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. ABSTRACT

For frequencies md & W mol and Mmd<w & m the
dependent on the angular momentum amplitude of scattering of
light on an atom is found. X-ray scattering on the crystal with
magnetic order is considered. The scattering cross-gection in
the case of the helical spin structure for circularly polari-
zed quanta depends not only on the period, but as well on the

sign of the helix.
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1. Introduetion

In the work we consider the possibility to investigate a
magnetic order by means of X-rays. Such experiments become
quite feasible for synchrotron radiation (SR) since it posses-
ges high intensaity and is also elliptically polarized. The in-
vestigations of magnetic structures by means of SR may become
an important addition to the neutron diffraction methods the
latter being at present an effective origin of the information
ebout the magnetic order in solids (see, e.g., Ref. {EJ).

We obtain here the dependence of an X-ray scattering amp-
litude on the angular momentum of an atom or ion and consider
scattering on a crystael with magnetic order. As an example we
present the expression for the scattering cross-section on a
crystal with a spin structure of the type "simple helix". The
syatem of megnetic satellites around the main Bragg reflections
is shown to give the information not only on the period of the
helix, but due to the circular polerization of SR on the helix
gign.

It should be noted that the possibility of the X-ray de-
termination of the magnetic structure in collinear antiferro-
magnetics was not only discussed theoretically [2,3], but pro-
ven experimentally [4,5] for solids with incomplete d-shells.
In the present work we point out and consider theoretically in
detail other mechanisms of scattering dependent on angular mo-
mentum that ere no less effective than those proposed in
Refs. [2,3].

2. Asymptotics of dynamic polarizability of

atom

The amplitude of elastic scattering of light on an isolated
atom situated at the point R is in the dipole approximation [6]
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Here ¢ = k'~ k, k and k' are the wave vectors of incident and



scattered photnna,_g and €' are the unit vectors of their po-
larizations, The units are used where % = c¢ = 1. The tensor
of dynamic polarizability of atom in the state fn} is

e z;’(afa’ [n)Caldlel0) <ofdlefud(ulot [0} (2)
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where d is the dipole moment operator, ¢, = E - E, E, 6 and
E, are the energies of the excited and ground atates. If the
stnte |0> is characterized by a total angular momentum J s the

tensor o, (w) cen be written as
C'f,m(w) e 8:_“_ Cii(wl"'t"gi“f jle d-...-(w) + Qiw Gi{-(wj (3)

where Qy = JyJy + Jdy = 5 5, J(J + 1). The scalar d;(w) vector
delw) and tensor o(w) polarizebilities due to the Hermiticity
of the tensor d;.(w) possess the following properties

0'{5;,&',45 {W} = D(::rtt (“—*) »
(4)
L{g(’w}:ﬂii({"})ﬁ U{w('m}=_';‘f(w}’ ﬂ(f(“-‘-‘] = ofe (w}

The vector and tensor terms in (3) clearly contain the informa-
tion about the orientation of the atomic total angular momentum.

We are interested in the scattering of the X-ray quanta
(the frequency is w >» Ry = moﬁzfz}. Here m is electron mass,
od = @ L 1/137. We find the asymptotics of the polarizability
at o >0 . The leading term of the series in 1/w for ,, (w)
is well=-known

Zd
dic (W) = e (5)

It determines the scalar polarizability o;(w) . Here Z' is the
number of external electrons for which the characferistic fre-
quencies are much smaller than w ; Z' < Z where Z is the nuc-
lear charge. The vector polarizability can appear in the next
term of the series in 1/ :

SCLOH, 3T, 1 eT]) , (6)

where H is an atomic Hemiltonian, r 1is an electron position

vector. The summation is carried over the atomic electrons.
The expression (6) does not vanish only when we take into ac-
count in f the spin-orbit interaction, determining the asymp-
totics of the vector polarizability of atom. We shall show ho-
wever that this contribution to &, (w—>-=) 1is not the leading
one. The consistent calculation of relativistic corrections
requires redetermination of the dipole moment operator in the
expression (2).

The operator of the interaction of electron with electro-
megnetic field contains terms linear {FI1} and quadratic EHEJ
in the field. If one takes into account the relativistic cor-
rections, the operators are

-
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Here /.,./, denote an anticommutator; A,E,H are vector

potential, eleciric and magnetic field strengths respectively
- - — o - - r.';!-‘.--l'ﬁ-'f

EF=-24/0t H=vwtd dvA=0 A= Fe - 2 49)
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; is the operator of the electron momentum, & are the Pauli
matrices. With the relativistic corrections taken into account
the expression for the electrical dipole scattering amplitude
is also reduced to (1), (2). If (< ol , We have

e 3 - i R R - A - = .
-:;?[Pyﬂ-zf +gi-'z E(P!E‘E_X/J} f-—-cé’[H} rA ‘1"';5?' (le;/l.‘f_] (10)
Now the dipole moment operator in (1), (2) is

d = e,_fzﬂ-—-(?’ﬁﬂ Ll

Substituting (11) into (2), we obtain in the leading approxima-
tion in 1/w

: Ef Ef - 12
d".x(w_,m) ~ _fi_é,';”! "‘S:’ f b rjj—{'-"}(efkeﬁf’ (12)
3"?&«’ 2 g ]

where S is the total spin of atom. With (3), (12) taken into



account the expression for the vector polarizability is
ey g (13)
de(@=oo) = == (g-1)

where g = 1 + (J8)/3(J + 1) is Lande g-factor.

One can ascertain that just as the asymptotics (5) of
gcalar polarizability can be obtained without the transforma-
tion (10) directly from the first term in the expression (8),
the agymptotics (13) corresponds to the second term in (8).

Pind now the asymptotics of the tensor polarizability of
atom, continuing the series in 1/w for (2)

C‘;x(‘-ﬂ}=h.§:§1 L "'574 Z{[[F}}TL].’[E‘?[QJ{&]]]> (14)

&

here the one-electron Hamiltonian is f = 52!2n + U, Trivial
transformations allow one to present the gecond term in (14)
as

-:;i‘.‘

el sl MV U - (19)
The scalar part of this expression can be reduced to a amall
correction to the expression (5) for the scalar polarizability
and is of no interest to us. For electrons with angular momen-
tum £ £ O neglecting the term (AU/) in comparison with U'/r,
we get for the tensor irreducible part of (15)

3d f .2 f
T; . é\i ’ TE
a2 2 Sl = L etda)ufa), (16)
It follows from this expression that the tensor polarizability
of & heavy atom with one external electrom (1 # 0) is
b it Ry

d’f (QJ—-M — 4 miat ( T a2 )f,y-,afj
where ;'is the total angular momentum of the electron. The ten-
sor polarizability of a heavy atom with some external electrons
is found by summation of the expression (16) over the equiva-
lent electrons of incomplete shell (or over equivalent holes).
We are interested first of all in the ions Th3+, Hb3+, Er3+

(17)

S8

where the f-ghell contains more than half the greatest possible
number of electrons for such a shell. Here in the ground state
J =1L + S, and the total spin S has as usually, according to
the Hunds rule, its maximal value. The asymptotic expression
for the tensor polarizability is reduced for these ions to

Jitws &) e gt ot L8 (18)
T /53(2.}'-?;}

The analysis of fine structure of rare-earth ions and various
numerical calculations (see, e.g., Ref. Bd]) show that in the
matrix element : :

t dlf e '

e ——— — m

z a’z) ? (19)
the dimensionlese factor ; is close to 10. For frequency

mdia w < mol which is considered in parts 2 and 3 o & oy,

The fact that the tensor polarizability has the asymptotics

Y was pointed out previously in Ref. [7].
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The contribution of higher multipoles to the Egzgpta%icu of
the scattering amplitude.

Since we take into account the relativistic correction to
the electrical dipole scattering amplitude, it is quite natural
to congider higher multipole amplitudes which arise in the same
order in v/c. In particular we mean the magnetic scattering,
discussed before in Refs. [2,3]. It is easy to show however
that this order in v/c the electrical quadrupole scattering
amplitude and interference amplifudes (E1,M2), (E1,E3) and
(M1,E2) arige. The transformetion of Hamiltonian (7) to

Hy =-ie[H, (2A)+£(ZK)74) - £ (7)(Z4)] -

i i - TER ; B o 7
£ H(lrs)- i (ek)Hs)- i L[t q{yf%
4
corresponds to the multipole expansion including E3 and M2. Re-

lativistic corrections to the higher multipole amplitudes are

(20)

e ey



unnecessary. Substituting (20) into the well-known expression
for the light scattering amplituda

e Ly Z <am,;~><'um,fo) (oﬁf%fh)f’wfwa)/ (21)

¢ = L Lo L
one can obtain the amplitudes corresponding to the contributi-
ons of the various multipoles. Here the radiation operator
ﬁ; is connected with the absorption operator as

Hile w &) = H(E-w -F)

The electrical dipole (E1,E1)-amplitude we have considered in
the previous part. The magnetic dipole (M1,M1)-amplitude is

H‘?‘I"f’f . == 5

£ S FEY (R, T ) (22)

where N = Eﬁu , "= ¥'/w . The magnetic susceptibility tensor
A () 18

N AA DI 2 /9, Collar e Jupelf +6,/8) (23)
2,#'( 1) Z 73 Y | Cluwe #+ ot

The primed summation gymbol means as usually that the interme-
diate states do not include the ground one (in the expression
(2) for o/.(w) one should not bother about it specially due
to the gelection rules for E1 transitions). When expanding the
tensor jfgfhgiin 1/w , already the first term does not vanish.
It can be easily represented as

Z.((w'—-l-p-q/‘ — —‘;——IJIJ ([KI*ZS: J 5#*25:‘_7)"*
(24)

#,5 ol 228, (000w 28, 10) = (o Jur 2w Jo) (1L, +25, 12)]

where the state [0') can differ from |0) only by the projecti-
on M of the total angular momentum; the summation is carried
out here over all M in the state |[0'D> . From (24) one can
obtain

Alg-lg-y)

Y e

z.x(a_"-pa-a) = -EPK_I‘_‘#{?LE (25}

In the case of the ions interesting for us (g - 1) (g - 2) =

&

= -I5/J2. Note that the expression (25) determines the asymp-
totics of the vector magnetic suaceptibility, the correspon-
ding contribution to the scattering amplitude being proportio-
nal to w : '

Me, Mt

. ;‘?{—f [(nxex(nre)] : (9-7)(3-2). (26)

Since the magnetic moment operator connects only the states
with the same L and S and different J, the condition of the
applicability of the expression (26) is extremely libersal; the
frequency w should only be much larger than the fine struc-
ture interval. On the other hand, in accordance with the con-
dition of the multipole expansion for atoms we suppose here
that w& mof + In particular allows us to neglect the well-
=known diamagnetic contribution from i% to the scattering
amplitude. We make use of the condition w « w1 saystemati-
cally below in this pari, restricting to the linear in (v
terms in all amplitudes.

The asymptotic expression for the quadrupole (E2,E2)-amp-
litude we find easily

£2,£2

£ twelen'n IIH wy ] [H2n]]). @D

The summation is carried in this expression over all electrons.

Prom (27) in the result of elementary transformations we ob-
tain

£2 F2

=i 2% (3-2) 7 [ (ne")(n'xe)- (ne)(nxe )+

+ (;;’/(e‘ie,f -+ (E’"E)(ﬁ?’x;}r (28)

JInterference of the last two terms from (20) with the non-
relativistic E1 amplitude gives

£ o =i jf/?my(ﬁ?ﬂ— (RN (i) (29)



As regards the interference (E2,M1)- and (E1,E3)-amplitu-
des one can ascertialn that in our approximation they vanish.

The total scattering amplitude depending on the angular
momentum of atom or ion (the sum expressions (12), (26), (28)
and (29)) for the frequencies md <« « <« md is

o gt ““*' (5’7/ (30)

where

=

£= Ug-rle’e) = (g-dlg-2)(e’smifex ] -
= {c?-,g/[(;e-::f(;};/- (;'ej(;xg*/+(;*:7(;: ;/'* (31)

e -

v (e)(nxn)] + Z;f(ﬂé)(ﬂﬂé’ ) - (nearé)].

It should be noted that the second term in (31), corresponding
to the magnetic amplitude flﬂ,lﬂ is usual numerically shmal in
comparison with others. The depended on angular momentum amp-
litude (30) is ~ @ /Zm from the usual scalar amplitude,
which from (1) and (5) is

_711; *_-*—;(g’*gj‘ (32)

The scattering amplitude for &/ > 1Kk

We have congidered above the cage /7o i"n:u((ﬁro{ . Howe-
ver the frequencies /7o < w <«»7 also are of great interest.
Here the multipole expansion in the exploited above form can-
not be applied, but the relativistic corrections still are too
small and one can use the interaction operators (7) and (8).

Substitute the expressions for fi, and f, into (21),
The total scattering amplitude can be expressed as the sum of
the five terms:

sl

J(} ""‘Zi _Z\/,42>, (33)
homi DO (A5 H)). (34)
(ﬂfﬁﬁ’fﬂ)(wjdﬁfa) (afﬁﬁf/a)(nj&'ﬁfa) (35)

Ll ir -._ Cthgg == Lo/

4
(of PA /) {w’é‘ H!a) <o/ Eﬁ’fa)(ufp vy o) |

f Z[ uo —@/ Clue + O/

(36)

<o/ oH il oA jo) . (ol oA 1 /n)(nj 6 H' /o> \

&no — Wue + & ’

© "E/n (ur ﬂ;}g (o/;jfu)(a/;:?f@
"ﬁ‘aZ[(/P ), /f" >+ e

Chwe — CL/ Ll + Cu

At md <« r? the expressions (33)=(37) are reduced to

% <=2 (€ e) T4l V(K fiter) X Yee(3)) (39

f i fz*fj"'j’cﬁ =
=44 5 dypif Jr;f(u,»gf(m((a Ella(ey " )
fo = =i 2 [(ee)urc] T 4w (i) Fer (R)
"_:,_.. e : g e 3 (40)
[RGeI Yew (F)2 ) = £ SeCe) Yer (2)(x0)) ]
|. where J:=;L;, ;i';z/x, E’ ;/E , the radial matrix elements



Rle) = (md) ( jole2)(3oz - 2/2)),

Selx) = (me) < fe(x3) /v )

are dimensicnless; #é puz) is the sphericel Bessel function;

a = (;’xg**/x(;:-é'} X (e’*xg/' -

e (41)
¥ s SEae e

w (e"P)(PxE) — (ER)(5'%")

the summation is carried over 7 , ~ and all the atomic elect-
rons. Obviously in the region mod & & & 7

o2 oL L) L

i B e o R 52 (42)

therefore we neglect below the amplitude Jér‘ We note that both
amplitudes f and f, depend on the orientation of the atomic
angular momentum (except for the term in f, with t = 0). Howe-
ver, the dependence on the polarizations in I1'is trivial

f1n« (3'#3), therefore the smaller amplitude f is of more in-
terest for the investigation of magnetic structure.

For the amplitude 11 in the expreasion (38) it is necessa-
ry to calculate at t # O the sum of the one-electron matrix
elements over the external shell :

5 In] Ve (3] ), (43)

=5
m is the z-axis projection of the angular momentum £ of en
electron. Obviously in this expression t ia even and limited

(t £ 2¢). Prom the sum (43) it is convenient to pass to the
equivalent operator in the space of the atomic angular momen-
tum orientationa. This operator should be by its iransformation
properties an irreducible tensgor of the rank t (see, e.g.,

Ref. [9]) constructed from the angular momentum operators. We
chooge it in the form

12

ﬂ=(51'= {*--{{E‘E’ifz@if,m@ffﬁ_ (44)

Here {A® 8, ff is the irreducible product of the rank b of
the two operators of the rank Q . Then we substitute the ex-
pression

¢ -
iz Ane Tex () (45)

for the sum (43) in (38). Here the factors

W g S T (L7 5l Yoo ()1
e ST T (GMIM, | Too (L)1) (46)
M, = 2m

one can calculate in the LS coupling scheme (see the Appendix).
One can see that the factors A,, are independent of the
orientation of the vector 3; all the information about it con-
teining in  Tie(7/. If we consider J as a classical vector
directed along the unit vector EE then we have (see Ref. [9])

% b Wi = ) (47

(2¢+7)77

Quite analogously one can transform the amplitude f. After
the expansion into the irreducible parts, with the Hund's rule
(the total spin S has its maximal value) taken into account,
we substitute the equivalent operator

/ v r T+ zt e
;/-;-?_" Z (‘?’,) e Cimen A_?_{f -Tt Ty (~7} (48)
Ly

for the sum
£ 3 (a6)Yee (%)) (49)

in (39). Here the factor!) (see Appendix)

1 One cap ascertain that in case J = L + S AEEI ¥ 0 only for
J!‘llt-'l. :

s 1‘3



E 2 <r//{§@.?if 175 3 bl Yoo (3)] One)
A (50)
e CI TGN UM Too (L) 1.

is independent of the orientation of :f; G.-:uf/g are
Clebach-Gordan coefficients.

The Bragg gcattaring on a magnetic structure.

Below we shall be interested in the scattering amplitudes
not of individual atoms or ions, but of a crystal with a cer-
tain magnetic strueture, for example, a helical spin structure
of the type "simple helix":

-, - - -> ¥ - -
J(ﬁns) o f[ﬁ?f wj(/ﬁqu) v P H‘”(ffnr)]) (51)

where i, and ii, are the unit orthogonal vectors, =i, x ﬁ

Z is the wave vector of the helix, for the right hel:l.:l: gn > u-
index n numerates the unit cell, s numerates the ions of the
unit cell. From the atomic amplitudes (30), (32), (38) and (39)
one can pass to the scattering amplitudes of a cr]rata.l by summa-
tion over all ions with the weight factor exp (- ix Rn.a}‘ In

the case w & o we obtain

— i3 Ry T Bt g s (52)
Ff i £f¢€ - -?(Ef);ﬂ%f(?}é’%?
=
MR =
(53)

. ol o e - Sy A iy s
i 20 5 TSG)E (A8 78]
7

where § is the reciprocal lattice vector; N_ is the number of

T

unit cells contributing to the Bragg reflection with the momen-

tum transfer T:f +:T E;

K4

7 for

-

#

3;:; = X

L

() for

>
7
>
?

(it) =42 g-*fj = 5;':} gﬂtj . For crystals with the hexa-
gnnal cloped-packed lattice (Just this lattice is charamcteris-
tic for rare-earth metals of intereast to us) the structure

factor is i

,S'(g,) - Zc&:(%a/g} (54)

where.,a is vector connecting two ions in the cell of hexagonal
closed-packed structure.

In the case (/> the dependence of the atomic ampli-
tudes on the orientation of :]” is connected only with the ten-
sor Th(:f}. Directing the z-axis along the unit vector @, we
obtain with (47) and (51) taken into account

el Ll el e

F i
where for even t + = (t # 0)
£+

zr I (E-T-1)/ (tvT-71))/ /2
/9 e [ (ZE-7)1 (- )/t (€+T)/! ] (56

end for odd ¢t +7T « = O« The scattering amplitudes for a
crystal with magnetic structure of the fype "simple helix" can
be represented as

(55)

£, = E{' fZT (-¢) S’(;z)// CACITIE

ol i fex Vam Vet Gerd (57)
F o= - %.Z o) S(5) MG oen) )

7 Ao iy Vv [@ YE(3)] Ss5,3ev5, 2

=
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where l/w (3¢) is a spheric vector (see Ref. [9]).

The indices t,T (t,|r|¢ 2¢) in the expressions (57) and
(58) are even the indices r,v (r, [v| ¢ 2¢ + 1) are odd (see
above). Due to it in the crystals where magnetic and crystal-
lic ptructures are incommensurate (E and g have no common
multiple) the amplitudes FB and F4 do not intarferez). The am-
plitudes F1 and FZ do not interfere as well. However, the terms
in (57) end (58) with equal = or v but noncoinciding other
indices, can interfere among themselves. The terms with

[T] = ¢t = 28 in (57) end with /v/= z = Z¢+7# in
(58) do not interfere with any other term.

Note that the expression (57) contains an isotropic term
(t = 0)

fl=0)=— 2 (e)m Z S(3)825 240y (59)
7

with the summation over all electrons of ion. For = « 1 this
term competes with the amplitude P1- The amplitude (59) for

@ >md or (52) for «w &#d determines the usual Bragg scat-
tering with the momentum tranafer 32 n'a (the Bragg reflex).
In the region w «#{ the pair of satellites with the rela-
tive intensity

(d/ 8] mlel /e « (/8

appears at the Bragg reflexes. If & >#74 the amplitudes (57)
and (58) give the satellites the Bragg reflexes up to the or-
der 2¢ + 1 (for the rare-earth elements 1 = 3). FPor the satel-
lites of the even order the intensity is given by the square of
the amplitude (57), for odd by the square of (58). In particu-
lar it means the trivial dependence of the intensity of the
even satellites on the polarization and the relative suppressi-
on of the odd satellites

] byl 7 L Y

2) This assertion for the structure of the type "farrumagnatic
helix" is not valid. Here the sums r + v and % can be odd.

16

ghe intensity of the pair of satellites of
the order 2£€ + 1

As an example one can find the intensity of the gatelli-
tes of the order 21 + 1 at the Bragg reflexes in the scattering
on the magnetic structure of the type "simple helix".

With the account for previous arguments the scattering
crogs-gection is (1 = 3)

(R, = 2 5 4 S ()< e2))" (A ) T
e f

(60)

X '[Q:f a,., ﬁ:: Y;:(i/ﬂs(ﬂf) 5—‘1;*?” =

* 0 frz Yeool3)Yes (%) 82,8-5 1

Kl iy Bef ==
C ’

where the identities {fkkff =0 w-ws-y =7 are used. Taking
also into account (56) and

‘Ykk(ijf 5 ]E;—w E)[ =

" {Zi-:'-rff_}f[ e (Zk'-r'f
= e (Ze)l] fin O = ___—-:.- (Z )Ir[/f {xm}:[

we obtain

vaf o w

it

. F

Zf(ﬁ)(f;(xﬁ) (,4:&.5) ]
. (61)

- [f—(xm.-}j (’-:C?;.f - Cgl-hc ,3*;?: ¥ Qf.r ":"ﬂ x E ?vg/

- Finally, passing to the Cartesian components of the vector

@ and calculating the factor ﬁ}gg (see Appendix), we get in

17



the case J = L + S

v 2
& 35 I T (2T-)! N ‘sz >
/5] = m? (s47) [ 5!3:’3*(zv.f(zs-f/f(g.zs);] 2813/

(62)
' 2T a9t » (++/
x(ﬁ(a\:a])zﬁ—(xm)] Q, r.'.} [(5?—-#? }?)g -

-« é’:,','a’ 1y & (-;'}]

The incident quanta are conveniently described by the polariza-

tion density matrix

/ﬂﬂt‘ - é (5:1*"‘"}""':.'”«/"" g(gﬂ' E’ZH + € 'E’fk}—
(63)

R i
_CEEI'HE ﬁ?g e E(Eﬁ‘é?ﬁf -—E;,-"_ ezt-}

where 7, , . and 7; are the Stoke's parameters, 3& and Eé are
the unit orthogonal vectors ('é' x E = N1). We are not interested
in the polarization of the Bcatterad quanta. Substituting {63)

into (62), we can obtain in the case 1 //m

£k’ 98 FIEL T CI-2 M~ TP L2y
/Eﬂf e 4 (S ,y[_gfgr.ﬂz15(33)_,-‘(25Af/_f('g_.gf')f] ._4;_’__ & C‘z

; e (64)
G (o) ) [ (1e)i2-3)# 23, (W07

6L Cen)=(em) T8+ satr-x1) 57}

where x = (2'#). Prom (64) it follows in particular that if
the degree of the circular polarization of incident quanta £s
is of the order of unity, then when the sign of the circular
polarization or the sign of helix is changed the intensity of

the given satellite changes also by a magnitude of the order of
unity (note that the change of the sign of the helix corresponds

to the ohange of the gign of E), Thus, using the circular po-

~ 18

larization of the synchrotron radiation one can define the
gign of the magnetic helix for the gingl&-dumain pattern or
the ratio of the volumes with domains of different signs.

The intensity of the pair of gatellites of the order
21 + 1 can be compared with the intensity of the pair of the
order 21. Taking into account (57), (56) and the Appendix in
the case || we obtain

N S1EI TE27-6)1 W Z e
/6] FM‘/; 13125(27)125-1)!{¢- zs)f] 2 S(3)

(65)
x {!; (xa)}z (f+ x) ‘('f‘-r-x'/ & e

for the part independent of the polarization. In accordance

with the estimate made above
F4

/’F;/z# a2 x) 357° A w?

= P m—

/7 ]? m?t (r+x%]  2(se1)(27-6)° M° nr?
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Appendix
( ,r 2’f+.{’+f(ff}ff?f/:’fff-ﬁﬂf{ff f}i" [(Zé .,p.gﬁﬂr‘_r_.-"{zf_zf){f/ (A7)
For the factors A}Ll and L}.f.l (see (46) and (50)) used !f‘w‘{"/’f*"ﬂfff@""{”'fff" (2¢)! (2L+7)! 2
in the our work one can obtain
For t = 21 the factors (A.4) - (A.6) are
¢ reLrs-t L ST ) [ lri)2T- 4] (zé+y) il
= L . A.1
Ase =7/ 2 (27+1) { 744 /[ £1{27+€+1)] / 5“ Y £ Lot 2% 27-20)1 (26)/ (200 )l(2O-1)!
4 (27)! 181(25-7)1(26-25)! Jliter)! ee0)
- 4
A _2 ?Efw‘{/ /3(’254!}(2‘{1*!){2{+/j{2..7—.?)f(fe¢;yf{f 5{? (4.2)
¢ 5 J’ b mdketasc - ¢
f it . Suat /mz.f-:;f.f/fe’/.f(zﬁfaf(zﬁ,;,:f/ 38 72 T
ot (2T 811 (25-1)1(20-25)! (5+ f}(éé’r%/ 3
where, according to the Hund's rule,
. .
5 c C7 ( Z Cf ¢ gz (4.3) 2548 P-1 :
o sl s g "/ / e XL Ll o (’Zf*z.ﬁ{j’(f!’/’(’é’!/’(-?f’wﬁfff (4.10)
Ll (2T EIEL(25-1)/(26-25)/ m”f 24l +1)/ ffc’ﬁﬁ/é!-r/
The explicit expressions for éf -gymbol in (A.1) or _‘g.r - yMm=-
bol in (A.2) one can gimplify in the case J = L + S of interest
to us. Since the :fjli'/ -symbol differs from zero only for r = tX1,
we get
£ _ JE@UNCTI-E) [ (2ieg){2840)7! % ¢
Arivs = 8, (A.4)
7 (27)! 2Lt (2L rt+1)/ :
e Zf(ﬂf.*’fz-ﬁ‘—f/f 3S(2L+1)(2E 1) 1! ]%g ¢ (A.5)
SEE 27}/ (S+7) 21 (20-E)1 (2L +¢+7) i ¢

Aé-ff:_ Zf—z (2L)! 27-t44)! [ 3S(2L01)E(26-3)1/ %, ¢ (h.6)
i (z27)/ Csetffe-gJl21-t)/ 2trew)l] 24

The expression (A.3) for Bf.l gimplifies mogtly in the case
t =21
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