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Abetreact

General form of the integrable equations and their_ Back-
lund transformations connected with the general two-dimensio-
nal Gelfand-Dikij-Zakharov-Shabat_spectral_problem is found
within the framework of generalized AKNS method. Bilocal ten-
sor product of the solutions of the apectral problem is used
succesegively that essentially simplifies the calculations_of
recursion operators. Transformation properties of the integra-
ble equations and Backlund traneformations under the gauge gro-
up are discussed.
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I. Introduction

The inverse scattering transform method sllows to investi-
gate in detalls a wide class of nonlinear differential eguati-
ons (see e.g.. ﬁ-J]}. Various versions of this method are in-
tensively developed in the present time. The generalized AKNS
method, proposed for the first time in [4] and then developed
in [5-1&& looks like the most attractive one from the point of
view of description of the integrable equations and analysis of
their group-theoretical properties. So called recursion opera-
tor plays a central role in AKNS method. A calculation of recur-
sion operator 1n the explicit form is the main problem of this
method. It succeded to do for a wide class of one dimensional
spectrel problems [E-16]. A concept of recursion cperator has
been also generalized to certain twodimensional spectral pro-
blems [17, 18].

In the present paper we congider the twodimensional Gelfand-
=Dikij-Z2akharov-Shabat problem
N N-of

S U 992 - Ul OGRS =0
where N 1is arbitrary integer and Vi (=, 5"’#) veor V-1 /‘r’y"z’)
are scalar functions such that o‘%ﬂﬂ' =, y’t‘)-—*c}(’ksﬁ, Y )
in the frame of generalized s mathoﬂ. The problem (1.1) for
H&g = 0 hap been considered already.in the framework of AKIS me-
thod in [18] . In the present paper we will work in the frame of
this method too, but we will use essentially another technique.
We will use successgively the bilocal tensor product F/«T j/: f)@
,F?ﬁﬁy’é) of the solutions of the problem (1.1) and it's adjoint

problem. It allows essentially simplify the calculations of the
recursion operators and makes the whole twodimensional version of
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AKNS method much more transparent and clear. It seems this bi-_
local formulation is more adequate to the twodimensional nature

of the problem.

We construct the infinilte-dimensional abelian Backlund-Ca-
logero group of general Backlund transformations connected with
the problem (1.1) and find the general form of_nonlinear equa-
tions integrable by (1.1). We construct and use the recursion
operators which act on the whole N-dimensional space and do not
impose any gauge conditions on potentlials M,,..., Vy..; .

In the paper we consider also the transformati- properties
of the general equations integrable by (1.1) and ¢t r Backlund
transformations under the gauge transformations whic!i conserve
the problem (1.1). Manifestly gauge invariant formulation of the
integrable equationg and Backlund transformations is glven.

The paper is organize. ag follows. In the second section

we nbtnin certain important equations for bilocal quantity -

F(-Tf;f—) ﬁF(T,ﬁ 2) . Recursion operators are calculated in sec-
tion 3. Backlund-Calogero group and general form of the integra-
ble equations are found in section 4. In section 5 we discusa
the gauge invariance of the integrable equatione and Backlund
transformetions. In sections 6 and 7 we present the examples of
integrable equations and Backlund transformationsin the simplest
cagcea N = 2 and N = 3,

II. Adjoint representation and some important
relations

Pirstly we represent the problem (1.1) in the well known
matrix form

I 4 2F . (2.1)
where
00 0 -4 0 0 )
0 O '1"‘ a {202}
A 00...0 b v Nl e i -
$ 0.0 Vo Ve Va... V-4

The adjoint problem is

é};— A /-:P(:.r,y,t)mo, (2.3)

Let us introduce now the tensor product of the solutions
of the problems (2.1) and (2.3)

@5# s n/tf Al 4 = (2.4)
s @049 = Fin(z g ) ie(m42) ;

R L A
The quantity @*fﬁ' %ﬁr t) is transformed under the adjoint
representation of the group which is defined by the problem
(1.1). An important role of this quentity in the inverse scat-
tering transform method has been disgcussed in [19 Emphasize
that the solutions £ /% 2) eand F/Z, %1 in (2.4) ave in
the different on the second spatial variabla points and
correspond to different potentials .P/-T:g: f) and. P/z',y# A
touch in (2.4) and below will denote the quantities which cor—
Tespond to the potential 2 Ar:f:f){e.g. F').

~ In the present paper we will successively use the quantity

A
Pre (£,4,4)L) . The bilocal nature of this quantity will play
an important role.

Using (2.1) and (2.3) it is easy to obtain the equation
for (z,’ﬁ,cy £) . 1t 18 of the form

p) @‘”/x,f #%2) /-I 0 @‘”/-r mﬁf) d P, g B
0z ay {2.5)

) —~ Ln — L# -
*Plz71)P (mf/:%t) — P (@ gy )Pl y2)= 0.
Equation (2.5) i§ the main equation for the construc\tian of ge-
neral Backlund transformations connected with the problem (1.1).

Let us firstly obtain certain important preliminary relati-

on. Introduce for this purpose a matrix operator B(—-&?_, f) gi-
ven by

B(-9, f)jgﬁk(-éy,@(fﬁg,ﬁ@ﬂéf@ faj-,-,@@ C}-*&? 28)



where %7—_@!!{)(2‘,% f) and Bﬁ: (—ay,ﬁ) (k-ﬁ?,f,---, N—:f) are
arbitrary "chéﬁa;h?unctiuns. Let us maltiple (2.5) from the left
by the matrix B(—a?, £) , take trace and integrate the obtai-
ned expression with Dirac delta function cf‘/?— Y) over I , ?
end 4 . Taking into account the commutativity of B(-c);r, ) with
';455;-* * P end uesing (2.4), one can represent the result in
the form =

O 2 A Lot A e

tr (B3, DPIEZOP e Fp) - BRIP4 ) Plabt)o
where P =P+ Fe EﬂﬂAA_in =@‘(@,ﬁf)ﬁf3,;f)/5-@j’}9)‘:ﬂ, A; "
- (Flapt) AB(yt) F (&4 Don -
The first term in (2.7) through Gauss theorem can be trans-

formed into integral over surface. We will consider only the
functions Bg Fa;, ﬁ) entire on -b’f g l1ee.

Bul-0pt) = 2 ba®)(-%)" (248
where Din ﬂ) are arbitrary functions. We assume also that

Vi (z,4:8)= O a8t x¥ég?— oo so fast that there exist the
solutions / and /Eof (2.1) and (2.3) which decrease at

U.I!fjff—raﬂ faster thanj/(.i‘zf 2)}*5’ E>0.

For such solutions F;, and functions & of the form
(2.8) the integral over infinite surface and therefore the first
term in (2.7) is equal to zero. At the result we have the follo-
wing important equation

: ded?“'f 3(5('”#{35'3‘;:9/‘97’!% 2) Pz, 7, 40%) >
Bl )P Gy tPle g )} = 0.

Using the direct scattering problem for (2.1) and (2.3) one
can show EEB] that the eguation (2.9) is valid for some other
class of solutions F ', too.

A
b4
Introduce follow to [18] the matrices-solutions FA f'/I’ﬁ ﬁ)
of the problem (2.1) given by their asymptotics

Fi iyt ,.._}';(Zﬂ)'f A AFM) @FA? +Al)z) (2.10)

.9)
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!rhereAE R H A-(A) is dlagonal matrix: rq_;k=/\gfd ik s

(Lk=1,.., N ) -=agaiﬁé, &, 18 Kronecer symbol and
.D;k“(ﬂfz*")i"’,('f,é-j,...,!V),f " -Thnnumbe:s :;E'_’
are eigenvalues of the matrix A=AA+P‘, and A =

=.D[A)ID'1@) « For adjoint problem (2.3) we introduce the
solutions 5:‘{1-, ,f)=

£ f/-z'-ﬁf)m(zﬂ)—% A%j@ﬂﬂ?—ﬁp]}x)ﬂ"ﬁ) (2.11)

2 Let us chog'aa the function @E%ﬁﬁﬁin (2.7) am
ﬁ%g%ﬁ)'ﬂﬁfﬂﬁﬂ QF;/IJ%"’) where the solutions
V@ gt) ma Flz,yt) ere gy (2.10) and (2.11).
It is not difficult to show, assuming [dyL-(.)= O and

ua}ﬁg the calﬂ.llatiuns analogous to those g:l.qren in [1.31 s that
JAxdy 0, A" = 0  for £#/ , Ag & result we again obtain
(2.9). Correspondingly the scattering matrix S(T,/L t) s which

is defined by the formuls F;[:r.',g,f}=rfdfé¥r, W D)S(A, A, L)
should transform in the following way

S 1,8 —=SIIAD=BIAOSHAICAL)  (2.12)

where 5‘-,{-/}:5}-&‘& Bi3t) and C%Lf)i'u an arbitrary diago-
nal matrix, :

Rewrite the ralatian'{z.g) in a form which ie more  conve-

nient for our further calculations. Pirstly we change in (2.9)
3-92) on B(9,1). 1t 1s ossible due to the equality

) dydgd‘(y-y)@,ﬁa;)(f..)-—- d| (*--)=0 . Then substitu-

2 A A
ting the expressiona (2.6) for A ﬂf} and Bﬁ%iﬂ intoe (2.9)

and using (2.2) and (2.8), we finally obtain

M

JHHGYDE Z bultlr (3 B o102 Pl 1) -

=5 =

(2.13)
) R Bt T OP e p )P O B2 7y Pt
=0

where Aﬁ, denotes a projection of matrix ﬁ onto A -th column ;
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(%g)mﬂ q’—_‘f&g @MK -
If ome perform the integration .over 4 in (2.13), the in-

tegrand become the local one on ¥ and one can produce further
calculations analogously to [18].

But 1t is more convenient do not perform the integration
over ¥ 1in (2.13) up to the very end and to work with nonlo-
cal expressions as long as possible. The calculation of recur- .
eion operator and consiruction of Backlund transformations and
integrable equations become much more simple and transgparent
in such bilocal approach.

III. Rec operator

For further tramsformation of the_expreesion (2.13) it is
necessary to establish the relations between the quantities
O P4 ey md O HEF; 40 puy with difterent 72,
i.e. to calculate the recursion operators. We will calculate
them using the bilocal quantity P(&.7># %) and proceed to J=y
at the very end.

Rewrite (2.5) in the form

0Pz 48] _ _ 29 g4t)
[A’ g ] ox '

-Plx,5,) Pz Zpt) + Dfz, 7,4 L) Plx,y, L)

Acting on (3.1) by projection operation 4, and taking
into account (2.2), we obtain

Adp Py —OksOq DA = -2 Py, —(%* ) ons Do, A -
PO +(PayPlay —(1-ks) Pary'

Solving the recursion relations (3.2) with respect to ﬂ‘_,
one gets

N-k-g
P O R 2 PR P (AR O
- (1s<ks< N-1)

S
(37 * By) ¢’fﬁ’:ﬁ#f/:f: 3

(5.2)

whare operator P is

P = -0 - Pz, 3t) —Ady (3.4)

Substituting 5?1’ given by (3.3) inte (3.2) for ks 1 we

obtain the relatiom which contains only % t
A
£
226U = %9, +(9%+%)%, (3.5)

ded
where V, =7 and (Q"n wr Q&Mn 2
In virtue of (2.2) the operator «?!iﬂ of the form

Pl=P- 5 .ﬁ"’Aﬁ**af = 7-129; (3.6)

where

PE o plpt), rns Fpph 6D
&

rhy= -1
Let us introduce the /V -component columns
def
Viz.gt) =(llxst),..., Visfw5t)” o
Je
ded
AEFH)= (Ble, 2.9%), - - Pl Fi?)) .

Substituting (3.6) into (3.5) and transiting to the columme
(3.8), we obtain

Yoy XEgyt) =T A= F41) (3.9)
where
?ﬁéﬁﬂf!, ﬁé?”}{, —-@ +3f) a0

Prom (3.10) it follows that the operator ﬁf is a lowertrian-
gular one: %g =0, koi (.'J,J:‘=.2',...‘, #) and in particular
Gis-g = —Noe * Kf-.f(-"‘ré’r ﬁ,)_'i‘:;z_f (=; ir) . It 'is clear
from (3.10) that the relation (3.9) allows us to express .
dj’)-’(-ﬂ':ﬁfrf) through X /2,7, jﬁf) . However since the ope-
rator ? is degenerate one then the first equation (3.9) gi-
ve a constraint between the components of ,‘L’(:'r,y;ﬁﬁ) .

Uaing (3.10) and the expressicns



(P),e = P 2 b o ST D
@1}{! ﬂﬂ,f'f*ﬂ,---,ﬁ", /‘*'-"”‘! fhf); {3.11}
4 -, of = ’
() ='ami!r"Y“’-:ﬂ)“r - -1 (%731} E= 12, N,
we get this constraint in the form
i
54/{*@%%@-9 (3.12)

where operators &4 act as follows
. H Mekent d p
te =Ly 0)chs s 89 Yoot S CAL Y, G5+

Solving (3.12) with respect to &, , we obtain the wela-
tien

A 4t) =M Xa(z7,5t) (3.14)

where
Mk =8:0 =i b8, (ish=1,..., W) (3.15)

wd 2, Z g t), o i (aBign )y O,

It 18 not difficult also to show that the following rela-
tion

a-f
[ M] =£ Merspo ;v‘dM (3.16)

holds, where

Mo plim = ~dp, 25CL V,f,,,,_{,,, (72,

e (3.17)
= : £

@ M),tn : é‘i; j.r ;-:Za Cn’%’-x@?ﬂ) @r ﬁ f)‘?f"fxdlﬂ

and m{bﬂ _— a;"]/;/.z',ﬁ Z) * o« Note that, by virtue of

10
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i

(3- 12} g One hae

AMX(z. 2 4.t)=0, (3.18)
Purther, acting on (3.9) by 3;, using (3.10), we find
?’}”ﬂ@,ﬁﬁv"Eafmwa;;((zﬁﬁj’rt) (3.19)

where

Gimy= (4= 2p)dum + 3 CE P, ) -

(3.20)
N
~(7=9m) 2 CX(G ) Vo, 4. 2).
Then, using (3.7), it is easy to show that
- BMFI,_, = f—J Lt T j' f‘ { .2 )
;U it € ea)&*zh_f_ga, FL)AT " 3.21

Introduce an operator ?,. which aa;}ufiea to the equation
f?/-fy where (Ex);} HC}‘M oy v 5 {Lf-i, ey A"') .
Multipling (3.19) by this operator @, and using (3.14), we fi-
nally cobtain

% Xale0. 49 =2 2 G GumCa(d M X, (5 F52), (3:20

The relation (3.22) containa only N-1 independent components

Ko(®BG4t) "{Xf@:ﬁﬁ#,xm(wmcﬂgnﬂcm serve for the defi-
nition of the recursion operators in the space of N-1 indepen-
dent variables.

Recursion operators can be defined in the space of all 4
components._ of X/x,ﬁéaﬁ) too.. For this purpose we multiple (3.19)
from the left by M@' and use (3.16) and (3.18). As a result we
obtain

3}*?@ﬁﬁ#=§:/ﬂf?$ﬂ: *Mum)O7 X(EGpt) . (3.23)

There is a simple relation between BFX/ﬁ,ﬁﬁﬂand 5}%4{&;,@;5:9.
Indeed, acting on (3.14) by 3}' y One gets

3;1(&‘:??%5)=,§Cj@;~%)¥é@ﬁﬁﬁ=é@ﬁa ;xd - (3.24)

Using (3.16), one can obtain the following convenient recursi-
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on relation for the calculation of Ofm,g) g

”
Of’#ﬂ;ﬁ b Mcﬁ.’#ﬂ +(f— d:'a!ﬂ')%f M(#.M} Oﬁﬂ-‘.‘l} . (3.25)

The a%nationa (3.22) and (3.23) sllow to express all_derivati=-
ves ay/l/ﬂi‘,fﬁﬁ through the gquantity ,f/ﬂ;ﬁﬁf) « Therefore we

can define the followlng operators and /lamw
B;Xd (xxﬁﬁf)[p., q—e’zﬁﬁmffa (z.4-2) (3.27)

; a
where X@,ﬁf)fff{&ﬁﬂ rf)éf.ée and _/.[,,-E f’ /’IGKNJ o Prom
(3.22) and (3.23) follow +the recursion relations for the cal-
culation of the uparatora p80d Sl 3

-Ag,p._f .Z 9{3 #}.A\ 7>~ Oﬂ'f‘l‘.f} (3-25}
Ag i f;a Dre oy Am,m (3.29)

where

Dy Z (M Gims My
a’ef
@'ﬂaﬁ; Qe -*"':Jéy.: y

?‘
and Z= (d’}, f;) /:p'--y » Q(w =@#ﬂr}:; seey Oﬂﬂpﬂ)
where Q/.ng,f are arbi tm-:; eperaturn.

(3.30)
arir—

-The operators JL, and A,.m. ere just the recursion ope-
ratora we are interesting.

The terms (Jwryy ® € in (3.28) is due to the existence
of the constraint (3.12}. Indeed in virtue of (3.23), the.quan-
tity a{,,,_, =, Zﬂ.%.,,,% should satisfy = to the
equation o, » ;!,&- 47)=0. Since X has N-1 independent compo-
nente then the rank of operator d,,., is egual to 1, Taking
into account the constraint bXpe=0 , we obtain G'M;,{- =
= Qpeari b where (xsg)i are arbitrary operators.

It is convenient also to introduce "standard"™ recursion

= |

operators ./T(.g)g which are defined by the recursion relations

/lmm =, %H;/l,s,,,. 2 (3.31)

Ve viiatioe detwese 1. i /1;), is the following

ﬂAﬁ}ﬂ * Gn) L (3.32)

where- 0{4) /Qm:u---, 67;,;”) and @x;:,,.., %,y are arbitra-
ry operators.

Thus if one defines the recursion operators on the E-1=
dimensional space of indepgndent quantities !, = /.z‘l’f, . AR Q’F
the recursion operators .A#ﬂy) are defined uniguely by formu-
lag (3.29), (3.30). If one defines recursion operators on the
whole N-dimensional space of all components /‘ff,... . /f,y then
there exist a big uncertainty in the form of recursion opera-
tors due to the terms (J,) @ ¢ . Such a situation with the
dlfferent pogsible definitions of recureion operators and re-
lated uncertainty is a typical one for AKNS method. In the
onedimensional case it was demonsirated for Gelfand-Dikij spec-
tral problem E‘iEJ end for the linear arbitrary order matrix
spectral problem [2'0] .

In analogous way one cen obtain the recursion relations
for calculation of the recursion operators /,  and Ly ) d
fined by the formulas

A xeayZyy EFet Y ey Al o) /.z-y;@/{a .33)

However it is more convenient to calculate the operators A’
and /l,,) using the obvious formulas

v # E v ot ko & Np-f D
=> 4 ” — g (3.34)
-/-L: e }l(-. 'z)iaﬁ‘ A\ ’ .A*‘/_,v) .é (/‘f) Cﬁ a}f A,éf;y) . s
For further constructions we will need the upar&turs A,, ’

# ¥ o
a@m«; s A x 8&nd /l,.,, adjoint to the operators .A,. v /].M.;; ’
_/1 ’ v With respect to the bilinear form X ‘x> =

= J d’xa’y Xifapt) X; {I,ﬁ & -, The recurrent relations for
the caloulatione of A.w and A,,M are the following
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A o A + #
Aﬂ)ﬂ'ﬂf -é 43){/”,]} ﬁar#ﬂ)PAﬂfﬁ) ; AM;W) 9(# m{f) (3-35]
where
R LT
Q@HXJ’)=£‘, %}"”} ‘gf;;:) ? /?’,y . -
Then ¥ 2 h :-:‘
-An e T AL 0{&} (3.37)
and
j—— #df -"'JP — f' ﬂ'—j‘
%G) J, /I;,ﬁ_, Z(r)Am 4" (.39

Operators C?@ w) 8re calculated by recurrent relations

f- »
OQresm) ™= SunsaM™ (4= ) S OfMbsy @3

Using (3.35)-(3.37) and (3.39) one can also show by induc-
tion that

(3.40)

,4-
A* o Z M{H) Ofpf ”z)

IV. General fo _Back : rmati
and integrable equations

In the previous section it was shown that all matrix ele-
mente of @ﬁz’y,ﬁﬁ)cm be expressed through ¥4, . Analogously ,
We Can express Qﬂ,«.iﬁr,j?ﬁé)iﬂ the first term in (2.13)
through X /z, y,y,t)

Starting equation for this calculation is equation (2.5)
which we rewrite in the form

(1, 2008 - I 4D, D hgpps

14

* Plz,g,t) Ol gpt) - Pla,gy 0Pyt .

Applying the operator 4; to (4.1) and performing the cal-
culations analogous to those given at the beginning of section
3, we obtain from (4.1) the fnllc-:l.ng expreasion for @

4, %
B=T"B (A P")*’““’ ”(c;g#% AR e

where
j-’-' "'a_-z: -pyﬁﬂf)'ﬂﬁf“ f) +Aa! . (4.3)
It is not difficult to show that
= T4 fﬂ_%, (4.4)

5
T “e-PlERY-AY), 2T ThYTh
Substitute ﬂﬁ‘;* from (4.2) into (2.13) and integrate
over y + Using (4.4), (3.26), (3.27), (3.33), (3.35), passing
to N-component columng V/ eana ,Z: (see (3.8)) and to the adjo-
" int operators we obtain from (2.13) the following equation

N-f oo

SUHZS 4,00V -2 00, (4.5)
where
Arf P
= 2 -
'Z?-‘“F} ég;ﬂqﬂcg(f) C;F ,z'-#(m-!-f_) t;ﬁﬁ >
* = =
© 2 B H AT e A L sl (4:6)

M= (~2) #-‘f/j‘m‘ﬁ) 4 -4 */T:p e/ :

Note that in all tle quantities contained in (4.5) end
(4.6) and below & = # . The designations of the quantities
which were introduced at 7+ # will not be changed.

!l‘ha' components ,l’:,{, in (4.5) are not independent ones due
to the constraint (3.12). Therefore from (4.5) it follows

15



N oo

S5 B[ H V- ML) -t p=0 D>

Kwd gl

where £ 7= ﬂf}’i, o A and ﬁ’/ﬂ}jﬂ, %) is arbitrary sca-
lar function.

Indeed from (4.5) follows that 12 Z 5;,/-*)@“;1/ %,,;;V)
- where .Z* is a column such that .Z)( 0. The general
form of such 2 is 25 '-,Q?’-'?ﬁ-'f/f.& whera ﬁ/ﬂ}j{,.ﬂis arbit-
rary scalar function. As a result Z ==£’,4- .

?l-
Substituting the relations (3.37) into Fix, Mix, one
can ahmr that (4.7) is equivalent to equation

Z Z Aj#ﬁ)%)ﬂ.ﬁ}y ﬂ'{s}(‘{"ﬂ)w £ /é 4 (4.8)

A= H=0

where #  is an_arbitrery scalar function and ,%%
”’%‘A@x) are glven by formulae

%ﬂw %frmﬁ* K J{fw ")Af s e (4.9)

Operators .&;,u 9 %{gy » ./%ﬂ;z; are defined uniquely
and all mncertainty in (4.8) ie contained in the term é‘"ﬁ

r
Multiplying (4.8) by /M’ and teking into account (3.40)

and aqualitjr M*{’f , we obtaln from (4.8) the equation
Ar oo

ZZ A‘J/)%i)(ﬂ V! _/ﬁ{/ét)(;)w= (4.10)

Amp n=p
where upuratnrs Xd,ﬂm and A’l&,,)(ﬂ act as follows

= Pt i
T 20 25 L2 G ] ,MQ:,,_,&"“‘ Vewrn @)%

M‘,Pﬂﬂ’ﬁ-t‘?fsa
At

wEr 3 C‘,{,C%z)’_/f;,}o@fﬁ A g =W

M=0 pep g=0r=0 miwed=p) Tk ppt ?

Ay :f'
L= 2 By Oy il ) 2 (" z 1% 5 i)

The uncertainty which is contained in (4.8) disappesay af-
ter the transition to (4.10). The relation (4.10) due to the
special form of the operators _A,).ﬁy) (see (3.25),(3.36)) con-
tains Ne1 nontrivial eguations. In contrast, the relation (4.8)
containg N nontrivial equations.
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Let us consider in more details the transformations (4.8)
(or (4.10))+ The corresponding transformation of the scattering
matrix is given by (2.12). One can show that the transformati-.
ong (2.12), (4.8) (or_(4.10)) form an abelian infinite-dimensi-
onal group. We will refer this group as Backlund-Calogero (BC)
group (for motivation see [16]]. On the manifold of scattering
matrices / S(A,A,2)} saction of BC_group is given by formula
(2¢12)s Formula (4.8) (or (4.10)) determine action of BC group
on the manifold of potentials fV/x,;; Z)} o

BC group contains the transformetions of various types.
Let us consider en infinitesimal_ displacement in time £ :Z-—

ff—z'fﬁ y £—=0 o In this case
Viftit) =W t)= W)+ 6 2422

(4+12)

Bi(N 1) = o= EQ, (M t) = dip— c‘i_‘: Weu NV

Pz,y,t) = € Yy 2) . (4413)

Substituting (4.12), (4.13) into (4.8) and keeping the terms of
the first order on € , we obtain

BV/.;‘;ﬁf) N-f oo 3
azr g-,éwfﬂ/ﬁ/ {x‘){fa)!/-! $=0 (4.14)
where
zﬂ-‘,i" 4r) s (‘%f{## ﬂlﬂ'}‘)*ﬂ) / T (4.15)

System of N equations. (4.14) just representis the gene-
ral form of the nonlinear evolution egquations integrable by
the spectral problem (1.1) with the help of inverse scattering
transform method. Trensformations (4.8) are general Backlund
traneformations for the integrable equations (4.14).

Substituting (4.12) into (4.10) and using (4.11) one ob=-
tains

M BV/-’;E:J-‘} ‘Z!Z %‘ﬁ)‘zﬂﬂwy 2 “. 15-')

Aws #=po

where

"



L= (Wom =Bty » W= MV, V)], 61>

In the onedimensional limit c}MEﬁ;”" 0, (k=0,1,...,¥-1)
all the transformations and equations (4.8), (4.10), (4.14),
(4.16) convert into the transformations and equations const-
rutted earlier in [16].

V. Gauge invariance and mani festly gauge
invariant formulation of integrable

& tions and Backlund tranesformations

Spectral problem (1.1) is invariant under the following
gauge iransformetions

Viz g, ) —= P(a4,) = 97, 4,2) Vg, 2),
» ~ L3 Nk 2 i (5.1)
bﬁéﬁﬂﬂﬂi Lip&ﬁgéﬁ_é&&;’éﬁﬁéz;élﬁfLé**éagﬂéﬂéﬂ§%£§fb)*AEé%égéaﬂf
where /%, 4,7) is an srbitrary differentiable function such

that 954 Y mest-2.07 + Tremsformations (5.1) form an infinite-
dimensional gauge group for problem (1.1).

There exist N-1 independent gauge invariants M(W"M{V),
K=0,12,..,N-2 . They are [21]

N-K
4 # d i M i Tl e2)
ME' “MP i Fé CH*J‘: %f&@:"ﬁf-%"y Vl’—! N £‘?_aﬂ 3}’ Z"-f .(5
Gauge invariance of (1.1) permit to impose an asdditional
constrainton the potentials /}, ..., Vy., (gauge condition).
For example, Vy._fm @ or f‘n{ lfilﬂﬂ where o are ar-
y =
bitrary constants.

iR
Transformation law of the quantity pﬁ. /ﬂ;ﬂﬁﬁ) under
the gauge group is very simple

P legnt " B Ve jint)= Gl it) P 1o gint) 6 T fast) (5.
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|‘-.

where G#=C£fa;-{9ﬁ% ,E) for L2K end Gu=0 tor i<F

ﬂ.’:,éﬂi}--«, fi") + In formula (5.3) and below, the quan-
tities which correspond to different potentials and . potentials

T igiea
Viz,po2), V'(, 4 £) themselves are transformed under the
gauge transformations with different gauge functions G /T4 L)
and ;z/z,ﬁ -
Using (5.3), (3.14) and definitions (3.26), (3.27), we

obtain theﬂ transformation laws of the recursion operators

sx s Aum end operators &, 1

7 (fa} 2/ < ¥ A
A == eon=T0,8)( 2. 60) CH 50 ) Tt 90202

” (5.4)
L@X#f; - f@rﬁ/’% @{?Jqﬁj@ﬂé'[@j/f -%’) ) ).
S Tl e) = L e, (M=t W) (5.5)

Ay
where 7/2,4,)= GlAlp Y Rlo% 2) . operator () m
" (QM! sreg Q&M)r in (5.4) is determined from the concrete
form of the operators

Using the transformation laws of P and P 4 with diffe-
rent.gauge functions 9,/%547) and /2,4 7%) and (5.3) one can
prove that the relation (2.9) is gauge invariant one. From
gauge invariance of (2.9) and (5.5) we obtain the following
transformation law of the nonlinear transformations (4.8):

Mt oo

22 bl (] — My o) - 275 =
U] Sl TV - Hnl)) -9}

k=0 H=0

(5.6)

o R
In (5.6) ﬁ_fﬂ*dﬁ where term ;ﬁ is due to the gau-
ge transformation of £'¢ , AP is related with the transforma-

tion of the quantities iy, V' — Ay xV and depends on the
concrete form of transformation (4.8).

Analogously to the oredimensional cage [16] one can show
that the transformations (4.8) of BC group contain the mani-
festly gauge invariant part

N-f oo :
2 2 bl T~ M foioW) = 0 . (5.1
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where all operators in (5.7) are given by the formulas (4.11)
with the substitution [;— W) (¥=0,..., ¥~2) o AN, A

Hote that the BC group which was constructed in. section 4
contains a gauge group (5.1) as the subgroup. Indeed, let us
consider the transformation (4.8) with b4y =dépdeo . In thig
case from (4.8) we obtain V’-Vﬂ*!"ﬁ s 1ies

Ve =Vis * o 7250y t1-9) = z Clt Morss 9

that is coincide with gauge trmafnmtinn (5.1) with gauge
function g=(7—-g4)™7 .

In conclusion we shortly consider the gauge properties of
the integrable equations (4.14). In thie case /= v’ and the-
refore one must put 4, =¢; in the transformation laws given
above. Transformation law of the integrable equations (4.14)
under gauge transformations (5.1) is the following

JV = #r e = S
ﬁ-_ et ,{-ZZ @;/ﬁjzéjﬁxjvﬁ ‘4"‘50=

=1 A=0

O 2 5
=7 /9/6 5 oL Ly ‘f*«“")

Kt R=0

<y
where ?’Kf}=‘§?@?y and }?f}"-f'dﬁ where 4¢ 1ig due to the
gauge transformation of Zzysn ) end depends on the concrete
form of equation (4.14).

Manifestly gauge-invariant form of the integrable eqguations

{41- 1&]’ ie
aw N-1 oo

.f.

:l;fﬁ

VI. Examples: N = 2, Integresble equations and

Backlund transformations

Prom (3.13) and (3.15) we have

bi=--V,0 -2 -V, + 1, bf=-20 -V, + V', (6.1)

@)= -f%}u-wy)ﬁm@_ﬁ@ 1)

:t’ -
Gauge invariant M == Vp ?3 14 3 3 |'/§ 3.
Standard recursion operator Jj‘ is

- V: *(a't M?qﬂ-:’ ( _(am M;} » %av %r-.ff;?;-f -(B;' %9 fgf | é'z)

VHE AL, (-8 - )V G)g 6 )G,

Backlund trensformations (4.8), with J,o= conft, b, =comsd
and the rest /44, equal to zero, have the form

boo () * b (0 e 5 J01-1) + 32 - Ui o) P23, =0

s (6.3)
boo (W) # boflau (Vi) + F-ORK) + K~ Vi + :
* 3 SO Q) Jer 2LV Vi) 20 #le - V)= 0

Let us exclude function @ from (6.3). Prom second equa-

tion (5-3} we have ,d/;z;ﬁ;f)=t —[én‘?"‘? éf,ﬂ(y "‘1/}7"
* Fbof (1) + B2 [t S0, 1)-41%)- 2= Joew
. ecqaﬁ-fd/ 16 -

Substituting this expression for }ﬁ into the firet equation
(6.3) we obtain after calculations the gauge invarient part of

Backlund transformations (6.3):
boo WeM) + 5o Qe (We'+ W) = 5o S (%y(Ws'~:) +

£
» e (W) [ (W) = 0 .
where W= U~ Foulo=f '~ FOFY U, W= V- FAN
~F U -5 V) . Relation (6.4) coinoides with correspon-
ding given by (5.6).

. Present now some examples of integrable equations. Consi=-
der & system of equations (4.14) with nonzero &J,,,, s &, end
llgy=0, k=2,3,... . Caloulating gy, and Zayzs) by for-

mulas (4.15), (4.9}, (4.6), (4.17), we obtain the following

(6.4)
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R S

system of equations
A

0 = Yol®ele + Gl ZUdl - £, (1k) - 03,1
“FULY ~FUNALY, - FHONL) - g -

"F%)EY] - [ P i dp + " of /A (6.5
p1Z
37~ Wolt)oLY, * 4,14 - F2Y -Eﬁé,p; ,;?zc};g 5
RE 2 - :
2Rl U - F RN, Y+ 2O - 20:9.

Choosing in (6.5) /) = 0 from the second equation we ob-

tedn @ = Wy 2)/-F (Oels) 719 K)/ .. subetituting this

expression for ¥ into the first equation (6.5), one gets the
Kedomteev-Petviashvili equation [1]:

oV
32 s m/f/"):% *@fﬂ%f@%*f%é%f} c)_z"%f}é] (6.6)

Choosing in (6.5) Va' = 0 from the first equat’on (6.5) we

2

have 4 ¥ « ), 0. ¥ fc);ﬁ'-d?. If one takes the solution Y= consl
of this equation and substitute it into (6.5), one obtains mo-
dified Kadomtsev-Petviashvili equation [21] s

Y
7 —YultozV; * B[ FRN, -2V Y, -

> d}@x V) c)fff; T ?3'3:6);%/ (6.7)

Let us exclude function ¥ from (6.5) without fixing a -

gauge. It is not difficult to show that we obtain the gauge in-
variant part of the system (6.5):

o, _
o2 = Yelt)oehe # )22 W, + 2 WAM, * 0 2] (&

4

that is the manifestly gauge invariant form of Kedomtsev-Petvi-
ashvili equation.

Consider now the general linear gauge bV, » elo=0
where o, end o are constants. Introduce funetion Uz, 0, L)

22

such that {/;=,303":: V}H:ﬁf U, {/ HloB, ™ %ﬁ¢.= 0) « By virtue
of the equelity Wo(W,Vi) =Ws(Ve, i) ~we obtein the two

dimengional Gardner transformation

S% _ 4 By £ ALyt B )y u (6.9)
.ﬂ”-v—fg}ﬁ———,ﬂ' v e Cy e
16: 2 Jeﬂ - 4 Jea Eﬁﬂ'

as the zauge transformation from general gauge (/K; =8, Z"ﬁrf{)

to- the other gauge /Z=ﬁ;f?; 14-*—*0) « Por B,=0 (6.9) is
the two dimensional Miura transformation [21].

In the geuge [b=28,2, [4=48,t4  equation (6.8) gives

P
3 o

B R el SR L s ST 2B
(o= 540 - U ~£2%9) 57 o O i A R

3 \-r)2 3 -7 &
#5R U U - %Jﬁ_fg(fa_r U+ 2070 U — 30 Y3, W) =o.
Prom (6.10) we have the two-dimensional Gardner equation

QU 1, 0utt + 50y [t r 682 D U —
ot (6.11)

- £ giutd u #3077t~ 3,0 u)(9°0, w)] .
At B, =1, f, =0 equation (6.11) converts to (6.6) and for
o= 0y Pro= 11 coincides with (6.7). Backlund transforma-
tions for equation (6.11) can be obtained from the gauge inve-
riant part (6.4) of Backlund transformation (6.3). Putting
ompott, o=ptd, Vi=p’, V) =g e/  » from (6.4)
we obtein

(W) # b (b W)+ b -1 M) -
3 é’eﬁ‘z’“?'@'%y] Mﬁéfi(g'%) "://-"i'" ’lg"‘.)r‘ g”“ﬁ%m 12)

HZ/EJM/HL-’:U "ém(‘).z@';"ﬂ)) _érff((‘}ﬂ:) —(c},ﬂ)) 5

thofte ) [l 0~ B ) Lo Q) Bl o,

As a result we have Backlund transformation for Gardner
equation (6.11):
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2boo (2~ 2] + 6,0, ("4 1) - émfff},, 2'-du) »
— o (61113}

fam/zf"—zf)!//a,ﬁzf-zz) - %?zz’*—zz? - f;—"-%;(éf zz"—-é,,ﬂ,/:@.

At 8, =1, B, =0 (6.13) is Backlund transformation for
KP equation (6.6) and for fB,=0, fz= 11t is Backlund trans-
formation for modified KP equation (6.7).

In conclusion note that in frame of standard version of
the inverse scattering iransform method [1] general gystem of
equations (6.5) is the commutativity condition 72le—TLTz= 0 of
the following two operators

72 =07 Yo+l +8 R
T2 == )[902 + 61,97 + (Aply) » 242~ - 40:9, 1)+
* 6o = Gua(t)0r + YO W) +2 YW -¥] + Oy .
VII. Examples: N = 3

Here we present some examples of ‘ntegrable equations and
Backlund transformations for N = 3 in the gauge % = 0.

Operators ff at V== O are of the form
/= - .3:* “Vo-Yo. -2, &=y - g S e S L )

Gauge invariants are

W= W=l FlYlg » Frlg’~ £, s

27 Y2 T e
(7.2)
W:Hi’; 'a.f%"'j{'jée-
Backlund transformation (4.10) with nonzero 4‘.;, 3 éra 5 A:a
end all the rest 4;,= 0 is of the form
boo (Vo-15) # b0 e/ - FOZ/ V1))~ W (Vi - Vo) +
* =) (V- 1) -3 %59, (%~ )] + 31

24

#byof~F OV V) + FOU + FUU »F (V- W) -
- U0V V) - 5 (V- V0= (W'~ Vo) + e DO U= Vi)
*F OG-V G-1) » ﬁ—/ﬂsﬂw@m*— i) f»;/z’—a;@w-

"?f%'/f%—léj)f/= 0, (7.3)

JgoKV’ V)*é;g/# M-ﬁ-%‘, :éf-(’%f_pg)a;(%f_yjz/*
#hio - FRV, ~ £V + W (V' + W)+ F U (- 16) *

* FO)Z(- 1) * F (-16)5 Vi~ 1) +

A R A R R Rl C = ) et 2y V) 1)

Transformation (7.3) is Backlund transformation for any
equation (4.16) in the gauge Vz = O,

Present now some integrable equations. Let in the system
(4.16) only functions @;a o a}ﬁf, &, and &?H are m:r'l: equal to

zero. Calculating ‘zﬁ’ﬂ)ﬂ) y L s i-%./an)f-i} %!J.-’-!) by the
formula (4.17), we obtein in thie case the following system of
two equations

2= al ) FO o Vo # 5 0e (Vi 1)

*Bg")rﬂff _.'?_V;raa 4'(0] V/](/azw sz?t
-3‘?-9,3,,% Z929,l; G- £ U »FoRV.] +

(7-4}
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There are some interesting particuler cases of the system
(7T.4). Por &), =com? and Wy =Wy = Wy, =0C from (T.4) we
obtain

(7+5)

It i85 ea to see that the system (7.5) 18 equivalent at
lpy= i zf'- to the equation

S~ £+ 2 #2201 .

that is the twodimensional generalization of Boissinesq equati-
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on. However compare (7.6) with (6.6) at .-,’c')ﬁu 0 we see that
equation (7.6) is nothing but KP equation (6.6) with the sub-
stitution Z <=4 .

For Llyy = llyy = b5y the system (7.4) is the following
ane

o Ve
ST = Yea/- 505V - L) - 5.V 92 1) +

System of egquations (7.7) is the twodimensional generaliza-
tion of the system considered in [16]. System (7.7) permits the
reductions Y, = 0 and %"f‘étz . In the case [/ =0 and

&y, = =9 the system (7.7) is reduced to equation

gf =V +50:(Y02 )+ V0. Y, #5029V -
—8Q7OPY, + U Wy + 5[0 )Y VL) 5

that is the twodimensional generalization of Sawada-Kotera equa-

tion [22,16] . Under the reduction Z-:j’d_,l/_f' and at &,, = -9

gyestem (7.7) is equivalent to

2 051, 5021+ BEONOIY)+ SR
39 V; ~ S99}, »SU .l + e l) @1y,

that is the twodimensional generalization of EKupershmidt equa-
tion [16]. Note that the parts.of equatiga (7.8) and (7.9)
which contain the terms with derivative colncide.

(7.8)

(7.9)

It is easy also to see that all equations (7.4)-(7.9) can
be represented in the local form by introducing the potentials

W, (MEB_-!M) .
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