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8, WMEAN VALUE OF A QUARK TRANSVERSE MOMENTUN.

ROLE OF POWER CORRECTIONS (A QUALITATIVE DESCRIPTICH

. AND NUWJERICAL ESTIMATES)

We calculate in the sect.8.1 the mean value of a quark tran-

o
gverse momentum in the pian,( K.L > The value of the "primordial"

sransverse momentum is of great interest in many respects, In

particular,it characterizes mean values of the quark energy

and momentum in hadrons and,besides,it is tightly connected
with a scale of power corrections to hard processes.
The qualitative properties of power corrections in exclusive

processes are discused in the sects. 8.,2-8.4, The region Q‘E o

10 GeV® is chosen as a characteristic one for the following
reasons,
8) This is a charmonium region and a lot of experimental data
is available at present in this region,
b) The value Q~3 GeV is large enough for the leading terms to
be dominant in exclusive amplitudes (if there are no additional
suppressions for some reasons), j
c) The value Q=3 GeV is not very large,huwever,so that "normal"
power corrections are < 30% of the leading terms, Therefore,

nonleading twist contributions can give the effects ~ 100% or

even become dominant,if the leading contribution is suppressed
for some reason. A number of examples where non-leading contri-
butions are of great importance will be censidered below in

this chapter, An analysis of these processes give us a deeper

insight into a strong interaction dynemics and hadron properties.
‘ 8.1 TIHE VALUE OF THE QUARK TRANSVERSE MOMENTUM IN THE PIDH/ IZH./
g 1 '
| Consider first the twist 3 wave function \ly =<a\ c;.(%\ L%UH}‘[@
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and the matrix element

HW"X be LD} a)\n(q!)) [:( . &(Q‘H%B 06!”%} (8.1)

It is evident (take ]\\2‘3321 U]%?'m in (8.1)) that A=<><u.>’
i.e. the coefficient A determines a mean square of the quark

longitudinal momentum fraction, y\u. ,in the pion., It is natural .

to determine a mean square of the quark transverse momentum in

an analogous way: ub 1)

Gol T0Re bb\um\ r=f o . mm y QW —

To find the value of coefficient B (in the chiral 1imig Tl"l“_‘m&-

‘{ﬂ-ﬁ =0 ),1let us use equatluns 6f a motion and PCAC, Then we
nave from (8, T}( 8(1: /mufm& :-2('3\111'\ n>/%‘ﬁ\

<{J d\b\& k‘“b}*\ M‘{Db S;ﬁ Wit m =

(8.3)
% <ﬂ‘ dK gth? D&er 2 \“ W‘» = _<ﬂ'\ ULE’F] 'U%G'r“ Z \U>
Therefore., - "
st GlTse sy

It is seen from (8.4) that <§f>%0 in the chiral limit due
to an interaction only (a presence of %G' )« This is natu-
ral,because K.\_—?O at My>0 for the case of free quarks.
The value of the vacuum matrix elements ratio at r.h.s, {8.4)
hes beeu found phemomenologically in /1.49/,when investigating
the baryon mass spectrum with a help of QCD sum rules, Using

this result from /1.49/,one has from (8,4):

(RIS, = 2 (L56ev?) = (HaoMev)’

. !

(8.5)
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Let us calculate now the value < K‘L for the leading

twist pion wave function \Q Consgider w_:.th this purpose the

matrix element:

<o\l L%%ﬂfb::..idr Liﬁ,luka)\mo@ - (5.6)
;"Si'i-% e Qx> + (G G ) A+ %%%BH .

Multiplying (8.6) by %i«ul and using equations of the motion,
one has (in the chiral .‘I.:L.m:r.'l:} 5A+B=0, Hence,

A D 5 LTl e
We define < K_L ag follows: .
QLI MAGATID SR SRt

Therefore,one has now from (8.7),(8.8):

*ZLREWF%‘ (8.8)

<72 A

— ! G_m l\.&' i >:- . ig 4 >_
<0\ &\Mﬁgig"ﬁg w72 uixlg>=k r5< L
<G\a% };? \T ﬂ1)>“b% qﬂ*'g-<k:l T )
GM 13: ert?d.g, G’e.ris.
To find the wvalue of the matrix element entering (8.9),let us

consider the correlator

To=ilee'¢ \T&L,W%@% 00 T Yl o> =4, T () a0

The leading at \% \_-}m contribution into ‘T}t gives in the
chiral 1imit the fig.8.1 diagram:

> ol USupig Gup i ulod /42

2

(8.11)




Using the disperslon relation for ‘T(_tf') ,one has from (B,11):
§ & ’3mwkﬁ‘-\ = *(0\\1'&? 0& "f Ll\ﬁ>, (Belnd
The spectral density has the form:

T 3“’\‘\1\*\{& h\& Tﬂ;*md)%u\ o (3.13)

36 o\ Tuloy <Ky B8 ¢

The pion contribution is shown explicitly in (8.13). It seems

reasonable to retain the pion contribution only at l.h.s. (8.12),
because the speciral density 3“\‘? [\ﬂ falls off quickly a%
large S (the pert.th., contribution equals zero in the chiral

symmetry limit). One has in this approximation from (8.12),
: :
(8.13) :

0| WSyp 1 G N U0
<°\d°¢s U= ik, ‘M*< : Eﬁﬁfm >-@.14)

= ¢ L o\q
3o, k e <E}\\lg’¢?h‘h(‘ﬁa?}\ u\\{}?_ . K -‘21 4
<KL>ﬁ Lo\ Uulod 9 < L>1’.
Ag a result: o
<“Zj >: % &&E Gm\ﬂ = (292 HE-V\ - (8.15)

It is seen from & comparison of (8.5) and (8,15) that the
-h.

values <KL
but the d.z.fference is not large. It seems natural that ((:Kf}’)

(< > ) because. a scale of the matrix elements of spin zero
Dp-EI‘E.‘!:ﬂI'.EI (EX'SU‘ U‘)-- ) is enhanced /5.1/.

differ somewhat for various wave functions,

* Th:l.s matrix element has been calculated algo in ;’ 8.4 7
using the QCD sum rules for different correlators, The result
agrees well with our result / L\.‘L / (gee (8.14)).

RO ST H e ey

=

It is naturs.’l to expect that the mean guark transverse mo-—
!—
mentum inside the other mesons ( K ?}

-. ) is close to that
in the pion: < KL

.= ((300- oo Mev )2,
8.2, NUMERICAL ESTTMATES OF THE WAVE FUNCTION VALUES AT THE ORIGIN/W {/

Let us begin with the well known constents Y. §, swhich de-

termine the values of the leading twist wave functions at the
origin, The contribution of the lowest resamance ( T, Py
into the Bum rule has the form (after "borelization):
z 2 2
&. E\L?R—Tﬁ;/ﬂ 13 . where M.
L
the scale parameter., The pert.th. contribution,fig.8.2, is:

?./LL 2
M A\ (one loop). The usual scale of non-perturbative cor-
rections is such that at M=Ws

is the resonance mass, M is

they are = 20% of the Borm
contribution, Therefore,we can estimate the consftants rg;;' using
the relation:

e exph-we/mgy = Wi /e’
This gives for the pion: %’,ﬁ 2 / 9= 123 MV(the experimental
value is & = 133 MeV),and for the § meson: ‘)}g fozle §oz
r m‘g[l‘\'{ ZQUNN(the experimental value is = 200 MeV). The situ-
ation with the constant %? (see (4.A3) ) is the same as for
%? ,803 %5 = 200 MeV,

" The constant &43? determines the value of the three-particle

D= Q=
<ﬁ\d®ﬂx‘é %GN-—U@\RL(“.» %er“?n’ie% .lfh.g (8.16)

The pert.th. contribution,fig.B8.3,is: sl.sM /':\'1017 “(two loops)e

Therefore,the estimate looks like® (&33\ J-img /WEIOTY ?
* Using suitable non-diagonal correlators,it is possible fo

meson wave function (twist 3) at the origin:

determine relative signs of various constants, For instance,

(0 /%:\W (& [5)>0,..

S




%3 = Gliag®cevE & T <ths

(lore preca.Se trentment of corresponding sum rules gives:

§3310.5~10 GV ,see ch,9),

FFor the nucleon wave function {twist 3)

ol U ) di Iy = P JIRY

(C is the charge conjugation matrix, N, is the nucleon sp:.ncr)
the pert.th. contribution,fig.8.4,is: M/‘ﬁEUT (two lmpa).
Hence,the estimate is: \%h’\ Qi?rl m /mg]] m?/E‘:BDﬂ \%‘H\ U\'l.‘l{} @ﬂf

(More preuse treatment of corresponding sum rules gives: HH\
0.5 !LE} @Q—\‘r sSee ch.10),
The pert,th. contribution,fig.8.2,for the two-particle
meson wave function (twist 3) é
— L= 4
<-:;}\ ﬂ&u\h-b ‘\Mﬂ\i QQ‘3>=% = % % qﬁ*“‘“:{a 17)
Y 2 :
is: M /‘L‘I{ (one 1001:}. Hence,the estimate is” \%?\ "mg/h{,
l%'?\ \§ iﬂ.{;o_.\l ”25% The strong unequality H'?\F) \&3?\
mainly due to & smallness of the three-—partlcle phase space,
fig.8,3,a8 compared with the two-particle one,fig.8.2. This is,

evidently,a general property,
In comnection with above given estimates,let us note the fol-

lowing, The mesonic two-particle wave functions of the twist 3:

<o| A9 U8 (B>~ £ €y mg

Sl T ST U ) = 8 e

e

* Using equatlnns of the motion,one can obtain the exact re-

lation: Q?“‘-g T'ﬂg , Where mg is the ? me son maas and the
constant %,: is defined by (4.2.0). Hence, &' v =045 Gﬁ\f

8

<0 \ )LKEUL“) ADE g_“ = +‘rd.i. <o \uugtd\ S

T'ﬂ.'u: i 4
1iﬂa: WMyt 0.22 CeV |

’ (8.18)

v ik ¢ 2
R W= 05 GeV, £ =045 ¢V,
determine the wvalues of the power corrections to the leading
twist contributions in exclusive processes, As it is geen from
8 - AT e /
(8.18), the ﬁelatiﬂ.re correction is g Mp ,}?Q :(‘_L-?..) ¢/ Q,
and not &?/G
seen from (8,18) that the scale of the pion and E’ - meson wave

,88 one can naively expect. Moreover,it is

functions is nearly the same,and this allows one to expect the
same scale of power corrections in the exclusive amplitudes in
which W or ? mesons participate and,besides,the same
Ecale for other mesons also.

It may seems at the first sight that the power corrections
in the mesonic exclusive processes are determined mainly by the
two=-particle cantrihutionﬂ,because the scale of the three-par-
ticle wave functions is smaller by one order of magnitﬁde. This
is not the case,in general,because there are alsa other factors

working in an opposite direction (see ch.9 for details).

8.3 waa? Do VY L’B 100) MEsON DECAYS TEACH US ABOUT?

8.3.1, Ha.drunic decays.,

As it has been shown in ch.2,the decay Vo PN
sed in the limit Me> e 4nile the decays ¥ ?.:Li?.'!v’:;)'ﬁ Y+?A1 ave
not. The experimental data are /2. 6;’ Br Qk’-'}?“\ U— 11x0. ﬂ)%
Br (\}(_-’? Qﬁi\ (D (LR LQ[ %TKY"?R\ [“%Ht“s)?ﬂherefore,the

asymptotic selection rule (see ch.2) doesn't work yet, In this

is suppres-

case the reason is the fnllcwing The meson wave fu.nctiuns of
the leading twist 2 are neaegsarlly two-—partlcle ones. ThErefc--

re,the leading twist contrlhutlons into the decays Y- w0




megons" include nesgessarily a loop,fig.8.7T
and this gives the additiﬂ:ﬁal Emalﬂ;factor

z&iu: 1 G B At the same time,the main contribution into the
amplitude Vs 'l

*
fig,.8,8,and there is no smallness due to a loop, We see,there-

give the three-particle wave functionas,

fore,that suppressed and non-suppressed decays k!_\? MLML are
of the same order because there is an additional suppression
of leading twist contributions.

The leading twist contributions have no additional suppres=
gion in the C=even charmonium level decays: Et GQQ%MLMM
b[u“ﬁ'{-f-_. 3‘['1“”'_“5\;. because there are now only two gluons in
the intermediate state. We expect,therefore,that the leading
terms are indeed leading here and that the asymptotic selec-
tion rules work already.

8.3.2 The decay \Q-‘)"ﬁuﬁ.

The calculation of this decay was described in detail im
ch.b. The leading twist contributions into this decay also have
additional suppressions either due to two loops,fig.D. 15, or
due to the additional photon (the smallness UFd ~ L/L0 ),fig.
h.41 . As a result,the VDM contribution,fig,5.16 ,which is a
power correction *‘“Nl/M%. at Me>» ® ,188 really the same va-
lue a8 the leading twist term, This shows once more that at QEz

2

10 GeV- non-leading twist contributions play & role only if

leading terms are suppressed for some reascn.

8.3.3 The decays Y ‘%\'[-. Khr

The decay probabilities for these processges were calculated

* The calculation of the \k‘*-?‘w decey is described in
detail in ch,9 and the result agrees with the experiment.

10
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for the first time in the paper /8.2/ with the help of the ef-
fective Lagrangi&n..The ggreement with the experiment has been
obtained,in spite of that the contribution considered in /8.2/
is the higher twist contribution (twist 4). The reason is that
the leading twist contribution is zero in the lowest order in
¢ /2.4, B3> /,fig.B.10., It appears at the one loop level

only,fig.8.11,and is strongly suppressed numerically (see /2.4/).
At the pame time,the scale of the twist 4 twa-gluﬁﬁ components
of the Ll and hﬁ meson wave functions is large (see /8.2/).

8.3.4 The decays %—‘PK G(Ui‘ﬂ : \é %n kﬁfﬂ.

Unlike to the previous case (see 8,3.3),the leading twist
contributions are nonzero at the Born 1evei in this cease,figz.
8.,10,/2.,4, 8.3 /. However,the QCD sum rules for the correlators
of pure gluonic currents have & number of specific properties,
as compared with the currents made off light quarks /5.1/. For
this reason,even qualitative properties of the gluonic wave
functions are unknown at present. It is possible that higher
twist contributions are more important here,in comparison with
the quark wave functions. The experiment..indicates that the sca=
le QE.“ﬁm I['.{ei.-’2 ig not large enough for the leading twist contri-
butions to be the dominant ones in the gluonic channels. The
decay \kﬁ‘f\g%’i:g

/2.4/,while the experimental data are ;’B.Lif: i,

Br QEA»\EE’I,}.\: _ﬂ‘ ) ?; # Ei[\\k-a‘é%iuzﬂﬂ .
Q¢ K\k #E%ﬁ};n\) “(3.1%—0.53)1 A .3\(%';:0\ (ﬂ.[}lb:ﬂ.ﬂl‘b_

|
8.4 WHAT \E (BB%S) MESON IS MADE OFF?
If \Y_t['s L'L'.‘n') meson is a pure 2351 OC-state,all the formu-

is the leading one asymptotically at M.>eo

(8.19)

lae for its decay amplitudes can be obtained in complete analogy

with L.bn.(}iﬁﬂ meson., We argue below that there are,however,

14




-1 i,.,_ '.r.-;.,ug.w-ﬁ.ﬂ

o

E | new experimental results become aveilable recentl
serious enough reasons to believe that ‘f'("},h%g‘) i3 ot loreover, xp _ y

& pwre 2°8,- skake. | ' 18.6/:
The first indication for this is the decay \k-ﬂ&;(ﬁ%o}, ; : %r(‘i’{ﬁ-ﬁ@/ﬁf (\k-*—@ o)=(0.4x uigg\} o)

The experiment gives for the decay width /2.6/: = 0.% KeV, By K\‘_,I_I'q.lg“”ﬁu‘l By (\\E!_‘ ?tmt\— <0.045,

ikt

I .
while the theoretical prediction (assuming that V' 454 pure k\‘g_ “"{iﬁ\(‘: {}.’EIQQI ¢ Uia’ gt,ﬁ\
-2 =

2331-51;:—145:3} dia: ﬂ‘;\.- A0 KeV /8.5/,i.e., considerably smaller, o g :

(8.21b)

It was pointed also in this paper (see /8. that the la 0 : {
P peper (see /8.5/) large while it seems reasonalbe to expect that all the ratios in

I
adnixiure of the UCg-component in ky. gtate is required to :
¥ ¥ 3 (8,21) should not differ greatly from each other and from the

& ratio: Y U(.'—} Gfé')/%f Q"\l’--"‘fa e K“-iat 0 ‘Gﬂ-

(Based on the dimensional counting,ome can expect ruther that

3 i : 4 i 5
in ch.5 that the CC(2 51)—‘9-1'!. T decay amplitude can be expres- : ("kldy??/\k%??\‘( K,{IJ’ P /‘E*?“)} :
ged (with an esccuracy < 10%) through the pion electromagnetic :

obtain an agreement with the experiment,

i A
The next example is the \k"?.ﬁ T decey., It has been shown

1
to~ A1l these facts indicate,from our point of view, that ¥ L’Bb‘LEB
form factor. The experimental data for the ykliﬁG\%E T  decay

are,therefore,equivalent to: \ M?J:r EI (\Mh\ = U:' gE 03} Ge\? :

and this number agrees with our calculation of the pion form

meson is mot a pure Ejsi-charmonium state (unlike Y(}iﬂ{ﬁ me-
son), The reason may be the admixture of the three-particle

fCg-component or the admixture of the quasi-molecular DD-stete

2 2 2
i i i - M* l'::‘m =06 GeV | ‘
M Tt e predlcticn.\M FE(' ‘) g (because \Y,l(,?i%?bb') is near the open charm threshold). Let us

h.5). At th ime, th iment ta for th : : Y
(see ch.5) the same time,the experimental data for the he e L s e l/__? J_/Fﬁ?" S

I i
4 deca 2.6/,when inte eted in this wse ive the b
\k L Yiie-or mle g 26 cays,and l/ ({ﬂjﬁﬁy is also not far from the open beauty thre-

value for the pion form factor which is three times larger

3 shold,
= -y T ) : -
gTK\\_»‘J,IW):(\U.%t 05)40 . %TQ‘R-?EEF—(U.%U-Q-LG ; 3 8.5 CONCLUSIONS
ER g o . Let us enumerate in short the main results of this chapter.
iU 0 O ioﬁi}-? (&)~ ; i
: R e ﬁ-l}‘ £0.6) FE TR s 1 The mean aguare value of the quark transverse momentum 1in
brlg'see ) u’-ﬂh ia: C¥ES o (300-U00 Mev )
2 2 2 ? the pilonm is: < L 2= , and this value characte-
M‘Ei FHKM"’A :(Z.fa*—' 533 G?_V : - rizes the energies and momenta of light quarks in hadrons.
Th.is is clearly impcsaible.* This example also indicates that ‘:1-_" 2, The (n+1)-particle wave function of the leading twist
n & :
meson is not a pure {C-state. "n+1" has the dimensionality [!\\ l and its characteristic
: n n
* If one assumes that the pion form factor has the behaviour : scale iﬂ’”(%i_'g'?\"(é'go“t\h‘ﬂ smellness of this scale is main-

ly due to & smallness of the'muny-par’siule phase space,

E“(ME'\N '-'L/Mll in this region,the discrepancy will be even larger.
| The (n+1)=-particle wave function of the non-lesdimg twist

N+
"n+k+1" has the dimensiomality [N ] and its characterdis-
12




. n 3\(
tic =cale is: (%‘I‘_R‘g\ (W\g*iﬁra\’ x
3. The experiment indicates that power corrections are < 30%

of the leading terms in the charmonium region QE: 10 Ge‘.fe

ke
these last are not suppressed for some reasons, There is & num=-
ber of examples where non-leading terms are not small or even
dominant,but the leading terms are suppreaéed for wvarious rea-
gons in all these cases (in the quark channels,in the gluon
channels the situation is less clear).

4, There is a number of the examples which indicate that
\2'(‘5%5} meson is not a pure 2381-quarkunium state (unlike

to \kbimﬂ meson) . It well may be that \_J{'(B{,Q,S) state
has a noticeable admixtures of the UCg-component and of the

: |
quasi-melecular DD-state,because \.E ('55%5) is not far from

L i
the open charm threshold (similar enomslies shows elso | (fi?ﬁfﬁﬂ

state which is also not far fron the open beauty threshold).

14

9., NONLEADING TWIST PROCESSES AND POWER CORRECTIONS

9.1 THE DECAY Vo oW )

It was pointed in the sect.2.,2,3 that the decay \k-‘r'?ﬁ-r is
suppressed at Me> 0 si.e. its amplitude has the behaviour
~ iL/1"-!‘1.: ,jﬁhi].a analogous non-suppressed amplitudes are ~ i/Mi‘
There are two types of the diagrems,fig.9.1 and 9.2,which con-
tribute into the \Y."’Em- decay.

The O - meson helicity is IN\=4  in the ¥® c.m.s.,while
the pion helicity is,of course,zero. Hence,this leads to the
suppressions: a) u(?ﬂu+¥ﬁ&\)/ﬂg due to the quark helicity turn
over,where Wy and W4 are the current quark masses; h)mK“/M
because the quark helicity doesn't coincides precisely with its
apin pi'njecticn onto the meson momentum (see ch.2). Because
("Mu,-\-m ﬁ\:‘ai.ﬂ-iSMﬂ\" while kl*:%oo—huf} MeV, the contributions
of the type "b" are the dominant ones (we neglect below the
querk messes). The additional suppression pf the amplitude
means that the fig.9.1 contribution includes the product of
two two-particle wave functions of the twists 2 and 3.

Because the decay amplitude is suppressed,the three-particle
N and ?_‘L meson wave functions (twist 3) "come intoc a game",
fig.9.2, At the fig.9.2a diagram the © meson helicity h\g\'—*i
is carried by the gluon,while the quark's epins are opposite.
At the fig.9.2b diegrem the quarks have parallel spins and the
pion zero helicity resultis a.ffar the quark and gluon helicities
add to zero, The contributions of this type include the product
of two-particle (twist 2) and three-particle (twist 3) wave

funetions.

* This section is written in collaboration with I.R.Zhitnitsky
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Let us begin our calculations from the diagrams like fthat
shown at fig.9.2b, Their contributions inté the decay amplitude
can simply be found as follows. |
1, One repleces ?1_ meson (in the L}’._ meson rest frame, P
meson momentum is directed along the Z~axis,the angular distri-
bution is N(i.i-:‘_u:"pi B) ) by two free quarks with the longitudi-
nal momentum fractions X,I and X,,X,+X,=1,while the pion iai re-
placed by two quarks and transversally polarized gluon, Q’y_ 7
with the longitudinal momentum fractions quYE and ‘1".'3 regpecti=
vel:r,"f1 +Y¥ -iY}—'I .

2, Because the suppression of the decay amplitude ("' /'M.; is
ensured by a presence of three constituents of the pion,the
transverse momenta of all quarks and the gluon can be neglected.
For the game reason it is sufficient to retain fDI‘ ?.L meson
the leading twist wave function k? Lﬂ only (see {4, 4% )):
SHOIE TRt AL NURE

where ?}‘ is the §.-meson polarization vector.,

3. The three=-particle pion wave function .L?‘H(gi 9, ‘j)
introduced as follows( &3“5 Mit\qiﬁi\iagki 2\5 ﬂ

G 3 \Uﬁ% *—tia\“> Th HQG?*‘XE &?%ﬂ? (uﬂ"r‘ 1_.?“‘__1) :

31(‘31"51“5\ \Quk‘h“ﬁi. }\ g M Wxly)=4, o= Mw (?*"'?)

(9.1)

The expression (9.1) is equivalent to the following gauge-inva~

riant definition of ‘Qw L‘-”)"

<"E* L'ﬂ\ﬁ 5'1"”’!5%(";% t\\"ﬁ 7
[t -Ghan T o

(9.2)

e L

<mﬂ\“\‘ﬁ*\£ 13% L Ul - "‘Z"Pt e’ﬂ"‘??-cpa?? s %h[\:\

The equivalence of (9,1) and (9.2) can easily be checked taking
account that one of two indices of G in (9.2) is longitu=-
dins.l while the second one is transverae and so there is the
relation: %}‘ = (M Gr

The rest steps in tha ca.lculatinn of the fig.9.2b diagram
contribution are standard ones. - |

The suppression "Vi/'l“m. is ensured by & presence of the
three=particle ?,1_ meson wave function in the fig,9.2a diag-
ram and so,it is Huff:.c:l.ent to retain only the leading twist
wave function \Q-:[ b‘f) for the pion., There are two three-partic-

le ?:.,_ meson wave functions,which are in‘trcﬂuce& as follows:

o - 1.
SOLIGTS:
Qi e, de )= Winlta, X o), \‘Emi,n,mr\me,n,m;

L L
S:. &3‘1 \Q”‘bq:&*: S. ‘Lﬁ\ Qﬁu**ﬂ\\%v Uu,\ia]‘ﬁ}\'—‘ L.

WY - P ?f: ke \%l_, sl (3.)

The equivalent gauge-in?ariant definition is:

<§L (‘M &K?‘\ﬁ QQG:.;\— \*b-b ?]ae\}}\&??i?? %%\QHB
<Mﬂ\ N‘.“%Gh 2 u\“> i "'?HK?“?“ s \%w Wy ()

L. (9.‘4.3

As & result,the total contribution of the diagrams like those
shown at figs.9.2e and 9.2b has the form:

C@T O S 1@ =13 (@-2-¢") T My, To= Cpns? ¥ f 9,
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=~ 55l {%""r”;‘“ L+ __L__%M%ﬁ Bise

A L )
1} 2 A‘ g&ﬂ \Qm k’?\ %39(‘#) : @5
: 'Si i \iﬂuiﬂiﬂ\[{L-ﬂlﬁu-Q—} )

Iﬁ"{ &Ligcla. ! bw”ﬂ SR R
0 4NN (L 77 ) {5'- SQD}' Q]h“)tmi ij}

\Qggkﬁq \‘Q”\b{u}i&. XX &ﬁ \kaiu Y i;\

In (9.5): \Yq is the VW meson pola.rlza.tmn vector, 3= =2Y4,-4,

3 :7_)( ,-1. Te total decay width of V  into lihgt hadrons
bolts) , VAL _ i
Tlys3 E\ TERE % Paiie o Ll=ale). .6

The 1ead1ng twist pion and ?.L meson wave functions %‘E\QI [_*ﬂ
and %? have been found above in ch.4. The properties
of T E.mi ?_1._ three-particle wave functions are described be-
low in the sect.9.5. We want to emphasize that the relative
gigns of all these wave functions can be determined unambiguo-

usly from the QCD sum rules for suitable non-diagonal correla-

tors. The result$ are: U“ﬂ/&\>0 (E’%/&J‘;ﬂ (%‘ﬂ/ }‘?0 (&?/ﬂ)ﬂ

Therefore,the amplitudes M and M?, add to each other and
the total amplitude Ng,- 'M{;f}i- 'Ma. has & definité sign, (This

property was used above in the sect.5.4 for the calculation of

the \E%T‘lﬂl{ decay).

Using the explicit form of ell these wave functions (see
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(4,10),(4.27%) and the sect,9,5),one obtains from (9.5),(9.6)

o AET I k\%?ﬁ\ 208 n&wu/ L(+3y)-

(83

[ -5
1 _'-“5(} i{} LH %i{) %W%m/bﬁ 22340 .

The experimental value is /2.6/:

By v ?ﬂ = (&..‘l’l Q. &‘1\1.

The calculation of the contributions due to the loop diag-
rems like those shown at fig.9.1 is lacking at present, The es=-
timate is-(the loop integration in the fig.9.1 diagram gives
no logarithmic enhancement ~ Q.‘n MW/J“ ,because the correspon=-

ding Born diagram is zero):

IR ”“*‘“‘“S’I ;] 1 an g

i L

8 & J\ l :
I_ﬁ :_giﬂijT@ 3 I? :'fgi_ﬁ__-;ﬁ\qifh) 1 hgi&ﬂ‘] \qu(\}i)ziz

where the function, \Q?_? b’ﬂ represents conditionally the 9-\.

* For the non-relativistic wave functions: QE:.‘(‘!} =%(_ﬂ}
\Q; b“:\: %(-‘ﬁ 1 \Q}-Pt(\‘i‘\:% (.\'{i-ih} % (i"-- L/?") = \q'ﬂi' (_1\] ] \'q'w (‘f«\ =0
one obtains: Ii‘?:‘lm ‘ .IH syl .
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meson iwo-particle wave functions of the twist 3 (see below
the sects,.%9.2 and 9.5), Using for.the estimate of (9.9):
I"‘;‘ZS 1‘?:.._1 ;one has from (9.9),(9.5):

e

EL\H,I;L\%QW_?_ L% .-:.1-_‘5*:[) 9.9
\Ma T4, ien L ¥ 'L'_ ()

Therefore,according to the estimate {9."9);1:11& two-particle
contributions,fig.9.1,are small (mainly due to the sddifional
loop at the fig.9.1) and the \E—‘? ?T’f decay is dominated by
the three-particle contributions,fig.9.2. Az & result,the expe-
rimentel measurment of the Y‘}?W decay width is t_he-diract

observation of the ™ and ? megon three-particle wave func-

tions,.
9.2 CALCULATION OF THE YW © FORM FACTOR
10 b .

Let us rewrite for & convenience the definition of the form

> 2
factor (the Breit frame is used, P“r_é =0 3

\ﬂl;; () | 3pl0) |§L(AY = T, Fxgled),

| e
To=CpnelBibi Yy , §=0-p, O=-¢.

(9.10)

The photon and f’ meson are transversally polarized, lkﬂ_:\}\g\:i,
%J;« and §) are their polarization vectors,

As was pointed ebove in the sect.2.3.4, j‘:_“?mt o™ L/Qu', becat=
se there is an additionsal suppression NL/& ! Hence,analogous=
1y to \k“’! E’-ﬁ- decay,two types of contributions "come into
a game": the quark transverse mch_mentu.m&“m'/ ﬂ) or additional
transversally polarized gluon L""h‘/ G.)_ And in analogy with "k—‘b?"f
decay,the answer includes the product of two-particle leading
twist wave functions with non=leading twist wave functioms,

both two- and three-particle. But unlike to kk‘-* E’W decay, '
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thease two types of contributions both appear now at the Borm
level and enter the answer on equal footing., For this reason,
the obtaining of the operator expansion for the form factor
Y‘TWLELZ) i® a much more complicated problem than all previous-
ly considered above, We describe below in detail the technical
methods needed for a solution of this problem, These methods
are universal ones and can be applied in cthe:é* cages as well,
In the case under consideration the "rules of a game" are
as follows ( P+~?E.~{1—‘?W3. _
1. The unphysical longitudinal components of the gluon field,
?Jt . scan temporerily be put equal zero, As was explained abo-
ve in the sect,3.3,this can be done in the planar gauge. It is
clear from the gauge=-invariance,however,that in any gauge the
unphysical longitudinally polarized gluons Bi will enter the
final answer only through \bt"’ Dy  or insige of GJ'-N yand
this replacement can be done at the end of calculations, There-
fore,it is sufficient for our purposes to retain only the tran=-

gverse components ?3.!.. of the gluon field operator,and the
LD\ } :
2) Ya92

(9.11)

Helgenberg equations of the motion take a form{ B=9

Ua%*ﬁn%@\iﬂ} Ek_hﬁ*ﬁﬁ‘a%ﬂinw
a(%ﬁr;iﬁfh%ﬂ:% ('\51%1*3.1;* ‘3%33.\{120.

2. Write now the operator expression for the fig.9.3 diagram
(and for three analogous disgrams). The external querk lines
at fig.9.3 are understooded as the operators satisfying the

equations (9.11), The quark and gluon propagators at fig.9.3
are the propagators in the external operator field Bj.. . For

instance, the quark propagator at fig.9.3 is:

ai




A A Al A A (9,12)
(P-u.bs gy, _

e Expand the quark and gluon propagators into a power series
of transverse components KJ_I ?._L and %E)_L (It is sufficient
in our case to keep only the first order terms). It should be
remembered that the gluon operators e&L act,at thé game time,
as the displacement operators in the longitudinal momentum
space,because a gluon carries a finite fraction of the meson
momentum ( Xqp or yjp'.depending on what meson the gluon be=-
longs to). The decomposition of propagators over %?’.L corres-
ponds to-the pert.th. diagrams like those shown at figs.9.4,9.5.
4. Even having performed an expansion of propegators,one still
can't do directly the factorization like <i\ 01\0><0\0.L\?>
The reason is that the small components Kl.} E.L and B.L. are
contained implicitly in the Heisenberg quark operators W,

For instance,the cperator U gives cnntrihutions of two typeal
into the operator expansion. To see this let us use (9.11) and

LL/KLPJLKH%%L W,

butions t::f the first type are obtained by factorizing the ope-

rewrite W in the form: U= The contri-
rator LRL*%%’L\u as a whole into the ?.L meson state (in
the pert.th. this corresponds to the diagrems like those shown
at fig.9.6). The contributions of the second type are obtained
by factorizing the operator W into the ?.L meson state and B_L
into the pion state (in the pert.th. this corresponds to the
giagrams like those showvm at fig.9.7). Hence,one should be
carefull and account for all types of contributions when per-
forming the final factorization,

The above described scheme for obtaining operator expansions

is a general one, In the case under consideration,however,the

22

answer can be obtained L;,rﬁ'more conventional method,using part-
ly the pert.,th. diagrams, The receipe is as follows.

a) The diagrams like those ot fig.9.7., These contributions can
be calculated by the usual methods. The initial (final) meson
state is suhatitut.ed by a set of free quarks plus a free tran=
gversally polarized gluon carring the logitudinal momentum fraec-
tions Xy (yij,, and neglecting all transverse momenta, A factori-
zation of operators is performed in a sftandard way without any
complications, The three-particle pion and ?.L megon wave func-
tions are introduced with a help of the formulae (9.1)=(9.4),
For instance,the contribution of the figz.9.8 diagram has the

*
form

T \tl\alc\“(@ o)y ‘m“ “.‘K -3)
Tl adah st Sul- 04
ELRRAT M\ﬂ

()Y, gt

ki \‘Lialg Q

l- = .‘n
Introducing the leading twist pion wave function: ( }—}

=4 f{%n ELE (J{Slﬁﬁ\&? \Qr? bﬂ 1 ?71=j—\5 gl

S S S i i Tt S R T —— — - S

one has

* We give the expressions for separate diagrams in the Feyn-
man gauge, The total answer (9.22) is,of course,zauge-invariant.
+* Because the additional suppression "\'i/& is ensured by a
presence of the three-particle ?J_ meson wave function,it is

sufficient to retain only the leading twist pion wave functi-

N
on Wy .
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x 9y ) Tl .
T__Qm\ 58 i ;le [d%m\gl?gs@ ©.44)

Finally,intreﬁuelng the three-particle ?L‘Jneeun wave functi-
ons (9.3),(9.4),one obtains the contribution of the fig.9.8

LY .
diagram into the form factor Fm? Ui )

!EWQ&”’)\ ivdg\e fedon E Y \Qih‘\ig“ W3 )

: g ARl o Sd
ELE.%.E 38 -4 (L‘H‘\l 0 ; 'I(L‘ieu“fe)

8.45)

All other contributions of this type (fig.9.5 and other)

can be calculated analogously.

b) The rest types of contributions which are not accounted
yet,correspond in the peri,th, to the diagrams like those shownm
at figs.9.4 and 9.6 and the two-particle Borm diagram,fig.9.9.

It is convenient to write their summary contribution in the

orm: T= Ki\ { XN, {%1[ mﬂﬁ’.u : ({5.%)
[&}\mﬁ‘rﬂ{uxe(? 11?*"{1‘*%%1 X”_ \Q “Perm

where "perm" denotes three analogous contributions, Explicitly

shovn in (9,.,16) are the contributions which have the same to-
pology as the fig.9.9 diagram. (For instance,the contributions

like fig.9.43 are included therein,because the quark operators

in (9.16) are the Heisenberg ones,while those like the fige9.4.g¢

enter the "perm").
el

Consider at first the term ? in the numerator in (9.16).

24

The leading twist pion wave function \?“ gives zero contribu-~ .

tion for the term under consideration and hence,the suppressi-
K

on ~v /GL will bu due to the pilon, It is sufficient, therefore,

to keep only the lEE.ﬂlIlE; twist gj_ me s on Wa‘!.re function \Q?

(sde (443 23: (M3 dg)> £ 59 Bt gt O (8), 122k

After this,this contribution becomes:
5] g g o SR B
T g i )-

syt Lho T b or s
e b T R Qg\[msﬂ_
g s RO
Introducing the two-particle plon wave function of the nonlea-

ding twist 3 w:?}j_‘_-i): L
TS LR G ), WL s

one has finally for this contribution into Eﬁgkﬁ )1

A i :
- my (4 \?TL by 0 3]

The terms ﬁT in (9.16) which sre unaccounted yet,have

the suppression ™ /ﬁ due to ?1. meson and 80,1t is eui‘flel-
ent to keep only the leading twist pion wave function \szr[ )
One obtains:

AT STl §0c) [ SRR AT
3 q[‘i \3,,_

e 849
‘L ATLN T‘Qd ‘) | e
\l(;% % I %;' ¥ li%LX‘JU‘ :{ d&i N )%%LPE XSU}
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The equat:.ons of the motion in the form: d&,bﬂ_\( ‘11?*'1(1)_
..(L %_\.%(11* 3) were used in obtaining (9,19),where £ is

an :a.rb:|.1;:t"=':v.r:1ar :E'unct:l.nn and X, 3%, and X, are understooded as the

2.3
operators Xi*l.'!. ('Z.E L:D 1 ) acting on the fields u [h and
?3.L respectively.

Introduce now the ?:._,- meson two-particle wave functions of

the twist 3:

<ol Yy g %“'Yﬂg %G,
QLin? u\ >3 g e RSE T )

l‘ = XL”‘M:'}(“-Y\&. §

(9.20)
iﬂ,‘? m Ha"i (3)=

\Q“b,\ (). \fe?(a\ ¢ m

The normalization condition for \?? > is the definition of

the constant %‘? = %?-—ZUUM&V(EEE ch.4),while the normalizati=-

on condition for \Qg follows from the equations of the mo-

tion. Using the definitions (9.20), (9 3) a.nd (9.4),0ne has:

Lhwdy
AT =K l?;q Sﬁ S '!‘5 \QEL‘} ,g,

G
A \h(ﬁ\\ s O
il% gi ‘({(i__'cﬁ g 3 Y\u(‘l.—\id\l

Proceeding in an analogous way and adding up all contributi-
- ons,one obtains finally ( Cu+ E&'_'i/g 41

Fo) (o) S5 el (21.51):(s7o57)
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5 By faioe gc}«} e () X{L}‘ LM
2 » i""l,'-l. 1

bk i e ) t ‘X
% \i}{i—m""} i %SL 4 3‘ S "1 %UYLIMQL-Q m\i-ia.\

(}s&q %":‘I‘i = A_j \QTL"‘I i A
%%ﬁ’sg“me {S -y S,&'-"“ %\‘*‘Lm-m*

un'l-"
,j,";""
=
...|
@
,.-__..--—"—.:I""
e
=
2
L
:.r.'-’
uﬁ
’?
u::
c::f—)

4 ¢ deals wilepeits
) \33\1-3u\:l+ %i =

\Q-'g,? \Y\u,*hihZ\q:g Qiulii]ih %‘-W \Qag (\lu Y4 1\3)
| (3:22)

It is evident that the asymptotic behaviour of any form
factor <11=0 '31,‘ ha_\=i> can now easily be found by ana-
logous calculations. ;

~ Let us now estimate the expression (9.22) numerically (at
Q%= 10 GeV®). The leading twist wave functions have been found

above in ch.4:\Q~: (‘7\“—’%(5:7;\‘11 Q;(y\:%(&-?f: The properties of
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the three-—particle wave functions are described below in the

sect.9,5., We use for the estimate the asymptotic form of two=-

particle wave functions of the twist 3 (see sects.9.3 and 9.5):

? L Y,L 3 A Py 3.2
\Q_EQH\-.-_E}\QE (}\:7{(5_-{-1])?\?3 (T]\f‘i's*Unfcurtunately,the integrals
over the two-particle wave functions entering (9.22) include
in this case logarithmic divergences and for this reason their

Lo L L] " L] *
estimates can have uncertainties ~/ 50%., We estimate :

L
[t (BWDNN el
LRSS o G.“'f\i Yok (i—'t{‘"]?" =5, Q3 1?’)
L v,i 4, A L .
(0eE L (U, g.&ﬂ:[ﬂ 2
ST = ARRES Lree T e S &
The dimensional constants entering (9.22}1 are equal:
g v ¢ 0 5
§ =My, fy=200Me/, fy=200Nev, e >

! ¢ Wit y.9k)
%&f G~(‘J‘i01GE'\Jq:- g’%‘l'-.‘: 0410 1(}1\1 2, Rw 20.25-40 ZQ«E\JT.' Q

48 & result,one obtains (at d¢=0.35 )%
2 =265, Sa=nlls ai=lg S h 0]
Fep(@) = (@urea) L2CV/Q" = OlGev/R" ) (45)
s(¢efv) [aR,@ | _ [osseeY
G(ééﬂ*ﬂ R Q

(out of Teé-wu,w:.ei).
* The first of the integrals in (9.23) appeared above in Q.;'B@

at the description of the D,F mesons weak decays.

= 0,075 Q=10Gev?

** Let us note that the contribution of the wave funétian

v 7
\Q-ﬁ?(ﬂ into 23 is very essential,unlike the case of
\_‘{_—‘r?T decay.
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It is geen from (9.22) and (9.25) that two-particle and
three-particle contributions are nearly equal and tend to can-
sel each other. (Therefore,the estimate of the cross sections
ratio in (9.25) sould be considered as an order of magnitude
estimate). Hence,the threa-pai;tibla wave functions give cont-
ributions of the same order as the two-particle ones,in spite
of the smallness of the scale constants %‘H,W and §“ in
comparison with &:Tﬂ? ~96 %3.;\.

Using (9.25) and the relatidxi-'ﬁm(@-i\=?3 Fﬂ(uﬂ one has the

egtimate:
2 BF
©u\ 9 ; o (19CeN"N g
by %Téa\: Q.KM*’E‘“(M*\\E 31( M'i_\ﬁmg'm‘@%)

. F
The form factor %'E Aa_ will look like (9.22) with & re-
placment of the ?.L'" meson wave functions by the At-masnn ones
and QEu*Qh-?(Eu‘ Q—&\ (due to an opposite G=parity). To obta-
in a rough estimate,one can put therefa;e:

VoxEAT\ o 1 L
DY : \z E(M*Fnt(“*\\ 9.0 Loc,

V> ofe

%% i
RUETRAR

(8.29)

Logarithmic divergences of the integrals over two=particle
wave functions in (9.22) signal that there will eppear edditio-
nal "non-gtandard® logs in loop corrections,because the Born
hard kermel is too singular at h)‘r,‘\—}i. From the formal view-
point this means that the standard renurmaiiz&_'hion group or
the LLA approximation are both break down. However,the "impro-
ved approximation" described in the sect.3.5 " in Whicah-'m_:n-lag-
ﬁing“'intamal' Sudekov effects are taken into account,remains
epplicable ,and these Sudakev effects suppress the contributions
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from the fegicns \31'4\ b1

In practice,however,the power corrections MLK;J*E‘/GE in the
denominators of the quark and gluon propagators are more impor-
-tant at not too large QE,E.EI compared with the Sudakov sffects.
Just this correction terms serve as regulators and suppress
the contributions from the regions \2“"4 \-‘ri at not too large
Qz,while the Sudakov effects are the most important ones at
very large QE.

Besides,on &.C.(‘.Olu:l‘t for loop logarithmic corrections,the two-
particle and three-particle w&va'functionﬂ mix with each other,
The experience shows,however,that these mixing effects are
‘negligble. Since the accuracy of calculations is not high at
present,we neglect logarithmic effects altogether.

9.3 POWER CORRECTIONS TC THE PION FORM FACTOR

There are two types of the power corrections ~.'1/GI’L to E[(Gl)_
First type corrections are due to the pion wave functions \QE(}\
and \Q'g,-;[i) of the twist Al Xg — gector).In this case the to=-
tal loge S B B]J;_:‘eﬂult of the losges "“%R ~ in the ini-
tial and the final states sumiltaneously,so that the answer
includes a product of two wave functions of the twist 3.

For second type corrections (Khﬁgﬂﬂectoﬂ the total lose
~%?- is due to either initial or final meson states,so that
the answer includes a product of two wave functions of the
twista 2 and 4,

It is not difficult to calculate all corrections in the \és-

* It is convenient to use the following relation for the pion

weve functions ( 5 is an arbitrary function):.

5ol &[RRI R UATIOY = ol dy 200 ks (0>+
254 0co LAy Bugs (OB (T @29
30

Therefore,we give here the results only. The contribution of
4
the wave function kQ-ﬁ L‘!.. (9.17) into Fi[_ﬂ'z\ has the form in

the LLA /9.1/:
i

| iy ;
&EM%% _Ei\i%iﬂfz S—&W:QIG"U (.29)

N = ;
(the relation S;'I Wq/(m“*uﬂ“—‘—‘(a\nut&& \ﬂ\f was used)s
R ? L
The asymptotic form of \% ig /9.1/: \Qﬁ br,]"‘*“’\: /2_
Hence, the integral in (9.29) is sensitlve +to the region \‘ﬂapij
&3,114:'!."l‘x:,{:nrl—lea.nﬂ;i:ﬂg!Il logs are of importance here at large QE (see
the sect.3.5). Based on the results described in the gect.3.5,
" L
one should expect that on account of non-leading log effects

the integral in (9.29) is replaced by:
i X

a-‘!H. '3»1. ¢ 7 T ; 2
Lol R St iy
-1

de Lﬁ‘j

i ki
o (), SER:(T], T

(see the .EEGt-B.E}a It has been shown in /9.2/ by calculating
explicitly the Feymman giegrams,that this ?is indeed the case.

The properties of the wave function \qwr. Ks,tﬁ are not in-
vestigated in detail up to now, Using the equations of the mo-
tion and the relation (9.28),one can obtain the following re-

i | %—‘I"\l) ik Y i
la'b:n.’tzn (J\“’LQE\J] Qﬂm & s AO™ 3 :

‘"‘."l ' 'S : -2 0

1 : i
%E M“*H&\&HK%"!T)\QIQH WT‘\'L%HKTW iR &roiﬁ' (;'E'\J )
=y

i (Wmurwmd) 2
4’{1% {Eihﬁl"i;buﬂ‘% - A Rrﬁm% e
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(the value Ihr: 0M-40%GeN? was used,mee the sect.9.5). It is
seen that the value <2,1>? -r{ﬂ*iﬁ-t-\f differs only
slightly from the a.symptotic value ( ) {"/5. Therefore,
we use in (9.30): \Q-;{"ﬂ \QM(“T\ /2. and estimate (here and
below in this section all estimates are for Q =110 GeVE,see
the discussion after the formula (9.27): \,~{'% . Taking

into account the leading twist contribution (5,416¢) and using

o\ Hu\a}zzn,-ﬁcavfane has from (9.29),(9.30):

E ) | - m‘”"*“‘ RS Rletoc

Hence,this correction is = 60% of the leading twist contributie

on,if the wave function (4,10) is used for the leading term.*

In comparison,for instance,with the VDM :

Wy 0.66eN*  0.366eN
R o = e ) = 25 - aakle
VoM WMo - % 9

the correction im (9.31) is surprisingly large.

Using the technique described in the previnm'section,we
have calculated all rest corrections Ni/qvli in the \&E-seutor
(they all include the three—parficle pion ﬁave function \?“[ﬂ)_
The qualitative picture here is the same as in the case of
i?ﬁ form factor (sect.9.2): all contributions are of the
seme order and have different signd. For instance,the contri-

bution of the diasgrams like that shown at fig. -9.1l:-,ia**=

+ Tt was supposed in /9,1,9,2 '"Ei;twc- ACel\ = _3
e 192/ that Ry k)= B3 (1-1)
and as & result,the leading twist c{:r‘.r%.tribu'hicn was eatima‘bed as
. 2 7
~ ~ 045G AI »instead of "-’--0-535’?”/‘\, for the wave function

(4:10);
** 0Of course,this contribution is not gauge-invariant by i‘sﬂelf

and is given for an illustration only (we use the Feynman gauge).
' 32

Let us present also the rough estimate of the DOWET COrYec=
tion from the fog - gector,which is connected with the two-
particle wave function of the twist 4, For this purpose,let
us return to the leading twist contribution and account partly

for the power correction due to quark transverse momenta. The

gluon propagator has the form:

L 2 L A :
CHFE-e (RN T

o .‘z.‘-S'L k_l.._ Q, 2 H‘LQ'J. : (%-%3)
-4

where ¥ 1 end E | are the transverse momenta of the initi-
al and final quarks. The first term in (9.33) is the leading
twist contribution (see Lli‘l\ ),the second one is the power
correction we .ara interested in, On account for the rotation
e ( 3 L in (9.33). It is shown in the

symnetry: D> a .
Appendix B that the asymptatic weve function for K!‘X DJ_U.

Qlibl‘l\ i Q{:h\ ,end we use it for the estimate bnluw.
The final wave function is the leading twist wave funciion .EGD
{4,10), Then the correction (9 33) can be writtun ag (the lea-

ding term is shown for cnmpariaon}
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Using the above wave functions Q:['L‘\': %(i__a-ﬁl o \Q&b})=% (&-— 7:')2
one obtains (see (5.16¢),(9.23) and (8.15),

% Eli _
A e S

Therefore (see (9.31),(9.32) and (9.34),all correction terms

are of the same order and have different signs. Hence,conside=-
rable cancellations are possible,analogously to the case of
Kﬁ? form factor (see the previous section). The accuracy of
estimates is,however,low and it seems impossible to give more
reliable estimates at present,

We have invest'yatad also the corrections Mi/%l]. to the &),_-*
meson form factor ‘I:? (3‘1) Analogous estimates show that these
corrections are typically E: 20=-30% of the leading term (for
the wave ﬁmgtian (4,19)). It seems,that there are every rea~
sons to expect that the pion and ?hh meson form factors can
not differ greatly.

Sxmﬁnarizing the results present&& in this section,we would
say that the question about the magnitude of the power correc=
tion o !L/L'l;'L to the pion form factor remains unanswered at
present. Because considerable cancellations between different
terms can not be excluded at present,further investigations are

- required to elucidate this question.
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9.4 CORRECTIONS T THE ﬂ:&t“ FORM_FACTOR

Let us consider the properties of the operator expansion
for the form factor t (l\'?;_ ll:"} in more detail (see (2.22) and
X 't Fid
(3. U6 )J,f‘g-..a /. Each derivative .Df" enters the expansion
g
over the local operators in the form: (?.Q‘.'Dr./&)}flﬂ{;%j?*—-—llh:rl]#‘
o

After the matrix element is taken,o| . ‘bl“ \'ﬁ'“(ﬁ? NP?‘ and

X I I

- i b 1 il v 2
hence,the expansion parameter is: Q—QQE/&}'@L QJ q‘fﬂ’\l{herefa
re, the oﬁr&tors which include derivatives M give no contri=-

2 z .
bution at q‘,,ﬂh ,and it is a dimensionality,not a twist,
which determines the role of each given operator in this case.
11
This means that not only KJ\/G.?'\'}O ,but also M)—‘!'O in the
W
co=-ordinate representation,so tha‘h\%pproach to the local limit,
Az a result,the answer will not include the integrals over the
longitudinal momentum fractions X4 of various pion wave functi=-
ons,but only their values at the origin. Thisg simplifies the
problem of a calculation of power corrections to the leading
i/ 7 T 1 1

term. The power correction ~ q( at Qﬂ‘:-%f- has been calcu-
lated in the paper /8.1/,and the radiative correction ~ J“"'/T.'

has been obtained in / gli_ /. The result has the form:

\2 5 J.. B '122>k
Bl )-S5 1-f 40 B | 69
where <T&\z‘: "5(3‘13“1‘41)“-'91@1\1 is the mean square of the

quark transverse momentum in the pion,see the sect.8.1.
At present,the formule (9.35) is the only example of a comp-
lete calculation of the power correction ”iAf‘ to the leading

term,and it is seen from (9.35) that the correction is not large.
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9.5 NONLEADING TWIST WAVE FUNCTIONS

9.5.1 A gqualitative discussiom

The three particle pim_l and ?J_ meson wave functions of the
twist 3 have been defined above by the formulae (9.1),(9.2)
and (9.3);(9'. 4'3. There arise tﬁe additional diffieulties when
one tries to epply the method of the QCD sum rules for the de-
termination of the moment of these wave Bmctions. Let us take,
as an example,the picn- wave function \Q*ﬂ; (X) and consider the

correlator:

T (g2)- 1 w i 3nm (05) ti (o) =
(‘Eq{\hiﬁhz_#hﬁu— ‘I f_(%ﬂ . 2:._ 0, . (5'56)

'1:;1“-‘“ \ ,ﬂ . U & ﬁ:\m [@ﬁ%@& - Zaéaﬁh\{fg"ﬂmim :
| : i CEY)

1, The Bornm diagram,fig.9.11,has _tﬂa'.innp‘s and is very small
numerically, Fer this raa.sﬁzhl,the _scaie-at which non-perturbati-
ve poﬁer corrections are "_". 20% of i:ih‘e.;BE}rn contribution is,as
a rul'e,large_z "ﬁi': ?)"5 @E.\"ix | _Th:.i.ﬂ-.lé.:ada,':j.nd its turn,to the
low sensitivity of the sum rules %o the lowest resonance con-
tribution. b o ﬁ

2, When celculating the cﬂrl:tx;ibuticns‘ like those shown at
fig_.9.12,the‘r_e appear thé vacuum averages of the type:
(n\ﬁéﬁq\"‘\l dSw N\ dlo>

*

h‘srpﬂthes:!.a seems,doesn't wnrka .

yfor which the factorization

* This section is written in coll&boratlon with I.R. E.’.I:d.’f.nitEllc:,lpr
*% °A11 the earlier cnns:.dereﬂ in this paper four-fermionic va-

: a o
cuum matrix elements were of the form: <ﬂ\ U.‘év(iiKE\)\ udx{'&b&“\ f“ﬂ>
and only for such operators the factorization hypothesis was

ChEGkE{l,EeE !1 -"1-.2!‘
; 36

3. The spectral density ﬁ I Wahalts Kﬂ in (9,.36) has the
dimension {}\1 and the behaviour ~$ at large '3 yunlike
the dimensionless gpectral density for the twiat 2 operators.
Hence,the role of the "background" iﬁcreasea at the treatment
of the sum rules,if the scale ﬁ is large anaugh,a.nd this
also lowers the sum rule sensitivity to the lowest resonance
contribution.

Due to these (and other analogous) difficulties,it becomes
very important to make a g.::md choice of the correlator which
has & good sensitivity to the lowest rescnance, The following
trick was used, |

Return to the correlator (9.36),(9.37). The large scale of
power corrections in this correlator ( ﬁ?' :3-5 GE‘.\J?' ywhich is
mainly due to the fig.9.12 contribution) means that the true
gpectral density coincides with the smooth asympftotic curve at
é.} 5-(-;?_\" only,while there are appresi&ble resonance ma-
xima and dips between them at é( 5 Ge.\f?.

Let us consider now the superposition of the currents with

the opposite P-parities: ‘jf—} ni{.g ¢instead of the current

o in (9.37),replacing in (9.37) |
¥ : (9!38J
grwxg ~> gllm} QKE * b} ?

It seems at the first sight that we have made matter worse,

when adding the opposite parity contributions, In fact,the si-
tuation improved essentially. The main power correction,fig.
9.12,is zero for the correlator of the mixed-parity currents
(9,.,38)., As a result,the difficulty with 'I:he.;;_‘pcssihle non-facto-
rizatien of %:heae contributions disappeared &nﬂ,moreaver,the
charact:éristic scale ﬁ decreased essentially. Rest power
corrections are now = 20% of the Losn contribution at 'HT' 06 i@rt\f
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From the physical viewpoint,the following had haﬁpenéﬁ. The
adfnixture of opposite-parity contributions filled dips in the
spectral density. Hence,the spectral density became much more
smooth in the region L 5SS 4K GeN? ,and looks now like the
asymptotic spectral density begimming from $ = !L.E.QEH'JT As a8
result,we can now parametrize with a better accuracy the gpect-
ral density by the standard form: the contribution of one (or
two) lowest resonance plus the asymptotic continuum,which starts
now at éqti.g G‘:N?: Su:ch sum rules have much better sensitivity
to the lowest resonance contribution.

9.5.2 QUANTITATIVE RESULTS AND THE MODEL WAVE FUNCTIONS

The T meson matrix element is:

\ a.‘ﬂﬂh.( \\"i@f)> (%QV) 1 NoeVatl 92 '%'s.*n < Y\ :'5>] 11:01

& b s Eu N LA O e P S =L
el L) =\sew (e ) (339)

The spectral density is taken in the standard form:
ik Wy

T 1 O S (8 +
4 Wil Wy .I'LD
85 -Sun) \i Tim Lo ] petth. o

where the first term is the pion contribution and the second

one is the asymptotic contribution determined by the Born dia-
gram,fig.9.11,the free parameters ‘3\15_“1“3 determine the dua-

lity intervals.

The swi rules have the fom(d.;('.‘dl ‘.'L'[;E.\"\ IR DJ&M/}\ 33

() \%w\éih 4 g o 5{&- e (i*H)]}M,_uluﬁ

&
Q:“M/ E\ dd \d u : é“i‘ﬁ'ﬂl‘} QS
LAQw x G *Bo e <‘§Mt>‘ Cnmu:, D Mz,

and the valuea of the coefficients A"‘-ﬂﬂn; E: and Chﬂﬂ;

MMy
are given in Table 9, ‘l.

Don't going into further details,we give in Table 9.2 the
results which Tollow from these sum rules (the meean normaliza-
tion point of the moment values and %'m is F': AGeN), For a
comparison,the moments of the asymptotic wave function, \?&“:'-Lﬂ:
%bﬁiﬂ.l\.& are also presented ( Yy and 'i;-_ are the momentum
fractions carried by the quarks and ‘ﬂ.a_:, carried by the gluon).

t is seen from Table 9,2 that the mean momentum fractions car-
ried by quark are larger and that by the gluon is considerably
amaller than the corresponding values for \?M‘- L‘ﬂ

As usually,the model wave function is chosen as the linear

combination of few lowest polinomials

%U = LGP—”\ \Qm(ﬂ[&(hﬂi\*gh +C13HQ

The wave function \P—m(ﬂ we have used above in this chapter,
has the fom(\?uh\ =360 15_11'3[3\
e e igg},l\ e () {_‘i{iguiﬂt‘]ﬂigig '%"cl‘i;ﬂ]%ﬂ QBI-L‘?)

and the values of its moments are 8180 presented in Table 9.2.

The method of the QCD sum rules giu"es a possibility to deter=-
mine not only the absolute values,but the relative signs of va-
rious dimensional constants as well,using suiteble non~-diagonal
correlators, All the signs were determined in this way:

(&‘w/& \‘}0 Q’En/% \‘?0 ('93\!/%‘ j}‘-O (E’;r/!} )}D :

I'he prc:pert:u.e- of the Q- meson three-particle wave functi-
ons ‘Qa?kﬂ \Qe.g@ksee (9.3),(9.4)) have been investigated by ana=-
logous methods,and the results are presented in Tables 9.3 and
3.4, We have used above in this chapter the following model

wave functions:
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is dominated by the contributions of just three-particle wave

\Q:Q (‘i W= LGE‘J\= \Qu:-i kﬂ ﬂi{“ 0.3% (\Li#ta‘!r'ﬁ.?ﬁ ¥s~5%Yz 445 51 @L@
Va0, peday) \@&M‘}[Qxﬂ )(2-45%)] an

and the values of their memen‘bs are also given in Tables 9.3

and 9.4.

functions.

The question arises:how can this property be combined with

& success of the "valence quark model" in a description of the
hedronic spectroscopy? The answer is as follows. Three-partic-
The tWo=particle plon-and ?ﬂ‘-" ey Eelaiiouie le wave functions have a much smaller scale (i.e. the values

at the origin) than two-particle nnes,the addit:.nnal smallness

twist 3 are determined by the formulae (9.17) and (9.20). The
' is ':‘%‘E/"m\ Hence,if there are no enhancement factors,

asymptotic form ﬂf'thé_s_e_ wave functions (and the three-particle

. , the role of three-particl and,all the more,of manv-particle
ones above) can easily be found using the method described in ;. s gl : (s

the Appendix B:
Goparr s 4 Gl G137 04

It is showm abmre in (9.31) that \? ('S ?& ‘.'LQE.V) is somewhat
wider than “.L'f,}}&-‘rﬂu) »but the difference is not large.
The prelminar:,r investigation of the properties o}\?;]L'L} IU.»_«i_Ge,ﬂ
and \Q? by ]‘\ i@"’:\') shows that these wave ﬁmctiuna are also

wave functions is small, This is the casé,fcr instance,for the
low energy hadronic spectroscopy,for the deep inelastic struc- é
ture funetion E._(‘ﬂ ot (i-ﬂ@i yetc. The three-particle wave
functions enter,however, the asymptotic expresaicna '}o'r exclusive
prucesses through the integrals of the form: S ll\?,i \QELI\)/T{‘X

S &L\L\Q (1\ i The mean longitudinal momentum fractions,X,,are

ll‘

xiz 1/3 hare,wh:.le xi ~ 1/2 for two-particle wave functions

end,moreover,the number of x; in the denominator (i,e. the num-
ﬂmwhat wider then their as totic forms, The diff '
ymp erence is ber of propagators) is larger here in comparison with the cor-
_ *aﬁlﬁ.,hﬂwever,and 80 we have used their asymptotic forms for the '

responding integrals over two-particle wave functions. These
estimates above in this chapter.

are the enhancement factors which can compensate for the small-
9.7 CONCLUSIONS

; _ nesa v%ﬁ/‘fﬂ?._ Such a situation we observe when considering
The problem of the calculation of non-leading twist procesg- the KK? Fowi factar. The three-particle contributions cen
es and correspondi wave functions is much more com ted

ne Sl pLics jlb' even become dominent,if the two-particle ones are suppressed
comparison with those of & leading twist. The methods for obtai~ for some reason. This is just the case for the \!ﬂ—‘r ?'ﬁ decay |
ning the corresponding operator expansions were described abcﬁ'e |

in this chapter and a number of applications was consldered.;

2., Unfortunately,the precise calculation of the power correc=-

1/ 2 ' : b MY
tions to the leadi twist contributions is lacki
As a result,the following was elucidated, q‘ & e

; at present, The difficulties are comnected with an appearance
T. The contributions of three-particle wave functions play,in

3 : - of the wave functions of the twist 4,with the logarithmic diver-
- general,an essential (and sometimes dominant) role in non-lea-
dix_lg twist processes., For instance,the Y—b?‘ﬂ' decay amplitude

40

gencesa of integrals over the non-leading twist wave fun'c‘l:ions,
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with possible cancellations between separate cantribﬁtionﬂ,etc.
All this complicates the accurate estimates of power correcti=-
ons. Nevertheless,the arguments and the estimates presented in
this chapter and in ch.8 indicate,from our point of view,that
power corrections constitute 5 30% of the leading twist con-
tributions at Q2=1D {.‘:G‘FE (if the latter are not suppressed
for some reason). |
3. The methed of QCD sum rules allows one to find not only
the values of wave functions at the origim and the realistio model
wﬁwe functions,but all relative signs between various wave fun~
¢tions of the same hadron as well. The lcncﬁiedge of relative
gigns is of principal importance,if there are various interfe-
rimg contributions inito & amplitude. For lnstance,the change of
the relative signs of the three- and two-particle T and ?-L
wave ﬂmctinnﬁg‘\fn’%}/ the increase of Efk{v‘_ e - '\T?) ‘end E(‘Y-ﬂ[u})
(see (9.25),(9.26)) by & factor ~A00 ,and this looks unrea-
listic. Moreover,changing for instance.the relative sign of rg’“
and g’% ,see (9,2),(9.4),0one obtains the value of EH‘H P'ﬁ\
~400 times smaller than the experimental value.
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Result of sum
rales

Moments of thL

asymptotic
wave functions

A B c
< 000> { /e -7
<(00> 2 /; #/,é- -1/
< 001> 3/,7 3/ - 24
<200> 3/¢9 434, ~/7/fog
<0083 3/ 30 ~ 20
<1103 /0y 35 ~S /25
<1043 3/08 J/80 ~Y0

4é

Moments of

the model

wave functions

Table 9.2
Lo + (03 o4l %ev”
<100 0, 3¢ =044 2y =029 O.44
<COoL> 006 =022 3/ =043 o712
<800> L.76 — O.86 3/e8 ~ 011 0L8
colL> 009 TH15 3y = g2/ 0.0
<110} 0.1% ~019 L/ = 407 419
<L01> 0,02 * aos S/28 =011 0.0
Table 9.3
g +(0.520.6) 107 %0V | 0.4
<CL00> 034+ ay /g = 0.89 0.4
< 001> 0.11 7 0,22 3y = 0,43 0.2
<R00> 0.16 +0.29 | 348 =01 0.2
008> 0,08 + 012 349 =08 04
<({0> 072 +4716 1/ =4q0% | O
<L0L> 0.08 =005 /25 =044 vgs
Table 9.4
hav +(0.2% 03)10%)
cLof> 0,08 7+ 0.08 L/5~007 0058
<g 00> 0.35 L0495 1[5 ~ 953 0.92
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