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Abstract

The general structure and properties of recursion opera-
tors for Hamiltonian systems with finite and continual number
of the degrees of freedom are considered. Weak and strong re-
cursion operators are introduced. The conditions which deter-
mine week and strong recursion operators are found.

In the theory of nonlinear waves a method for the calcu-
lation of recursion operator, which is based on the use of
expansion into a power series over the fields and the momentum
representation, is proposed. Within the frames of this method
& recursgion operator is easily calculated via the Hamiltonian
of a given equation. It is shown that only the one-dimensional
nonlinear evolution equations can possess a regular recursion
operator. In particular, the Kadomtsev-Petviashvili equation
has no regular recursion operator.



ON THE THEORY OF RECURSION OPERATOR
V.E.Zakharov and B.G.Konopelchenko

1. Introduction

The inverse scattering transform method gives a possibi-
1lity of investigating in detail a wide class of both the or-
dinary and partial differential equations (see e.g. ﬁ-j]}.
The equations, integrable by the inverse scattering transform
method, possess a number of remarkable properties: solitons,
infinite sets of conservation laws, infinite symmetry groups,
complete integrability, etc. In turns out also that the equa-
tions, to which the inverse scattering transform method is
applicable, have the pronounced recursion structure. The so-
~called recursion operator plays a central role in the formu-
lation of these recursion properties. The role of the recursi-
on operator is two-fold. Firstly, it allows one to write out
the families of equations integrable by given spectral problem
in & compact form. For example, the family of equations connec-
ted with the famous Korteweg-de Vries (KdV) equation can be
represented as follows:

(2
ot

where ai‘i i- " 1'1 = 0,1,25,++», and the recursion operator L is

ax
L =0%+2uU +207"Ud (1.2)

The K4V equation corresponds to n = 1. The recursion operator
(1.2) for the KdV family of equations was first introduced by
Lenart (see [4]).

+ ol *u=o0 (1.1)

It follows from (1.1) that the recurasion ope-
rator allows us to obtain the whole family, starting from
one equation (e.g. with n = 0). Recursion operators with such
& property exist for the cther families of equations too: see
[5] and subsequent papers on this subject,

The second important role of recursion operators is asso-
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ciated with the Hamiltonian treetment of integrable equations.
The Hamiltonian structure of equations (1.1) and of the other
equations, integrable by the inverse scattering transform me-
thod has been investigated, starting from [6,?] in a variety
of papers (see [1-3]). It was demonstrated in [8,9] that the
integrable equations have a very special structure from the
point view of Hamiltonian formalism, namely the whole infinitfe
sets of Hamiltonian structures correspond to these equations.
Por example, each of equations (1.1) is a Hamiltonian one with
respect to the infinite family of Poisson brackets of the form

=”ﬂ _____.J'F "'_.O{I_H (1.
{FH} _deM@aL £ 3

Bow0,24,22,.:.

where the operator Z; is given by (1.2). In a similar manner,
recursion operators determine the families of Hamiltonian struc-
tures for the other integrable equations.

So, & recursion operator is the generating operator for
the family of equations connected with a given equation and si-
multaneously the generating operator for the family of Hamilto-
nian structures. Combination of these two properties in the
same operator indicates the importance of recursion operators
in the theory of integrable equations.

An important step in the formulation of the theory of re-
cursion operator was the paper [ﬁq]. In this paper it was de-
monstrated how to calculate the recursion operator for the
equations integrable by the second-order matrix apectral prob-
lem. The Hamiltonian structure of these equations has been con-
sidered in paper [51] in which the remerkable properties of the
recursion operator were employed to a considerable exient. The
method of calculation'nr recursion operators, based on the use
of the spectral problem, has been further developed in |32-1§J.
By this method the recursion operator has been calculated for

a wide class of spectral problems ﬁEEEB] (see also the paper
[24,25)).

The other methods which do not use the spectral problems
were guggested in [26—29]- In the papers [26] the recursion
operator appears in the Hamiltonian systems which possess the
Hamil tonian pairs of operators. In the papers [2?-29] gome
analogs of the recursion operator (hereditary, strong symmetry
operators) were considered. In virtue of some postulates, these
operators satisfy certain equations. Some solutions of these
equations and thereby some examples of the recursion operators
have been found. The geometrical structures, connected with
the integrable equations and recursion operators, and their
properties have been discussed in IBQ].

In the present paper we consider the different agspects of
the theory of recursion operators for Hamiltonian equations.
Firstly, we introduce the notions of weak and strong recursion
operators. A recursion operator in a "weak" sense (briefly, a
weak recursion operator) is the operator which allows us to
construct recursively the infinite family of Hamiltonian equa~
tions, starting from a given Hamiltonian equation. There exist
two types of weak recursion operators. A recursion operator of
the first type (H-weak recursion operator) is the operator
which converts the gradients of functionals into gradients. A
recursion operator of the second type (2 — weak recursion
operator) is the operator which transforms symplectic forms
into symplectic forms. We find the sufficient conditions which
determine the weak recursion operator (for both types).

A recursion operator in & strong sense is the operator
which transforms both gradients into gradientes and symplectic
forms into symplectic forms. The strong recursion operator ge-
nerates simultaneously the infinite family of equations, star-
ting from a given equation, and the infinite family of Hamilto-
nian structures for each equation from this family. The suffi-
cient conditions for that the operator Z; be a strong recursi-
on operator are given. The so-called Nijenhuis equation for Z.
plays an important role in the theory of weak and strong recur-
sion operators. The Hamiltonian systems both with finite and
continual numbers of the degrees of freedom are considered. The



operator (1.2) is an example of the strong recursion operator.

In our paper e method is also proposed for the calculati-
on of recursion operators in the theory of nonlinear waves in
space of arbitrary dimension. This method ig baged on the sub-
sequent use of the expansion of all quantities into & power
series over the fields and of the momentum representation in-
stead of a coordinate one. As & result, the equations in vari-
ational derivatives, which determine the recursion operator,
convert into the system of algebraic functional equations for
the coefficients of the expansions of the recursion operator
and Hamiltonian. Some equations from this system offers the
posgibility of calculating the recursion operator via the Ha-
miltonian of a nonlinear equation.

In the paper we show that any Hamiltonian system of non-
linear waves possesses a formal recursion operator. In the ge-
neral case, such a recursion operator is the singular operator.
In the one-dimensional space there exist Hamilfonian systems
which possess the regular recursion operator, i.e. the opera-
tor which generates the family of reguler Hamiltonians. For
some nonlinear equations the recursion operator can be a fini-
te-order polynomial on the fields. The Hamiltonian of such an
equation should satisfy & certain system of equations. In par-
ticular, it is shown that the only one-dimensional equation
with three-linear Hamiltonian, which possesses a recursion
operator, linear on field, is the KAV equation.

It is shown that the nonlinear evolution equaﬁiﬂna in
two-and higher dimensional spaces have no regular recursion
operators. In particular, the Kadomtsev-Petviashvili equation
has no the regular recursion operator. Thus, the regular re-
cursion operator is a purely one-dimensionel phenomenon.

All these properties of reéursion operators are closely
connected with the formal canonical equivalence of nonlinear
equations with the Hamiltonians, which are the “entire" func-
tionals on fields, to linear equations. Performing the inverse
canonical transformation from the linear equation ito the inifti-
al nonlinear equation, we simultaneously obtain the Hamiltonian
of the equation and the expression for the recursion operator,
The regularity problem of the recursion operator is associated now with
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the regularity problem of the linearizing cenonical transformation.

The paper is written with the use of elementary methods
only. The presented results can be, however, formulated in the
invariant form as well.

The paper is organized as follows. The notions of H-weak
anﬂ.,ﬁ? -weak recursion operators are introduced in the second
section. In the third section the sufficient conditions for
that the operator L” be a H-weak recursion operator are fo-
und. In section 4 the necessary and sufficient conditions fn&
that the operator Lg be a Q —weak recursion operator
are formulated. The strong recursion operator and the conditi-
ons which determine this operator are considered in section 5.
Recurgion operators in the theory of nonlinear waves (i.e. for
§yﬂtems with continual number of the degrees of freedom) and
the conditions which define these operators are discussed in
section 6. Section 7 is devoted to the use of the expansion
into a power series over the filelds and of the momentum repre-
sentation for the calculation of recursion operators. The pro-
blem of existence of regular recursion operators in one- and
mul tidimensional spaces 1s discussed in section 8.

II. Weak recursion operators

In this and next sections we will consider Hamiltonian
gyatems for the :inita degrees of freedom. We would like to
remind that a system of differential equations, which are defi-
ned on the 2N-dimensional phase space, is called the Hamiltoni-

an syatem if it may be represented in certain local coordinates
as follows: (see e.g. [31])

Qx =yH (2.1)

dt”
ff is a function and is a2 nondegenerate skewsymmetric

( Q‘j = —.Qg,; ) matrix which obeys the closeness condition
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> a:rg =0 . (2.2)

9 , ISk

dxk T ox

By virtue of the nondegenerateness an , equation (2.1) can
be also represented as

2= FH={xH} (2.3)

whare{ . } Aenotes a Poiason bracket
Folf 7, F -nik OH :
{r}';r;@) axk (2.4)

Here and below the summation is performed over repeated indices.
It is well known also that locally by appropriate change of co-
ordinates one can convert the form () into the canonical one

Qm = f_? g where 1 is an identical N x N matrix (Darboux
theorem) .

So let we have a certain equation (2.1) with concrete Ha-
miltonian H and symplectic foer . What is the way in which
one can recurrently multiply this equation without leaving the
class of Hamiltonian equations? It is easy to see that one can
do this in two ways. The firset way is to multiply the right-
-hand side of (2.1), i.e. the gradient VH . The second way is
to multiply the left-hand side, i.e. the symplectic forn (2 .

Definition. We will refer to the operator LH as the
H-week recursion operator if any its power cﬂnvirt;{the g;}adi-
ent of A (for H # const) into the gradients: LH PH=VHr .
ns=1,2,3, e« « The operator LQ is referred to as the i
-weak recursion operator if any its pnwerfgnvertazima gymplec-
tic form ¢J into the symplectic forma: QQ e " s
n = 1,2’3, esa ®

Making use of the weak recursion operators, one can cons-
truct the following infinite families of equations, starting
from equation (2.1):

QPzx=pH=L7svH (2.5)

M 352,

and

L;Qi=Qn£=VH (2.6)

n=0,12,...

The equations (2.5) are Hamiltonian ones with respect to
the same symplectic form Q and different Hamiltonians H,_ .
The equations (2.6) are Hamiltonian ones with respect to the
same Hamiltonian H and different symplectice forms Q,,_ » It
is clear that any entire function of the recursion operator is
the recursion operator of the same type, too.

Combining these two ways, one can ocbtain the most general
family of the equations

P(Le)Qs =CD, & =VHy=SlWVH (2.1

which are associated with equation (2.1). Here {”(L_Q) and

f(ﬁy) are arbitrary entire functiona. For def L_g =k 0,
equations (2.7) can be also represented in the form

g =) VH, =Q v L) AL)VH . (2.8

I1I. H-weak recursion operator

Here we find the conditions which determine weak recursion
operators. Firstly, we consider the H-weak recursion operator.
Let us note, first of all, that in order that the operator LH

n
transform a given gradient into gradients ( LH VH = FH,,, 3
it is necessary and sufficient that it satisfy the equation

- (ﬂ';)?_ag' "L(@ﬂ %—Bﬁ _£3e1)

dx’ Edak/  dxi\NTH Yk




The necessity of the condition (3.1) is obvious: it 1% the
F
equality of cross derivatives which follows fram(ﬂ ) 3-1”" =

aﬁ" . The pufficientness follows from the 1ra11 known
statement that for any simply co cted manifold the equation

ift "3?& = 0 implies &;= dx’ (gee e.g. [31]).

Proposition 3.1. The operator Lﬁ is a H-week recursion
operator if it satisfies the system of equations

olun OH m O°H Meww oH ndH
St 327 *lua saiyzm g xb 3= Lurygrgze %2

Ol Ayfyy » .y " huk _y ndlui’ _ g (3.3
3.1"‘*-3.1’;) Hn H L 3.1‘" Hk a.,‘I"' F
Proof. The condition (3.2) means LH PH=‘ FH_{ . Let us
prove that by virtue of (3.2) and (3.3) we also have L; VH =
= F’Hx . Let ua multiply equation (3.2) by Lg:r and sum over
X ., We obtain

L ” Bl.,g;! BH'
Mi azk a‘rﬂf

2
L3 L#:LH: ;xfc;x”

(3.4)

£ aLH” aH il » azﬂ
‘{‘H a‘ru—i 3.1"" +£‘H;'. ik axuaxﬂ

o
Then multiplying (3.3) by 3z and summing over 72 , we
find

Dk CHe yaxm

""'LH# QLﬁf 3H o

fox” 2x™

(3.5)
o a7
M“[‘”, QN £y Shny A

7, . 3™ kE yx* ox™

Purther let us sum equation (3.5) with equation (3.4) and
pubetract equation (3.4) with the substitution L =+ k from
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the derived equation. As a result, we have

sl 7-mdl “ lnw OH e
axt Ly P e c-}‘.a.":ﬂ‘L ox™ L”*L”" 0z )™

olyi ) m OH £ Ly X QK = (3.6)
3;" Lw 3am ox™ * Ly a_;': o™ Z"*Z"'* 3323/ 2

i.e.

39—' ((E)Ha:c' =aif/(é"w}%€*) oy

From (3.7) it follows that

2ym OH DM
(L DY _31":

¥

- 2
i.e. L f?l‘/"' 17./'/ ; Where Hz is a certain function.

3
Further lES us show that Z, VH= VH too. Multiplying
(3.3) by L#” = and Hu.rmn:l.ng over #2 , we obtain

e OH It
axt LHHL#ME-E? 3 3zf Lﬁ'né faaz/i s
(3.8)
P .:M“L 4 aﬁ' L # BZ-.#‘ 7 4 3// s
ﬁ’a a_x.,-. H ot ¢ Mk a: Ao 3 :

Then we multipl:.r equation (3.6) (with the substitution

r.—FJD ) by Z,,’ and sum over f « Summing the obtained
equation with equation (3.8) and using (3.2), we find

3‘-/'-&'; g a/t/ ¥ 35”, 4 oy
St Cile sz ” Lui ek L””a‘)ﬁ: L), ;i”aaﬁ

1



?‘([;j)ﬂ azﬂ = aﬂg*ﬂ:)f ?:W -Zl ” alwf £ 3}"7"

L yxkdxr Azt o I R L T e 7%

iitm DLk oH i a
_ﬁﬁ' i _(Lﬂ)*az‘/

Y At  x* oxtdx"™

g 2)x % s\ve O
2 ()LL) = sl o) o9

Thus L; F’H= F'H_, where /‘/3 ig acertain function.

In a similar manner, one can prove by induction that# the
equality (3.1) is valid for #£ = 4,5,65 =4+ too, i.e. Z.# V/‘/ =
= P’Hﬂ , £ =1,2,3,4, ¢+« + The proposition is proved.

—_—*.0’

i.B-

Emphasize the important role of the quadratic equation
(3.3). This equation together with the condition L,,a VH' V/%
is equivalent to the equalities L; VHHP’H# for eny / =
=1,2,3, ««« » Note, however, that equation (3.3) does not fol-
low from any finite subsystem of equations L; PH = 7 He
()2 =% sevaB)a

Let us now discuss some properties of equations (2.5). In
the general case the flows which are generated by Hamiltonians

M, do not commute with the initial flow (2.1) since (A =H)

e SEtT e B )M f~=2\ L
(= en (2 )i 2lem L) #0010

Let the operator :f.;,r gatisfy the additional constraint
i
(z,ﬂQ)""-=— HQ where A denotes a transposed matrix
A . Using this constraint, we have

oH 4 em -uf-faﬁ"_ o -1\ ML xi-a/q -
SF(L”)::@) 32k = 32 (V)i 37
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o oH FRY. ~1)im 3/{
—_3.:1"* éﬂ);@) Fr
A - or &
e D pE D L 0. - muatind  Hy o} =
=0, MN=1,2,3, «++ « Analogously, one can show that
{HJ,I’?’.&}- F LA M 8 01,2, sss), 1.0, in the case
([,’?Q)H — -/L#Q)*; all the flows from the family (2.5)

commute to each other.

Thus, in the case @X_Q)f=—LKQ the family of Hamil-
tonians /;(,, is the infinite family of the integrals of motion
for any eguation of the form (2.5). Each integral of motion A,
1z connected with the one-parameter symmetry group of equations
(2.5) and, in particular, of the initial equation (2.1). In

the infinitesimal form these symmetry transformations are
(2 =2+42)

it = EQTVH, =, 7L, v H (3.11)

n= 01112'3, N

where f.':, is the transformation parsmeter. If @HQ)T =

= -L,{) equations (2.5) and the symmetry transformations
(3.11) can be also represented in the form

z=(, ) vH

be T =& (LT)"Q™H
R D152y Fstleew i

I‘J._Q —weak recursion operator

According to the definition, the operator LQ is a
- weak recursion operator if '

13



2ebQly, HLaQhs , ALaDu_ , (o

dxk ox’/ ox*

and
(L;_Q)"s -Lg82 | (4.2)

for all n = D,1,2. fex w

One can shew by straightforward calculationa that if equa-
tions (4.1) and (4.2) are satisfied for n = 0,1,2 then they
held for n = 3, too. As & result, they are satisfied for any
/Ml . 50 we have

Proposition 4.1. If together with the form Q the forms
.{,_QQ and L_Qz.é are closed and skewsymmetric, then the
operator Lﬂ is a

rlilote that all the conditions (4.2) are satisfied if
r

£2=-£D ana @QQ) ‘—“J.{._QQ .

If additionally def Lg# O then the closeness and skew-

2

gymmetry of the fnmsQ ’ LRQ ' [_,QQ 13&11 alao to the
clogseneas and skewsymmetry of the}forma LQ o B = 1,2,3; ecee
Indeed, choosing the form Q;HL_QQ as an initial Df_? and
uging Ehe closeness and skewsymmetry of the forms AQQ ’
and [‘.Q!'-)z , one can prove that the form L;;Q?—.{,_HQ
is closed and skewsymmitric too. Further one can easily show
that all the forms L_Q = é—u (B = 3,4, sco) are
cloged and skewsymmetric.

-weak recursion operator.

In the case def LQ 5% 0 the closeness and skewsymmetry
f one of the following two sets of the forms: L_&Q ,_Q .
Z.RQ or ;;Q, L_&Q, Q are the sufficient conditions
in order that the operator Lﬂ be aQ -weak recursion opera-
tor too.

In Proposition 4.1 and subasequent results, one can start
from any given symplectic foer « To simplify the calculati-
ons it is convenient, however, to choose the local coordinaies
in such a way that Q='Q{n;=(-g g) « This does not reduce

14
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the generality of the r&aulis obtained since equations (4.1)
and (4.2) are of invariant character.

In the case Q- (f ;)
n=20,1,2 are

oo/ " »
i, Jalo, 3laig o w

3/49) i ,Q 2 Baé):gﬁ 9 Baf; 2:52' = ) (4.4)

Bx! Y a xr~

equations (4.1) and (4.2) for

and

(4.5)

k
Qﬁ' Qe L.Q:le'

»r
Multiplying (4.3) by L.Q,t » Summing over #2 and taking
into account (4.5), one obtains

dLg} , m * dlay 3
Q X Za (4.6
azf AR# .Q,m{ ?‘LQ‘Q. a If Qﬁg——éﬂ:jﬁgﬁﬁ . 4.6)

Using (4.6), it is easy to see thai equation (4.4) is equiva-
lent to the following one:

s dla s ey ot
QL :)-Ii mﬁ*lﬁtqa_z—%ﬁgm§+igf‘§'%ﬁ'gfaf4'ﬂ

Let us transform the second and third terms in (4.7),

using the equality (4.5) and _Q“'(’Q“)*P= Jﬁf . As & result
we have

Lok Lol oy -
Lﬂiﬁgﬂf “}I_;Q"gf@} : Q2 Sppe ~

- “C;LQLMQ = 0 148
e -

¥

L2k a_x-f

15



Hence

" »
x Bl.m aLﬂf ~syut) M _ "_..._.az'ﬂ‘ = 0 (4.9)
Lot 5255 - S22 Q (07) Lae Lok G 2a

We note now that in virtue of (4.5) equation (4.3) 1is
equivalent to

—"—-'gifiﬁﬂ o aaiffgﬁ __gz__{.}&zg“ =0 . @4.10

-vﬂn{'
If one multiplies (4.10) by (Q and sums over T , one
obtains

dbaf afut o iéﬂ_:gﬁ/_@'y‘i..a_z:gfgm&.m

 J A R 9x™

Substitution of (4.11) into (4.9), eventually, gives

s oy = DLl Jl.s:f) = - 51,52:; 0 (4.12)

Pre dxk dxt Ry x”

So the equation, which contains only the recursion opera-
tor o follows from equations (4.3)-(4.5).

Propogition 4.2. If operatfor [;_Q satisfies the system of

equations

dlﬂf Jﬂﬂf)z‘ﬂ: +L_;#3Z'ﬂf' “az-ﬂf 0, (4.13)

dx* ozt

Y ) (LS i 3/,{.;;Q,Lg= 0, (4.14)

P PL dx*

16

¥ e

@QQ)“ o '(Z,_QQ)M (4.15)

then it is a Q -weak recursion operator.

Proof. Let QHQ(,; + The conditions (4.13)=(4.15)
are equivalent to the conditions (4.3)-(4.6). Indeed, from
(4.12) and (4.11) one gets (4.9). Multiplying (4.9) by _QM '
we obtain (4.8). Equation (4.7) follows from (4.8) and is
equivalent to (4.4) due to (4.6). The conditions (4.13)-(4.15)
are, therefore, equivalent to the conditions of Proposition
4.1,

Let us consider the conditions (4.13) and (4.14) in more
detail for the case a/uf[,geﬁ @ . At first sight, these con-
ditions are not necessary. Indeed, if one takes instead of

2
Q, LQQ, AQQ the other sets of three cloged forms:
- -1 -t
La@, L2t O or L3C2, O, Lof2 then instead of
(4.13) and (4.14) we will have the analogous conditions with
the substitution Lg— /o

However, it is worth noting the following. Pirstly, mul-
bo v Laslatlok

tiplying equation (4.13) for Lo by Lo Qs LQe 5
summing over ¢ , £ , € and taking into account (4.13), fone
gets equation (4.13) for ‘-{'.E » So equation (4.13) for L;.‘?.
is equivalent to the same equation for [,_g » In other words,
if zf-_;z is the solution of (4.13), then L_a’ is the solution,
too.

Secondly, the conditions of closeness and skewsymmetry of
the form {,_EJQ together with equation (4.13) are equivalent
to the conditions of closeness and skewsymmetry of the form

2
Lof2 . Indeed, putting (O =D, , multiplying (4.14) for

& L £ L i"L & g . y Z

Y E S e 28 Loy » suming over £ , s and
using (4.15), we obtain equation (4.7). Equation (4.9) follows
from (4.7). Using (4.12) one gets (4.11). This equation is
equivalent to (4.10) and, hence, to equation (4.3).

Thua, at okl L_Q% 0 the conditions (4.13)=(4.15) for
[,_Ef are equivalent to the conditions (4.13)-(4.15) for 4‘2 .

So in the case @l L% O we have

T4



Theorem 4.1. The conditions (4.13)-(4.15) are necesgsary
and sufficient conditions in order that the operator L_q be
a Q -—weak recursion operator.

The invariant form of equation (3.9) (or (4.13)) is the
following:

[LTE LTI - LTLTE 7] - LTIE LTI # LT e, 1] =0 (416

T

where L is the transposed matrix L g g and ? are arbitra-
ry vector fields, and [5 ?] denotes the standerd commuta-
tor o vgctor fields (see e.g. [31]) [‘f f] =

;(’ %ﬂ% gri') . Following the paper [26} where
Equation (4.16) was congidered for the firat time, we will
refer to equation (4,16) as the Nijenhuis equation. Note that

-1
for Q -weak recursion operator one has [.._ﬂ =_Q LQQ
due to (4.2).

An equation of the form (4.16) has been also considered
in [27-30].

V. Strong recursion operator

Let us consider now the gituation when the operator L
iz & recursion one both in H andQ genges.

Definition. Operator L is the strong recursion operator
if any its power transforms gradient into gradients ( L#VH =
= E’HH ) and symplectic form into symplectic forms ( L‘I) =

w25

Possessing simultaneougly the properties of both wesk
recursion operators, the strong recursion operator generates
both the infinite family of Hamiltonians H,. and the infinite
family of symplectic forms Q,,:-L’E? « EBquations (2.5), (2.6)
or (2.8) which are generated by & strong recursion operator
have all previous properties and some new ones.

18
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Let we have some equation I-QqF’H from the family of
equations (2.8), and let ot L # 0. By virtue of the proper-
ties of the strong recursion operator, we have

= Q™ VH =(L"Q) L "VH = v H, (5.1)
where }£ is any integer and {J, are the closed symplectic
forms. :

So any equation genmerated by the strong recursion opera-
tor is a Hamiltonian one with respect to the infinite set of
Hamil tonian structures (p&irs.Q Hg ).

We denote the Poisson hmclgat which cmérasponda to the
torm $J, as / , Fu 2 {F H}, a_z/_'Q"‘) B—_.Latusml-
culate 7 A, fh fu,  + Teking into account that(ZQ) %=L,

we have

{ Hoo Hnboy=(L %) $22 627 (L)t 22,
t} —\ JrE #f- =H3
=3}€;@*" (4" )éa.:r“ *

Then

(’-1":)—"Ir m/[-*“'_é.’ﬁ/_ ___=_¢3A/ Z’m/:r@j:-é 3.4‘/

Dxt

ey hi naﬂ
- @Y 2L

=7 |, x ik aa‘?
Therefore, ax"@ ) ‘(L’.} Tﬂ g and, as & consequen-
ce, [ﬁ;}ny&}, = () for any 2,y My, /2, .
Thus, all Hamiltonians //4 which are generated by the
strong recursion operator are in involution with respect to
any Poisson bracket ;/ _L generated by this operator.

It is clear also that if the initial equation (2.1) ad-
mits the strong recursion operator L » then any equation of
the form (2.8) possesses the same strong recursion operator.
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So the Hamiltonian equations, which admit strong recursi-
on operator, have a very special structure. Firstly, they pos-
sesa the infinite set of the integrals of motion in involution
and they are Hamiltonian ones with respect to the infinite
family of Hamiltonian structures. Secondly, the infinite fami-
liea of equations are associated with such equationa: any
equation of these families has the same properties as the ini-
tial one.

In other words, the strong recursion operator gemerates
the infinite family of Hamiltonian structures ( 2, , M :
n, m = 0, 11, '-’2. ess) from the initial Hamiltonian aystem.
Each of these Hamiltonian structures determines the dynamical
system (flow). The Hamiltonian structures {Qu , A, ) with the
same velue of n-m correspond to the same dynamical system. The
family of Hamiltonians /4, forms the infinite set of common
integrala of motion which are in inveolution with respect to
any symplectic structure _Q' .

The examples of strong recursion operators are well known.
In the case of & continual number of the degrees of freedom
they are, for example, the operator (1.2) and equations (1.1),
and the recursion opera.tnrh which were calculated in [10—22].
Some properties of the equations which admit the strong recur-
sion operator have been discussed as well.

The operator [ =Q™[ O is closely connected with
the recursion operator /, . The operator Z transforms vector
fields into vector fields: Z'#_Q'IPH—__QdFH‘,. The equa-
tions (2.5)=(2.6) can be also represented in the form X =
= Z”_Q"VH « Both operators L and Z' naturally appear
in the approach which is based on the spectral problems (see
e.g. [20,21]').

Let us consider now the conditions which define & strong
recursion operator. These conditions are obviously the join of
the conditions which determine the }f— and - weak recur-
sion operators. Propositions (3.2) and (4.2) give rise to

Theorem 5.1. If operator /, satisfies the system of
equations

20
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BL:_QL:)L:_"La 3[: _Lar. aéf

(3:1':‘* a'I.i L Qo k37 = 7, (5.2)
3[;# 3// . 32/5/ BL:‘;” 3 31}{
2z4 ) z* a L": oxk)z" T oxf dx” - E":O’(ﬁ'j}
__‘;_éif.)_‘i ¢ 2@13 s aa/z_c?)f,= e
o o 2 xe

@Q)ﬁf 9% 'l-Q)M (5.5)

then it is the strong recursion operator for the Hamiltonian
system Q2 = 74 .

In the case del /L s O the conditions (5.2), (5.4) and
(5.5) are also necessary ones.

So the f-/ -week recursion operator becomes the strong
recursion operator if it also transforms symplectic fan
into symplectic form. The --weak recursion operator becomes
a strong one if it additionally converts the gradient P/ into
the gradient ( Ly A= vH, ).

We gee that in the description of both the weak and atrong
recursion operators the quadratic equation (5.2) playe an im-
portant role. This equation is a very speclal one. It is a
syatem of 2#"/2#—!} equations forﬁy)zquantitiaa Lf
(£ k= 2,...,2/ ). Nevertheless, this highly overdetermined
(for ¥ > 1) system has a large class of solutions. As we have
seen, if / is a solution of (5.2), then Z ™7 is a solution
too. It is not difficult aleo to show that together with Z
the quantity 7—A1/ is also the solution for any number A .
Hence, (?-/IL)"’ = 7 + AL + A/ %.. is the solution of {5.2)
too. The uilfaplest golution of equation (5.2) is £‘?=¢_f¢3£/x9
where &/x‘/ are arbitrary functions. In virtue of the inva
riance of equation (5.2) under the general coordinate trans-
formations _:z'"-—-.:z_'f’=—j"(:'x/ s equation (5.2) has also the
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& aﬁ "E.‘t" ozt
solutions of the form fr;,. - -‘gﬁ?ﬂﬁ'ﬁ’ Dt DS i)

where jfe&} and &, /x€) are arbitrary functions.

In the conclupion of this section we compare the resultis
of the present paper with those of the papers [26-28]. The
key notion in the papers [25] was the notion of a Hamiltonian
pair, i.e. two Hamiltonian operators such that any their 1i-
near superposition is a Hamiltonian operator too. In this ap-
proach the recursion operator appears as the "ratio" of two
Hamiltonian operators from the Hamiltonian pair.

In our approach we deal with the recursion operator from
the very beginning. If a system admits the Q -weak recursion
operator L.ﬂ. ;s then all the forms L‘Q (n = 0,1,2, +3+)
are closed. The form LnQ 'hu.éQ +ﬁﬁﬂ§?+ .sa =
-@' -ALQ_)"[EQ, where /\ is any number, is cloged too.
Therefore the operator ({7 —ALg)™ Lakd) ™ iiie
= Laf)™* —)A{Q™¥ is e Hamiltonian one for any O
the operators (}_’,";Q Y and (O™ form the Hamiltonian
pair.

Proposition 5.1 (Gelfand and Dorphman) In order that
the Hamiltonian operators {2 “and (Z2)“form the Hemiltonian
peir it is necessary and sufficient that the forms Q ,LQ .

L2 be the closed ones.

Sufficience immediately follows from Proposition (4.1).
Let us prove the necessity. The Jacoby identity for the Hamil~
tonian operator _Q"r 'f /I@Q)-‘ leads to the closeness of
the formu_(? » L.Q and also to the equation

OTRLY . or AP oy T o

where the choose (2 m= () == (_f ; . Multiplying (5.6) by

(LQ).,,; {Z"Q)Ffélo)r* and summing over L , / , £ we
obtain (4.7). By virtue of (4.3), the equality (4.7) is equi-
valent to (4.9), i.e. to the closeness condition for the

22
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form L% . e 1.h.s. of (5.6) is nothing but the Schouten

bracket (see e.g. [26] ) for the operators {2~ and @.Q g
So the equality to zero of the Schouten bracket [Q", ﬂ.Q F{]
is equivalent to the closeness of the forms §2 and L7652 .

If the operator L is a Q -weak recurgion operator,
then any two operators ((, "’Q)-‘ and (L"*Q)-" form the
Hamiltonian pair. Indeed, in virtue of the closeneas of the
form

LYQ #ALMWRQ » j2 0D s =a-MTTLH

the operator (é - A L 2. ‘)-JL IIQ)-J = Qa R‘.Q)"J_ )‘(L 5 XTI

is a Hamiltonian one for any ). and X,, /.

Teking into account all these results, it is not difficult
to see, that from the point of view of the comatruction of Ha-
miltonian systems the theorem 5.1. and theorem 3.4 from [26]
are equivalent in essence.

The recursion operator,which is considered in [25] (regu-
lar operator), is the -weak recursion operator in our ter-
minology.

~ e~ -
The fact that the operator Q LQ 2 s Where ZQ 7H=

-Q"Vﬁ_/‘ , transform gredients into gradients, i.e. it is
the /A -weak recursion operator, and also the fact that the
eigenfunctions of this operator are gradients of its eigenvalu-
es have been noted in [30].

VI. Recursion operators in the theory
of nonlinear waves

Generalization of the results of the previous sections to
the theory of nonlinear waves, i.e. to the case of & continual
number of the degrees of freedom, is obvious enough. Let we ha-
ve the system of /2 fields ﬁ!’/‘:}f), vesy ﬁ#(&pf) in d- di-
mensional space ﬁr-.r,,.. ‘s .r.,f} « Let ua remind (see e.g.
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[32,33]) that the system of Z equations is & Hemiltonian one
if it can be represented in the form

dz'() .z':er z‘f"&# dﬂH (6.1)
x arf( of -
d uet)
(o=,

whare the Hamiltonian & is & certain functional on &' ’e

u”, / U denotes a variational derivative and .Qnr}.l (z,.z)
is a kernel of nondegenerate linear operator (which depends,
in general, on ﬂ", by &©” ) which satisfies the closeness

tkhfﬂ
J 1)

IQutez) , IQutta) |
du¥ iz S ub(z’)

and skewsymmetry conditions

--Q-gp Kr,xﬂs-gﬂd(z‘;x) ; (6.3)

Similar to the case of a finite number of the degrees of
freedom, we define the weak and strong recursion operators:

LT A o O P 3 gk
fa’x({, (&I)Jﬂf/x) Fue (6.4)

) %A
Jdz(la)lex)Q =0, (5z). ©-5
The Propositions and Theorems of the previous sections
teke place for nonlinear waves, too. The only modification isa

concerned with the form of the corresponding equations. In par-
ticular, the analogs of equations {5 2)=(5.5) are

S S ey
e

J’N S

=0 (6.2)

L,a/ ’@J ﬁjﬁf (6.6)

o

P8

Ja’:f-"[ Lz IH

2
& uflz) 4 ui@ *Lito?) Th

SutE)du®
(6.7)
i J’[,;ﬁrjf) SN Lf@.,
duz) Sui®) i

zr%:) J‘zﬂ’ﬂ)} >

J@Q)«,{r-r? ég)r“["" & Iy =0, (6.8)
J UV ) dulix) dulx) 6
@g(%#ﬁﬁ, L5x) (69

wnore (LQ)4(x2) = 2 [dz'L iz, z‘).Q,;;/x =)

Theorem 6.1. If operator L satisties equations (6.6),
(6.7) then it is a H -weak recursion operator. If operator
satisfies equations (6.6), (6.8), (6.9), it is a Q - weak
recursgion operator. In the case when operator L satisfies
the whole system of equations (6.6)-(6.9), it is the strong
recursion operator.

The atrong recursion operator L generates, starting from
(6+1), the infinite family of nonlinear evolution equations

a /4 ?/-TJ ‘f/'

T =jdx'@—?ﬂ))#/%myji—,/;;;§) (6.10)

where ;ﬂ(ﬁ) is any entire (meromorphic for a’e.sz £ 0)
scalar function. Each of equations (6.10) possesses the infini-
te set of the integrals of motion H‘ and is a Hemiltonian
one with respect to the infinite family of Poisson brackets of
the form

{7 )= Jdada L2 (1) Tz = - %

(6.11)
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where fﬂ,) is an arbitrary entire (meromorphic for et L, # 0)
function.

Taking into account our further constructions, we rewrite
the formulae given here in the momentum representation. Perforw
ming the Fourier tranaform

d of
ufet) =1y % [dp alteap/ips),
Lople=) =) *i:j. dp dp S pp €22 (P 7 #LPD),

(6.12)

Litez) =y [apdp' L] ppt OZD(LpZ+ipx)
(P=(Pe,r ) » PZ -ﬁ"/a,.gf... +,o,;_-r,9

we get the closeness condition

dr’.ﬂ?a(a,pp 2 J’Q[ﬁ,-ép . J,.Qp L gk s
Jai Jaf, Jas

(6.137

and the skewsymmetry condition

Q =) (6.14)

ppL T PP

Equations (6.6)-(6.9) in the momentum representation are
of the form

J’ 4
X dL e,
JapyL wﬁ; f il ok,

5 7 Jaf
(6.15)
dity ~ dlier) 7 =
C{la;ﬂi’ =% Ja_: Lff‘/”"{’]_ 0}

) §

"k

 pk
Pt Sat da’

i N Rl 5 ¢ J°H
jﬁ/?a_; daf L
(6.16)

i JL;,;I' JH 4 CJ[‘EH A

“0;
2ol =daf-—M* pafdat
SUup, 8 2 JZQ);:,&; 3 LIIA®) Y. w73
Sa? d af das
(A'szu, 2P '(LQ)@.,P} (6.18)

where (Z_Q)#,P} = J‘aﬁé Li},ﬁ_c;)rﬂ, kg -

In what follows we will consider nonlinear systems which
are described by one real field. In this case a local and
¢ -~ independent symplectic form is of the form

Q@;ﬂ =7 dyprg) (6.19)

where .Jfo is an antisymmetric function _f =-4, and CP(fﬂ)
is & Dirac-delta function. For the one-dimenﬂionﬂ.l space (d=1)
without loss of generally one can choose

Q@ﬁg-;‘g.c{‘(}pfg} : (6.20)
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VII. Expansion over nonlinearity
and recursion operator

The problem of calculation of the recursion operator, i.e.
the problem of solution of equations (6.6)-(6.9) or (6.15)~
-(6.19) in functional derivatives, is difficult enough even in
the simplest case of one field, One can simplify this problem
if one restricts oneself to a certain special class of dynami-
can systems (2,4 ) and solutions.

For this purpose we consider the translation-invariant
systems which have & smooth behaviour at Q,~> 0 , i.e. smoo th-
ly reduce to the linear system in this limit. So we assume
that the Hamiltonian and the symplectic form of the translati-
on - invariant system (6.1) are of the form

T fa'g,...d’g,,él/@,+.+.+g,’,)],‘{,}9’___%a”... ag,, 71

Axrl2

Qﬁ=5fd¢:-.. Cf%,l {Slﬁﬂ f?—g_‘,—..:‘gﬁmju'ﬁ#%;" Qﬁg (7.2)

where %w.wg,, are gome functions which are completely
symmetric on their variables andQWPM?-:--- 2./ are functi-
ons which are symmetric on the variables g,,..-, 24 + For sim-
plicity, we consider the case of one real field and successive-
ly use the momentum representation.

We will search for the recursion operator Z,ng in the form
of an "entire" function on LCZP too:

Ly== Jdse g Lipini o) Qg Ggy V09

A=

where Z‘Tﬁ;ﬂ(’ﬁ---ﬁm) are functions which are completely sym-
metric over the variables 9:;---: ¢a . The translation invarian-
ce gives certain restriction on the form of the functionsa

Z’mpg.(;,,...g,,) . Namely, taking into account that {15:&9} =
=/3"Qg where P is & total momentum, we have
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Zfﬂ"ﬂ(ﬁ*h} == J(Pfg'gx-,:—?‘%wﬂ,’(p.%j (7-4)

where Lt’#ﬂﬂi@:---h) are some functions.

Further, let us consider the case of constant symplectic
form Qﬂp and choose it as (6.19).

Let us substitute the expressions (7.1), (7.3), (T.4) and
(6.19) into equations (6.15)-(6.18). The l.h.s. of these equa-
tions should be equal to zero in any order on af, . Therefore,
equations (6.15)~-(6.18) are equivalent to the following func-

tional equations for zf(x),a;(p...g‘) and %‘)ﬁ;--- L :

3ﬁfgf£-}f.,.-.é,.) cs;gw i {@-—mﬂg

o *
(’&"'H{,‘}H;‘.ﬂ &)ﬂ’g&-lp@f""w

tz’f”'“""{’?‘*@g&_ﬂrfnf;} 5 .,1(’,, > (7.5)

fﬁ‘mﬂzﬂé&-éf/{f&,) %_”#)P’*_é&(_'_}’fw’"? i.”) —@g}ﬂ

(%= 0,4, .2,.3,...)

JF:" ad Pl S v > L=/ s
Pr3 g ?()45:7 )'%;,[@ < ‘QLW‘)Pr}Ef&#(‘;"{:”"

X
%sovaiy i)

(7.6)

= Ié'#:*b’ -Eé éﬂe‘: 4‘{;#; gy ‘{'v 1 (k e 1‘.2)@ -M*ﬂlﬁ’ﬂ-ﬁéiz:& &'"’ ‘4‘5

Vf-mon)og,p 13 b hrsy. s by = (P> @)= O, (B= 0,3,
O(prg #k-tki=~) { 55 Lnpg b oy ) - Folitpteg ki oy 1
* Ik Zr(a;;.é(i,o,&,...,,é,)j-r—' O, [7t=1, 2,._%,...)
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Desing- 4 s 74 *39/p) lf,
~ Aitopy-g-prp) Virgprge () Vey-g,-prprg *
Jﬁo"f"@“"”ﬁ) (fi- Lon A 5L J)_ O (1,8) ; e 5 it 7= ik (7.11)
PE ) P S p ks Ko s y / ) -
- ()P $(PPE) V2)~2,9 — (P> F/ =
& /0,.{,2,.”) and for n = 2 it ;.E of the form
where Sf"? denotes the complete symmetrization over
_{'z' ".r-"-t)
the vari&bles A,..., 4 - ILpp,-p-g o) Vir-g-phpigrs * 12V Mg, 04 pog-i™
The system of algebraic functional equations (7.5)-(7.8) Ll :

is the complete system of equations for the calculations of
all functions which determine the recursion
#)Pg (31 9n)
operator . »

2, 1_5#5&79-; +4(-g,4) [t/f’)"ﬁ-ﬂ #hy gt Pk +2Z’ﬁ%‘f‘?‘ﬁ/*f ”9%”4;

Here we present the simplest examples of equations (7.5), (7.12)
(7«6). Equations (7.5) with n = O and n = 1 are of the form
?l-
((”"P*F;T’a'f t"wﬁ:"ﬂ) Z‘ﬂ)ﬂ,—ﬂ-ﬁ(ﬂ}) == ( :
7.9)

‘ﬂm,m.-:ﬂ-f "4%-94@;;;@—; » =9, _ *2 ‘%m;m,ar;-.é) Vﬁv-g_, § o / PrRglie v,

Z/A{an,—; _Z'{q,-'--.i',&)z’z ,;{'{-@,ﬂfﬁffj_%yf; 4@%%&}(.“;*})*' Equations (7.6) allows us to calculate all L{y 5 Zt{z),
sse 5 for given Vﬂ} 3 V-’M' ess « Let us start with equation
(7.11). Taking into account the closeness and skewsymmetry

7"4/,%’,. #_f.z, 7 Z, — (7.10) conditions (7.7) and (7.8) it is not difficult to show that
) =%) K £ £ e
%Pre 9, K(3+4) Zﬁp"?’ (Prere) =ag-p 2% the relation (7.11) is equivalent to the following

i = = =3 2P-Y3) (7.13)
5. Pr4(Pre *4 ) p kiprk) — Elypeg, kiprg ge0) Y- 4 _ Vor-p,-2, v
enspo Cuponhpos bt r-seo DS Uy -atag) I

/
where é.?“/p)—‘{t)‘/ajﬁ_/, /_;f, . The function &)/2) determines
the dispersion law for the corresponding equation, i.e.

Equation (7.6) for n = 0 gives

Z’#Jf:‘?’ fVQ)::ﬂ:,,a _z'{af-ﬁ,ﬂ %,J,a;,p = 0 . B Qp g éa%o){:? o
Since 'I/:’-?)-f,ﬁ - %)}p}.{p then Ar,_&ﬁ,_ﬁ = fﬁfp) where oL : £
5‘760) is an arbitrary even function on /ﬂ ({d’f-{p/‘l = F?/,D')) . Analogously, using (7.13), we have from (7.12)
Purther, equation (7.6) for n = 1 is - >
Zaﬂ 5 Fg/;n)_ Vf’ﬁ‘}

%, Prg—k 2 V -#, &, O 7
P2 (% Pre-k) J;/ﬁ@fﬁ_@mﬂ)_%jﬂw) W51 4,Prg-k
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-2 — Z o) - Y1) fr o
7 (@org-R) +H%)- lfp~0iy) \ oy, (0prg)- i) 01) % 2P

7

_ (9p)- vp-+) Voy-po etk Vorg,-prhpogt

m‘f -2, d‘('J -k
2 e f;ﬁ » (D)~ 8p) —w/4-p)
(7.14)

# ( U3 - Y12-4) B)-2,9-4 Kﬁu-ﬁ.—gr&ﬂﬁ—é
Fh-y (@0&)- iX3) - 03(%~2)

(A4 W) gk pigk g, gt G HPAMospbprg

Sy k[ Bprg-k) = wp) = 0(p-k)  FonfUYprgk)-tYg)-AP-AY -

In & similar menner one can derive, from (7.6), the for-
mulae which express Aﬂ; via l'é; > }4‘. A %_; , the functionl:t/ﬁ
via V@,;, ’ [é; p V@')‘ » V(‘} and so on.

Thus, for a given Hamiltonian, i.e. for given functions

I/;;-; ’ V.r:;; s se+ and a certain fixed even function Cre) , we
eagily calculate all functions lﬁﬁ)ﬁdp,y) ‘{,'ﬁ}/,ﬂ/___jj i
which determine the operator « In order that this opera-
tor Z;H, be the recursion operator it should satisfy equationsa
(7.5), (7.7) and (7.8). The fulfilment of (7.8) is obvious. By
gimple but tedious calculations, one can show that the expres-
sions for A{;JH(Ff.;_J and 42)/3; (---) » Eiven by the formulae
{(7.13), (7.14), indeed satisfy equations (7.9), (7.10) and the
closeness conditions (7.7) for n = 1,2.

Thus the formulae of the type (7.13), (7.14) allow ome to
calculate the recursion operator Lj.ﬁ for given ng; ’ }é;.,
«s+ « Emphasize that all functions V : lffﬂ. ese (1.0. the
Hamiltonian of the equation) is arbitrary ones. So, any dynami-
cal system (6.1) with any Hamiltonian of the form (7.1) posses—
ses, at least, the formal strong recursion operator Z./g’, .

The existence of a formal strong recursion operator for
any Hamiltonian system of the form (6.1), (7.1) becomes obvio-

32

us if one taskes into account the following three circumstances.
The first one is: any system of equations (7.5)-(7.8) is inva-
riant under the general transformations of "coordinates" (2,
and, therefore, the existence of the recursion operator for
this syestem is independent of the choice of variables QP P
Secondly, any nonlinear system with a Hamiltonian of the form
(7.1) can be linearized by a suitable canonical transformation
[32,33] . The third point is:any linear equation %zf—-aga)a,;o)
with odd function &J/p) possesses the recursion operator of the
form Lﬂ = Wp) I pre) where ¥/2) 1s an erbitrary even

function.

Indeed, let we have the dynamical system with Hamiltonian
(7.1). Let us linearize this system (i.e. reducg the Hamiltoni-
an /1’ to the form ﬁ”fﬂj":ﬂf/“’z J@*ﬁ)%ﬁﬁé&éﬁ ) by

the canonical transformation (¢ s
CZP = .éo + ,:4—__-2 fd/qz dpﬁ‘j[@'ﬁ'-u'ﬁ)ﬂ@%,wg) 5 4%(?.15)

Using the condition of the canonical character of the transfor-
mation (7.15), i.e.

Ja Ja -
[@”’a‘f&:fd‘égé: .75 A‘é_: =%:_S&,£)=/Qﬁ¢z}é (T.‘i.E)

we, in particular, have [32]

5
’?w,wm; 2L esg(Gpr9)- 1= 42)) %’ﬁﬁr? P
The linear equation = ﬂ/p)éﬁ
this canonical transformation, possesses the recursion operator

Zr;i‘m”= vr J'(P:"g,) where ¥/0) is an arbitrary even

s )

, which appears after
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function. Let us now perform the inverse canonical tranaforma-

tion f;, — ﬂ.ﬂ into the initial nonlinear system. The recur-

sion operator is transformed under this transformation as fol- < i J(F’/})‘?’,@))
: 2@)p

%ﬂﬁf)ﬂ"ﬁ 2

s, PO aprg)-apr-ars) (6. 1)
L(ﬁ'ﬂﬂ") i 4 s (Cnsar) 2
g — .4&; f £ a!iéz S Py~ kg La";b S;uﬁ Q o 6{;&/9/_ ﬁ/;p}) V éu;
2/2)pg (%, Pre-k) )-8 -2, k T e
= [dk S, . k) S; (1.18) & PEPEY " Lyprg—k) +alh)-ap)-agg) (P EL S
g £ g | Using formulae (7.13) and (7.14), one can easily obtaein
where ﬁfcfé/oaﬁ ,%-J'@/Jg_ In particular, formula the relations between the coefficient functiions LC/S)! G and
(7.18) ;.gvas 5 Vis)s Vfsy of the pair of Hamiltonians related by the recursion

operator L (L F’//ﬂf?’/?) . BEqualizing the r.h.s. o;l'7the
= . (7.19) equalities (7.13) and (7.14), taken correspondingly for Ka,,
L{#“'ﬂ 20 2 2@@} %o)/ewﬁﬁp 2 ""9) = %,} and I,{f,;. V(*) and, taking into account an obvious equality

Substitution of (7.17) into (7.19) gives exactly the expression Q) = Yp) &) » we obtain

(7.13). In a similar menner one can obtein the expression for

éﬁ;ﬁ(é,pf; -k ) of the form (7.14) and analogous formulae V et p@f&)‘*’&#f)-ﬁ/ﬁ)mﬁ/’-ﬂ/ﬁr’w (&@

tor Lmy, Ly... « So, formulae (7.18) yields the strong N-£-2,P% &%/,r — W/p) -0 )ﬂ'ﬁ/"ﬁ,
13)5 Lta)s Pre ) ayp)-a/g)

recursion operator for arbitrary initial nonlinear system with : :

Hamiltonian (7.1).

V _ Pprgk) @y pr g=h)+ MBI k)~ DR 0 - g ) o) ¥
VIII. Regular recursion operator. ! WP $:kpr gk Wfprg-k) + W/ %k) - ep) - % ) é}ym
In the previous section it has been shown that any Hamil-
tonian equation possesses the formal strong recursion operator.
However, in the general case such a recursion operator is a 4 3 /Pfgvﬂp)m{gfpj-ﬂ@fﬂ-ﬁ)ﬂ/ff;ﬂ-f}-V/g}a/.tﬂ)_
singular one due to the denominators of the forms %’Jﬁfg @ﬁ)-&%’-&.}ﬁ) DY@ +P) =g #p~k) — &f£)
W(prg)=Wp)=w(3) » QP +g-Kk)* k)~ bp)-0(3),
etc., in the expressions of the type (7.13) and (7.14). Similar _ VP rg-4)lprg-£)» ) ak) - gplafp)-4g) g %70 / 3
denominators are contained in the expressions for higher symp- ' y 4 B)-g-Lk -4
lectic forms and Hamiltonians which are generated by the recur- MKP ?‘ﬁ-é) v wﬁ}ﬂﬂ/ﬁ’)_@/ﬁ/ o ki ik
sion operator. For example, for the symplectic form. i pg. =
= LS, e ":[’f’} S we have :
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_EB)-tp-4)
- SO PP+ 8-k)L(pr g-k)-VG) )~ YiP-k) P-4 _
Faopllhy-apy-il) Lprg~4) = W)= dyp-k)
_ Wprg-k)fer g-k)+ YIDMA)- VIR OE) - Y8)0%)
Dfpre-4) AR A oot
(P1e-K) * (k) — L)~ 4%/ %
H8) - Yig-+4) ‘ _
= Yp)- %) Hprg-kiapre-£)- ppaf)- e 4pg4)
-y (Otr-21f)-a5) By fprg—k) = of) = &g~

_ P rg-k)adforg-kit PIGI) - B - )
B fprg )+ fl)— oy f) ~ /%) / Bt g4k Voot .

Yo/ - Ye-+)
_3 VP-4 P )wik) - #1g)a(g)- Wik -g ) bofk-4)

.f’
Sydlitprsiapr-ags) | @ -tgy-wft-g)

(8.3)
_ Bpre-)apra-k) + AR - B - 18)0)) y
W(prg=k) + k) - -l [ BBk pigé %—5;-&
) - #pp-£)
P R, / PI) ) - 41 aifp) - ki)
J,f_.gﬁéf;ﬂé/-wﬂ)—%,éy W/k) — L) — Wff-p)

- Yprg-E)wpre4) + H wk)- p)e)- W)

MK it o
Dfp+g-k) + k) — )~ 1yg) “BrPH P ) ook ke, '
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Recall that all functionals H s (L ‘F’H= Vﬁu)

are the integrals of motion for the initial Hamiltonian system
(7.1). However, the presence of singularities (see e.g. formu-
lae of the type (8.2) (8.3)) in the coefficient functions Ve,

l{q.), +«e 0f the higher integrals of motion /7; ./!;,... makes all
these integrels poorly defined in the gemeral case. In order
that all these /fp be well defined functionals on Zp 1t is
necessary thet the multipleof the forms

PlPrg)@(pre) = YIP)WPR) 94  (a,4a)
a}f/ﬂfﬁ} - ayp) - wig)

;.ﬂ/,afg —4) Qprg-Kk)+* plk) %) - ﬁ(‘)ﬁ/’/'f%wt
dprg-k) + Wk)—d(p)—&z)

would not contain the nonintegrable singularities.

8.4b)

We will refer to the recursion operator, which generates
the family of well defined Hamiltonians //, from the well defi-
ned initial Hamiltonian /4 , as the nonsingular recursion ope-
rator. It is clear that the demand of nonsingularness of the
recursion operator leads to certain restrictions on the form of
the functions &2/, Va;, f{/y,... and extract some sub-
class of equations from all equations of the form k7=1)s

The stronger restriction on the Hamiltonian (i.e. on the
tunctions Va,, Visrs Vay, - ) appears if one demands that
all functions @) » %” y Vig)yeer would not have singulari-
ties at all. We will refer to the recursion operator which pro-
duces such a femily of Hamiltonians as a regular recursion
operator.

As we shall see, the properties of recursion operators
crucially depends on the dimensionality d of the space. Let
us consider subsequently the cases a.’- 1, d = 2 cf:r 3.

In the one-dimensional space the mult}‘pla (8.4) is the
2nrd
simplest one. For & = 1 we have W(P)= = %/ and
Vo) = = P Y e . It is not difficult to show that for
any @ye) and ¢ (P) the expressions (8.4) are polynomials on 2,

Z anﬂ./ﬂ : f, , A . For example, for ﬂ-r,o" - ;4'-,0" one has
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zero, i.e. the recursion operator 1s the entire functional on
& . However, it may occur that this infinite series is inter-

VP 8) wipt 8- viR) W) -8R0 _ Spe(Pre)(P re f)=§¢$ﬁfg2

ﬁ’,’?’"ﬁ/ "—ﬁ*f"f"‘"’/ﬁ/ J/ag, @*ﬁ) rupted on some (N-th) term. We will refer to such a recursion
operator as the N-linear recursion operator. It ia clear that
the requirement of the N-linearity of the recursion operator,

Clorg-k)wiprg-k) « @ik )w/k) - o) wp)- ¥/3) e

o Vi3 ol o o ﬁﬁ) '@'} ??/W,%}: i.e. the requirement L(mﬁ = Loy = ... = O leads to
a"/;"f‘ﬁ'éjv‘ é!/ij—-é)ﬁo/’— m/;,/ strong restrictions on the form of the functions V(: > Va ’
: (8.5) ‘L Llé,-,.’;, «es + For example, in order thet the recursion operator

[ be linear on @ (i.e. Ly = Lpy=...= O ) it is neces-

4 i
S/PPE) (84N (PAI(P 9 2 A2 P+ S =3 K) = sary that the r.h.s. of (7.14) should be equal to zero, i.e.

3P )L —4)(P—K)

. 7 =24
= (VP -v) Vay-p, =@ Kyt gk
£ 2 2 i
'=:3— ‘,ﬂzr‘tf 1‘{6 —P,{'-H'PQ ﬁé) -
_ _¥Yr-¥e V 5 +
e O Ve R (s & #g-k
Thus for eny &//2) and ¥/P/) the function Jﬁ;-,g—g,ﬂ:'-g. -’;:y @'/”‘f/-ﬁ#/'%y (et s Sl s
hes no singularities.
The expressions in the round brackeis in ;B.#} have no p Pp) - Pro-£) K ¢g) - ¢/p-£) V
- B 4 e e o
singularities, too. Let us choose Jo = comsl p Sl i ?"7:;-* k)= yp)-Lfk-p) Lt g-K)-ag) LK) %ﬁ,ﬂ-ﬁ}ﬁ @;—;.yﬂfép,y-{-
It is not difficult to see that by virtue of the multiplers in (8.6)
front of the round brackets in (8.4) the expression for 5
%f'ﬁ'h‘é:fﬁ‘i"i has the poles at p + q = 0, p - q = 0,
P=0and q= 0., However, it is easy to check that the residues
of p,é}-fJ-;,i‘,ﬂ:‘ﬁ"é in these poles are equal to zero inde- T £ i i { - ) - V-4 )r
pendently of the form of M{y 3 J§~é Wfk)=bfg)-wfl-g)  Lfprg-k)-up)- w/g-£)
S0 the functione IZU ’ %‘; have no singularities for any
&) (P) and ¥/2) . One can, however, show that the function
%) has nc such a property. Analogously, Z@;, %} omer Sl a6 Va;-;_,;—i-”{. [{y.ﬁ_;f&}ﬁ,ﬁ,‘_ - o
ve singulerities for general %, L‘/f.”, «ss « The requirement
for the absence of singularities in the expressions for all the
functions 3 ses leads to a certain tem of equati-
v &) » Vee) s i e In sddition to (8.6), the conditions on Vs, Vi, Vv, - '
ons for @ %ﬂ, Vg;, eeos o« 1f these equations are satisfied, A h bk Z» "Z« & ki satiatted
then the considered system possesses the regular recursion PRLCR AR @ iy T :
operator. In virtue of the cumbersome form of these equations, In the case when Hamiltonien // is cubic on &2, i.e.
we omit them here. when M:ﬂ - V@; ==_, . = () , the whole system of equations is re-

duced to the only equation (8.6) with V{g- 0. Let us consider
this equation in the simplest case .Jf;:-—i/f;ﬂ;- W/p)zw+ﬁpz :
wWip) = coes? D7 . After the trivial transformetions equa-

In the general case all the functions Af:fj, _Z.,m 5 Z.(.;; y
ess 5 Which determine the recursion operstor, are not equal to
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tion (8.6) reduces to the following:

(2 P) Voyp,-g,pv 3 Vor-g-prspes-k *

# (%=9) Voropp-i 4 %}-9.-,0*@" i i (8.7)

+* @"‘é) Vi‘?—"“f,’.-:",f %J-P’-g*é.rf"‘f._é = 0 .

It is not difficult to verify that equation (8.7) has the
only solution V(,,; = const within the class of polynomial

V(.i) y 1.e. within the class of local Hamiltonians H « In-
deed, putting in {E.?)P-k= 0 one gets g(‘%;a,-}.g S

- Waso,0,0) Vay-g,0,4= O . Therefore Vajo,-2.2 = Waro,0,0 ==
= const.

Thus, among the nonlinear equations with threelinear local
Hemiltonians and &e) = P° only the equation with
Vb; ..—..J"/a = Consl s l.e. the KdV equation, poassesses the li-
near recursion operator. It is of the form

L,n; = (o */,B/DvAkOfgj +;%‘12 ﬁzﬂ'*f- (8.8)

where & , B8 , )Y are arbitrary constants. For & = 0, B8 = -1
and J" = -2 the operator (8.8) is the recursion operator (1.2)
in the momentum representation.

Another example is the bilinear recursion operator which
corresponds to the equation with &J/8/=-/p7, Pf#)=4§7€"""¢
and V) =V=... = O . In this case,

Lwpg = (o 74P%) '5%"“ £/,
P-2)2
Pk —k(pr@—FK)

Awﬂ(’é,,m;—i) ey (8.9)

L{"} 51{4(3) - éﬁ) — e 0

l.e.
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Loy =@rp)otpe ) X Jh =218y

where o , i J’ are arbitrary constents. For X = 0, & = -1,
J’ = =1 the operator (8.9) is the recursion operator for the
modified KAV equation (see {1 1_] ) in momentum representation.
Note that the operators (8.8) and (8.9) in coordinate represen-
tation have been calculated by another technique in [2 B].

Thug, in the one-dimensional space there exist Hamiltonian
equations which possess the regular recursion operator. For a
certain subclass of these equations the recursion operator is
the polynomial of the finite order on the field @ .

The situation changes drematically when we iransit to the
two-dimensional space. It is connected with the circumstance
that the expressions of the form (8.4) have no singularities
only for certain special functions &//2) and ¥/2) . Let us
firat consider the expression (8.4a). Por the absence of singu-
larities in such expressions it is necessary that the numera-
tor be equal to zero on the same manifold g “aa the denomina-
tor. This means that the dispersion law @J/72) should be a de-
generative one with respect to the decay process 1 —=2 + 3
(for the degenerative dispersion laws see [34,35]} and disper-
sion law ¥ /p/@(P) shoild belong to the class of degenerative
dispersion laws assoclated with @(¢”P) . The second condition
can be easily fulfilled if for the degenerative dispersion law

& (p) one chooses ¥p)= dp)ew)p) , where &) is any disper-
sion law associated with given dispersion law &J/2/ . A wide
class of degenerative dispersion laws has been described in

[(4.35].

In the description of the dispersion laws the dimension of
the manifold /7" which is defined by the equations
Pt Pu=Prs e Prowmr WPt D(Pr) =
= W(Pw) *+ .. * @WfCr.mw) plays an important role. If
dimw /7% and dim /7 are less than & maximal one (i.e.
diw "% < 2d -2 , dewm %< 3d -2 ), then the
expressions (@ /Prg)— wiP) - w/ﬁ-),)-‘ and
(é.r(gofg-é) + wik) —wip)—-wrg))™? may have the integrable
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singularities. For such &//2/ (with w /%7 <«
< smazdiv /77 ) the nonsingular recursion operator may
exiat.

5 4 ¢ o ] is a maximal one, then the corresponding
nonlinear equation does not possess the nonsingular recursion
operator. Indeed in this case, in virtue of the theorem proved
in [35], the expressioms of the form (8.4b) have nonintegrable
singularities. The multiplers of the form

Yip) — eip-k) o SHPNTS PS e 4
000) —0L) (ﬂ_ﬁ (&J{’é} P — wik-p)) in front of
the round brackets in (8.4) have the nonintegrable singulari-
ties tooc. Moreover, the nonintegrable singularity is contained

in the symplectic form izapgﬂbng (see formula (8.1)).

Thus, the nonlinear equations in the two-dimensional spa-
ce, which describe the nontrivial scattering of /2 waves into
» waves (n £ m) with waaolw ~ 7™ s does not possess
the nonsingular recursion operator. In particular, the well-
-known Kadomtsev-Petviashvili equation [1], for which
L iwr i 3 and ﬁéﬂ = congt,has no the nonsingular recursi=-
on operator.

An analogous situation tekes place for three and higher-
~dimensional spaces ( a’& 3). Since for & > 3 there exiat no
degenerative dispersion laws with M2z Ziw E §xid [35],
the nonlinear equations with #ax &is /7%* 4o not possess,
nonsingular recursion operators. Only the equations with

im /75" < maa dim /75"

may have the nonsingular
recursion operator. '

So we see that the regular recursion operator is a pure
one-dimensional phenomenon. The proposed method of expension
over the fields (i.e. the perturbation theory method) seems to
be adequate for an analysis of the problem of exiatence or non-
existence of the nonsingular recursion operstor in the multi-
dimensional spaces, All the results of sections 7 and 8 can be
generalized o the case of the systems of equations (6.1).
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