}

_ ke e e, S )
8 b S0 e )""

Note the following aspect of this relation: both the string
tension £ and A, are physical quantities which can be measured ex-
perimentally. Therefore, connection between them (3.34) can be
checked! The value of k£ can be taken from masses of large orbital
momentum excitations,it is expressed in terms of Regge slope o

l

- —
2na’

~ (420 MeV)? (3.39)

but the value of lambda is so far known with rather poor precision.

For pure gauge theories considered in this section one should
introduce some convention, relating their parameters to physical
unites. The most natural choice is to put lambda equal to that in
real world, but in practice people consider fixed £ (3.35) and use
(3.34) for «lambda measurements». For SU(2) theory increase of
the lattice size has not lead to significant violation of scaling
(3.34), but for SU(3) case the situation is different, see Fig.7.
Most likely, it is some trace of «lattice artifacts» connected with
specific phase transitions, see original discussion in [3.13] and
recent considerations in Ref. [3.67], from which the Fig.7 is taken.

This violation of scaling is rather large: the lambda values ob-
tained by Creutz [3.58] and Pietarinen [3.59] for SU(3) group are
as follows

(6+1.5)-1073

A *w’k"x{ o (3.36
L/ (7£2)-10-3 _ )

while at larger lattice sites number it is possible to study smaller
couplings and obtain quite different value
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A/ VR =(10+=12)10 2~4.2-5 MeV (3.37)

which is about a factor 2 larger! So, different authors use different
scales and one should be careful at this point. In what follows we
consider latest scale (3.37). _

During last few years rather impressive work have been done,
devoted to various tests of internal consistency of the calculations.
In particular, the rotational symmetry is shown to be recovered
[3.05], results do not depend on the particular lattice action [3.56],
glc.

Moreover, some particular results were obtained. being of some
interest for the phenomenology. Bhanot and Rebbi [3.61] have
found the simplest perturbative phenomenon—the Coulomb force
between static quarks at small distances. Rather impressive work
was made for the calculation of glue-ball masses, see Table 1.
Note, that the lightest state is scalar glue-ball, with mass of about
300 A,. The «old» scale of lambda put it to 0.6—0.7 GeV (the
place of the so-called «sigma meson» seen as some enhancement in
pion-pion scattering), but the «new» one shift it to about 1.3 GeV.
The last value corresponds to e-meson, quite similar value is also
suggesled by various estimates by QCD sum rules, see section 5.8.

The value of gluonic condensate was evaluated by two different
methods. The most straightiorward one is the subtraction of the
perturbative part from the «average plaquette» [3.76], but it is
more covenient [3.74] to consider larger loops and connect their
average values with OPE expression (to be derived in section 4.2).
We present results ol measurements by both methods for SU(3)

group

(8%5)-10'"° [3.76]

GY) /AL =
(gGY)/ {(3_95i_5ﬁ).109 [3.78]

Irom which one can see that accuracy is rather poor and connected
not only with statistical errors given.

With the scale (3.36) these results correspond to the condensate
in pure gauge SU(3) theory to be about 30, 3 GeV* respectively.
It is hardly reasonable to make averaging of these conflicting data,
but in most cases results obtained seem to produce too large effect
compared to phenomenological value 0.5 GeV* The inclusion of
quarks makes the condensate smaller, so this tendency may contain
some truth in it.
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Interesting to note that for the SU(2) group results are
essentially smaller, which can not be explained by naive large N

counting ((gG)*®) =0(N). For example, high statistics wcalculation.

for SU(2) group was recently reported by Ishikawa et al. Using
the former method they have found

((gG)?y /At =(0.8+0.04).10°  [3.79]

The = most dramatic part of the story is connected with
«huntings for the topologically nontrivial objects in gluonic
vacuum. Some lattice monopoles and other artifacts are now rather
well understood, but they are not present in continuous limit and
are important only for the optimal choice of the action. Evidently,
the most interesting type of such objects is the instantons, predicted
by the semiclassical approximation for the continuous theory.

However, the topological arguments leading to their existence
are not applicable on the lattice in strict sence, say «continuous
gauge transiormations» become meaningless. This  fact makes
definition of the topological charge on the lattice rather tricky, see
discussion in Refs [3.80—-3.84, 3.88]. Most of the work in this
direction is concentrated around the evaluation of the so called to-
pological susceptibility

A=(§dxQ(x) Q(0))

z

0 = % (G2 6% (3.38)

In section 5.8 we obtain some estimate for it [5.58]
A= (3+6)-10"* GeV* (3.39)

while in earlier works [5.60-—5.62] similar ideas in somewhat
different context have lead to

' 4
A ’;—“(m: +m2,—2mi)e 102 GeV* (3.40)

In order to put it in simple terms we may mention that these
numbers correspond approximately to one unite of the topological
charge (positive or negative) per (fermi)* (in good agreement with
the instanton liquid model).

Measurements of A on the lattice made in Refs [3.85—3.89]
have produced positive results: nonzero A was found, with

i<
11‘5

reasonable scaling behaviour. Unfortunately, the numerical wvalue
was found to be about

A= (10*=10°)A} (3.41)

which is about 1-—2 orders of magnitude smaller than (3.39, 3.40)!
(There is one exception: in Ref. [3.88] A was found of reasonable
magnitude, in contradiction to Ref. [3.89] using similar algorithm).
This observation is in evident contrast to the gluon condensate
value considered above. In short, lattice configurations are very far
from being «locally selfdual» (see more on this in sect. 5.8).
Ishikawa et al. have made special studies of this interesting point
[3.87], looking for the distribution over topological charge inside
some small volume inside the lattice. Agafn, no trace of large
amount of instantons suggested by (3.39, 3.40) and other
phenomenological considerations!

One should not consider this fact to be very unexpected, be-
cause experience of simplests model examples (including 1+ 1
dimensional sigma model [3.80], nonlinear oscillator [3.45] and
pendilum [3.82]) clearly demonstrates that in order to have correct
description of tunneling phenomena (instantons) one needs lattices
with hundreds of points along the time axis. In other words, with
lattice spacing a about 0.2--0.3 fermi it is hardly possible to
describe correctly instantons of radius 0.3 fermi.

* 3.5. Quarks on the lattice

At first sight the lattice formulation for quark fields is much
simpler than for gluonic ones, for they are not connected with
derivatives and have rather simple gauge transformation law:

¥ (x) =R (x)¥(x) (3.42)

so their natural place is sites of the lattice. The form of action
suggested originally by Wilson [3.6] is rather evident:

S e % E [qf_xvuux,pq'rx—!—u _rl:F;_+“vFUj:“lijx} {343}

where the second term is needed in order to make it real. Note that
this action is not only gauge invariant, but also posesses exact
chiral symmetry

Y =0, Y= QY
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1y

IP'L,R —_ 2 "P' y Q]E‘EQ? (3+44)

U{]furtunately, so natural action has serious defect, pointed out
by Wilson in [3.9]. It is most transparently seen if one calculates

the inverse propagator for a quark with momentum p
4

]

$p) == 3 ysin(pa) (3.45)

&
ad p
In !ocai ]ir;nit of small a it seems to be reduced to correct
continuum limit S™'=ip,y,, but in fact there are additional modes
‘with p~1/a which are not decoupled in this limit. Note that

propagating modes (in Minkowski space) are those which satisfv
the equation . ;

sh*(pea) =sin?(p.a) (3.46)

if the propagation is along coordinate x. The substitution

pr=n/2—p, (3.47)
-

does not violate (3.46) and therefore each solution is copied many
times! Note also, that in (3.45) one has the first power of sin (pa),
so hall of the copies give the contribution of the opposite sign. The
last comment is relevant for the observation, that although this
action posesses exact chiral symmetry, the Adler-Bell-Jackiw
anomaly [1.23] is absent: «normal» fermions are canceled by the
«wrong sign* copies»! Obviously such formulation should be
improved, for it does not correspond to real world.

Another (improved) formulation for the lattice quarks was
suggested by Wilson in [3.9], the action in this case is equal to

S =kx§ [Pl YU Wepu+ Ve (14 VULY]—-ZV. ¥, (3.48)
v b

and in cuntr:ﬂst to (3.43) it contains new «hopping» parameter K
mnn_ected with quark mass. This can be seen in transition to
continuous limit according to expressions

{I3 1/2 :
i1‘:".,5,_-—"( ﬁ) LF(.I;I

1/2

w‘w:( %) / ['»p* (x) +a ?”"] (3.49)

7EM

one finds the correct action

S=— {dx (VoW + mTW) (3.50)
w here
m=(1—8K) /2Ka (3.51)

Therefore, massless quarks are obtained in some additional limit
K—1/8 (the latter number is modified in the interacting theory and
is substituted by some critical value K.). Resrectively, chiral
symmetry is recovered only in this limit.

The inverse propagator is for this action as follows:

ST p) =1—K Z [(1 +yp)e " + (1—y,) "] (3.52)
18

and it has only one massless mode in the continuous limit, so the

problem ol unwanted copies is solved «by brute iorces.

Another possibility posessing exact chiral symmetry is «thinning
of degrees of freedom» with direct use ol exira copies, see
comprehensive discussion in [3.5] (the original work is [3.91]).

With the theory formulated as statistical problem one should
still develop practical computational algorithms. The obvious first
step is formal integration over quark fields, so that "Matew-Salam
determinant appears:

{ DT DW= = det M (3.53)

At Tirst sight the problem is reduced to the previous one for
only gauge fields remain. However, in contrast to usual local
actions this functional determinant is extremely nonlocal quantity.
In particular, for the updating process one needs evaluation of its
variation ii only one U,, is changed. As noted in [3.89, 3.90] the
following formula is helpiul here

det (M +8M) /det (M) =det (1+M~'8M) (3.54)

but it contains the inverse matrix. Standard methods need about n®

operations with n, the order of the matrix, is of the order of the

number of lattice sites! Some modern development we discuss in
section 4.4,

Another popular method [3.84] is based on the introduction of
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some auxiliary «pseudofermionic» field and application of the

relation

SDtp exp ( —@Map) ~ det~ ' (M) {3553

Note that in principle one need antiperiod;
eriodic boundary iti
pseudofermions. 3 il
F.)ne more method suggested in [3.85—3.87] is expansion in
powers of «hopping parameter> K. Clear that L-th term is connec-
tec! with contours of length L.a, so this method is practical if
qudrtl«_;s are hralthta-r heavy and long loops are not important. In
practice such loops are taken randomly, but the effici .
. ¥ i - = : EII : )
Is in this case rather severe. TR
Nc}:w tl_le maip question can be posed: is this
determinant-induced interaction really important, or just makes
some small correction to gauge field action? We consider it in
somewhat more general framework in section 8.3, and now just
present some examples from current literature.

.f*l‘l"St‘ applications of the hopping parameter method have lead to
Up.flmlﬂf.lt‘ conclusion [3.94, 3.95], but later resiilts (such as ob-
tained in [3.93] by the pseudofermion method) have demor];fraied
the quark importance. At Fig.8 we compare these resulits for the
effective action dependence on hopping parameter K., where

Sepp=—Ilog det(M)

[hese results show strong increase of the action with K, which
w]_ce_ardly demonstrates that it can not be negiected for f{jmiuea
which in physical unites still correspond to rather heavy uc'u‘k;
with mass about 800 MeV! Similar results (see 50{:1.@11%%% c? '3}~
were lound lor thermodynamical quantities. Also it is ;‘IEH‘T‘fF{;m
these data that one can not use hopping parmﬁeic.r eﬂ" ' ir
o : ler expansion in

T_;ralff_irtunalr:ij;. all methods for the account of lermions are too
slow: individual determinant is evaiuated by CPU time of th; DI‘{Li 13
Ol one hgr.rr even at largest computers. Thérel’ore light quarks {:z-:r:
erI!m effectively taken into account with existing alg{nrithm% ’t.I‘i
available computers, while earlier hopes that their eifect is rs '(f J‘L
small have delinitely failed. | e
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Fig.7.  Scaling violation in lattice calculations for SU{3) group, shown as some
dependence of the ratio A; / Y& on coupling constant. Closed points are
from [3.65], open points and squares from [3.63], triangles from [3.66]
and crosses from [3.64], respectively. The dashed line is some result of
Ref. [3.67].
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Fig.8. Logarithmic derivative ol the quark-induced effective aciinnlﬂver hopping
parameter K. Points are from [3.93] and are obtained b}f the
pseudofermion method, while crosses are earlier results [3.95] obtained by

the hopping parameter expansion.
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