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4. The leading Twist T - and © -Meson Wave Functions and

= me

the QCD Sum Rules l1.48 4-;_1_ .

As it was pointed out before, the nonperturbative hadron
wave functions “?; ( 13} ]'\” 4 GeV) are the fundamental objects
of the theory. They determine the distribution of the hadron
constituents in the longitudinal momentum fractions 0= X\, %

==L at Yy 2 (the nermelization point | deter-
mines the maximal virtuality of the constituents).

The main goal of this chapter is to obtain the informa-
tion sbout the W - and ? -megon wave functiomns using the
nonperturbative method of the QCD sum rules developed in the
papers l 1.42 f . The wave functions obtained in this way will
be used in the following chapters for the calculation of vari-

ous exclusive amplitudes.

4.1. Calculation of the Pion Wave F‘lme‘l: on Moments

The qualitative descriptien of our nppreach to the calcu-
lation of the wave functions mementa‘<'ﬁ. >g S &773 “Qb ]ﬂ\)
has been given in the sect. 1.4 above. Therefore. we start

here with corresponding sum rules for the pion wave function

\'Qﬂ: k-ﬂ (see (1.17) J' <\ (}\} @
S Y ¥ Q - ﬂ ibT < 4V
e L) = K [\n Q{m%ﬁ ilM“ (ﬂ ‘{\

Q.'

=)
AT )= § <D $(6) + §, M 8- wh) + 240 (h o
@\%k@“@\l\ﬁ.:i_g-ﬁcew - G\ Uy = -425.4876ey

We present now some additional qualitative considerations

to elucidate further the physical meaning of the sum rules we
use. The r.h.s. of the sum rules (4.1) can be rewritten in the

—
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form: ', » \hr\ n 11._‘ ek e "'\-f-ﬁ '-‘_'3__ A
LL‘{T. Fonel= g WG WA Mi, E>+y, \Ql\‘ Mi= Li\{'t:\ Jﬂ}‘\?b M)
2 A Wi o~ L
i > i r = = 5 : & “_1;: \
Moot T
b
fit-3e i oo
Tod 3 4:\“'#. Jo WARK D 1) LY q‘ ) -:;:._l‘;'.-?' Sha, Lt’u.\‘ .
i e ti \ = "l_U e T L '
~ R N ok e b Wi :
wA ha & @ -1

T

{,#, na the Y\ «th momen: of the "wave function" \?_"-f-,_hh.'lhe

first term in ¥ \1 M , whirh is the perturbation *heory
contribution (Mg, 4.1, lescribes the asymptotic wave function

- . 4 -l -
"J«{M -\1_ Voo h =T The account of nonperturbative inter-

| 'LL ll'._ -
- i r-’l l\:‘. - ".I
actiona, Tigs, 4.2 = 44 gives the correction &7 14
While the asymptotic wave function \'ft '\_"’* J lesceribes the

smroth and more or less equal distribution of the tctal momen-
twir between the two gquarks, *.hii is not the case for the "non-
perturbative wave functioan" AV lk‘ﬁ : M\, . The whole momentiun
is carried heres by one quark, while the rest quark is a'wee
Therefore, th:\{%:e; turbative interaction tends to strengthen or
to weaken the roles of such configurations in which the total
momentun 13 very unequally distributed between the constituents.
The sign of this effect is determined bgu"relntive 3ign of

\E’ﬂ_, \“\h"- and e:l:'; i'.\?,ﬁ’-“"ﬁ' . If the lower resonance gives a lar-

ge contribution into the spectral density, then the characteri-

stic distribution of iks total momentum between the guarks

=¥ Q1 '.‘"’c*'q speak? ag, the sum rules give information no*
about the wave ¥ nctions themselves, but about the numerical
velues of th° - moments only. The explicit form of L'y de-

pe-nds on . .e used methea of asymptotic expansion in N°, Bu-

surcttative groperilaec discussed do notr depend on this.

will be the anma in this state and in the total correlater. If

&;k\r and &\Q 'G; V‘-H are of the same sign, then the gwec,:.'h

reson&nce wave functlonk? Lq\ will be wider i 'vlh“'r“:].ﬁ] b"}\b
(‘<7| >&5)}. Just this variant is reul: -ed for l"Q,ﬁ x}.\*, 1 "3:[_ -8

and &‘“{ t'!”M\ have opposite signs, W, 'ﬁ) will be narrcwer
Mo Mty o (e 44 Y R S S Yok e
be shown below, Jjust this version is realized for the ;'_ mescr
wave function \Q: k?}\ .* The strength of the effact dejends
on the relative value of . h”Erp:. :IHJ-,.\I and &‘q,’ 'l\'ﬁ.M\j and iz dir-
ferent for different correlators, For instance (see below),the
nonperturbative effects are larger for the pion than for the
?L -meson and so \QTIT k‘ﬁ\ is wider than \F'E;: i'n_?-..‘} .

Let us return now back to the sum rules (4.1) and write

their explicit farm at ‘ﬂ m 0, 2, 4: a

\_h (gs %eh/n) XM-PM\_i @Z(ﬁ) Q}%e(m\

=0 2t (4.3) % ’

il el sel ]
w2 é 1

i\uz (Si <’1ﬁ> +% (?:5% Me M "Gﬁf{ }+(“1$' | J
W.s)

The quantities sh in (4.3 - (4,5) determine the %E%Lﬂ-

"""'h

ht.h% of the smooth continuum where the spectral density coinci-
des with its asymptotic form.

*) Let us aepply the operator (%_.1 M"‘*\ to (4.1). The pion
contribution drops out then and the lowest resonance is now
i "'L\JJ
is n;gative and this signals that the P‘H -mescun wave function
{ ' '
\QM \1:\ is narrower than \Q;Lg_ ki}\

the P\i -meson. The relative sign of \_\‘?




The sum rule (4.3) was first obtained and iYeated in
i1.42{ « The value of %K cbtained in ll.#EI from this sum
rule agrees with the experimental one.

The method we use for the treatment of the sum rulees is as
follows. The scale parameter M in each of the sum rules is
varied within such limits that the power corrections at r.h.s.
are (5-35)% of the perturbation theory contribution. Because
our purpose is to find the values of the "residues" EE<§§¥1>L,
we do not try to determine the resonance masses from the sum
rules, but take them as known quantities. The residues %%41“7’;
and duality intervals Sy  are the fitting parameters and
their values are determined from the best fit in each of the
sum rules,

The sensitivity of the sum rule to the given resonance
contribution can be checked ss follows. The quantity wa varies
within = 20% around its optimsl value lg; obtained from the
best fit, and the fits are performed with gh fixed (within
0.8 ghﬁ ';n & 152 §n } and the residues %-’.:_<"'§“‘>;_ as the
fitting parameters. This varistion of $h imitates the in-
fluence of higher perturbstive and nonperturbative corrections
and other unknown factors. The variation of residues shows then
the stability of the results and the semnsitivity of the sum ru-
le to the resonance contributions.

The best fit gives for the sum rule (4.3):

Eo= 13 MeV, §,=(410-180)MeV,  S=13GeV  a.6)

( §“1 is much more sensitive to the precise value of $u

as compared with %I ). The experimental vulue of %ﬂ is =133

MeV, and this agrees well with (4.6).
d/d (Ve
One can also apply the operator M) to  (4.3).The
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pion contribution dissppears and one can determine %hi “by
doing the best fit once again. The result is the scame as in
(4.6), Besides, one cen simply drop out the Ai, -meson cont-
ributipn from (4.3) and then the beat fit gives: %& = 129
MeV, g:ﬁiﬁi ¢.8 chl. Evidently, the wvalue of gfﬁ deter-
mines now not the beginning of the continuum, but the pion du-

ality interval,
The best fite give for the sum rules (4.4) . (4.5):

Ay = Q.10 S = 0.0-0.0%, $,=186aV
47, >ﬁ\‘_ = o, 3 v PR ® 4.7
Me=ls e latey

Sy 2.5 Gev’ (4.8)

o= 02, {{H =t
M=) 3 GeV”
The value <\EH‘>h is small and cann't be determined from the
sum rule (4.5), because this sum rule is insensitive to the
ﬁi-meson contribution.

Because in the sum rules we have not explicitly introdu-
ced the logarithmic corrections due to anomalous dimensions,
the values <;§h'> obtained above are taken at the normaliza-

tion points corresponding to suitable intermediate values of

~

the scale parameter , M .

It is seen from (4.7) that there is an essential redist-
ribution of contributions in the real spectral donsity as com-
pared with the asymptotic one. The value of <§?f“>ﬂ is con-
siderably larger and <'§1>A,’ is considerably smaller than the
asymptotic value {‘211):‘;: {‘t,‘?-‘}:: = U.EU,U..hd.'\:th arrecs
with the ebove presented qualitative considerations.

The questions connected with the accurecy of the results

obtained from the sum rule (4.3) (and analogous sum rule for




the ?L -meson) have been considered in detail in the original
paper ]1.42[ and the expected accuracy is =~ 10%. Ve expect
the accuracy = (15-20)% for the results (4.7) and =(20-25)%
for the resulta (4.8) (the accuracy decreases as W\  incre-
ases, see below).

We do not consider here the next moments of the wave fun-
ction = for the following ressons. Because the perturbation
theory contribution, fig. 4.1, Jdecreases with n , the rela-
tive importance of nonperturbative power terms in the sum rules
increases (i.e. the expansion parameter at large " is not
Gy s NI

of the characteristic values of My, at which the power cor-

, see (4.,1)., This leads to increase
rections are, say, = 20% of the perturbation theory contri-
bution. At larger values of the scale parameter M the
higher mass resonances and the background contribution play
much more important role in the sum rules, while the role of
th: | -meson contribution decreases. Therefore, as N in-
creases the sum rules become less sensitive to the pion contri-
bution.
e do not use also the sum rules for the correlators I?_?_ 5
-I?.'q 5 -THU. (in the correlsator I nw the first current has
En - e m

N derivatives L]}\ and the second one Uﬂ ). The
point is that in the correlator Iun intermediate states with
spins D= S< ned also comtribute, while:in the correlator
I no the intermediate atates have $=i only, except for
the pion being the Goldstone perticle . That is why in the sum

rules for L,nm as compared to that of Il.-.a 5

a) the background and higher mass states can play a much more

*) Note only that ('St")“.i =G13

Mi=1 Gey”

important role in the sum rules; b) the role of the pion con-
tribution and the sensitivity of the sum rules to it is smaller.
If we ignore the presence or additional resonances with spins
0= % < Wih to the correlator Iﬁ, (absent in \ wo)and
choose the same form for the spectral densities \wan and T'ﬂb-,
then naturslly we cbtain in this way iarg.: veluee af e
The resson is that we force the pion by itself to fill a duali=
ty interval. Indeed, the value <S‘1>\T obtained in this way from
the sum rule Iu is: ('g.l)ﬁjl - :*3“5, end this value does
M= {5 GeN iy

not contradict (4.7) yet. However, the value ('ﬁl >ﬂ obtained
on this way from I\m already exceeds the value (4.8) cone
giderably.

We have described the most characteristic properties and

the methods for handling the sum rules in detail ., Below we do

not repeat the reasoning and give only the results,

4.2. The liodel Pion Wave Function

In this section we describe the qualitative behaviour of
the pion wave function and propose the model for it,
For the reasons which wﬂi Eitﬂmi more clear later (see,
ch.5) we renormalize the above found moment values to the point
N“ = 500 MeV, Using the renormalization group (see ch.3 and

appendix B) we obtain:
et Iu' ~ ey o
L} 2= oMb, 3D, > 030, pexBooNe., o

Let us ﬁollect now ill our knowledge about the pion wave
function “\Qﬁ [\'51,}"4\: Wy kﬂ),g"ﬂ\}:
| Y
o 5‘13‘3\;’1‘. H..N= %

8 bl e mih,
Vg e = 0k,




sk a2 \Q#@pu\ x 0,39,
D Qe (3 )~ (4-31) ot Riad

(for the last point, see sect. 1.4). Besides, it is reasona-
ble to expect that the ground state (pion) wave function is

pogitive *:
o .
e) w'ﬂ ‘\-ifp}'\“\?'b

Strictly speaking, all this is insufficient,from mathema-

tical viewpoint, for a rcconstruction of the wave function.But W

?Tuﬁtuﬂ.this is sufficient, barring the patholngical cases, Let

us choose the agymptotic wave function kQuEtg\ igg ] as a
zeroth approximation, fig. 4.5. It is evident that its moment

values are too small:
{g b e R My,,=0.086,

and the realistic pion wave function \Qﬁ ‘\'ﬁ ]"‘lu\} is much wider.
In what way ;gkﬁ\ should be changed in order to increase
essentially the moment values <§1‘> and <§H> and to keep
the overall normalization (1:)== i , the threshold behaviour
~ (ﬁ ﬁlﬁ and the positiveness intact? The simplest poseible
behaviour of \Q Qﬁ H ) is shown at fig. 4.5. The most cha-
racteristic property of \Qr., \?’| }nﬁ) is the existence of the
maxima at 'H\* U end minimum at 320 . (Let us recall
in this connection that for the non-relativistic quarks the

wave function is : \Qm“qq, (H\ - %l\lﬂ s i.2. each quark

*) This property is due to analogy to non-relativistic quantum
mechanics, though the mode theorem is lacking, of course, in

the QCD.
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carries one half ol the whole momentum), This means that as a
Tule a Eur%er part of the pion momentum is carried by one
quark,

Based on these considerations, the folloving simple model

for the pion wave function is proposed:

. L5 % cio
R bﬂ"ﬂ\: T,L\i-“‘f\’{ o Ne=500MY (g a0y

The wave function (4,10) has two maxima at 3-: * 0.3 and
at these points = 85% of the pion momentum is carried by one
quark and = 15% by another one., The corresponding valuesa of

the moments of this function are ;
QPAR RN Cer Ll LIRS v 2 L PR

They agree with the values obtained above from the sum rules

(within the existing uncertainities) and exceed considerably

the corresponding values for the asymptotic wave function. It
is worth notlng that the point w «= 500 MeV is chosen in
(4.10} for deflniteneas alone. The same wave function

“ (Slﬁﬂ\='ﬁ%:Lifﬁkﬁ\ can be considered to be normalized,
for instance, at the points P\ =Mg or My =1 GeV equally
well, because small variations of the moment values <1 > and

{EH\?M with My  are smaller than the uncertalntles
with which they are determined from the sum rules.

Of course, the considerations described above cannot be
considered as @& strict derivation of the wave function (4.10).
We wish to stress however, that the sum rules give very strong
limitations (see the points "a" - "d" above) and unambiguously
exclude any convex wave function. The model weve function

(4.10) which fulfills the sum rules has every reason to repro-

11




duce correctly all the characteristic properties of the true
pion wave function, As will be shown in succeeding chaplers,
the cxperimental data on the pionic decay modes of heavy me-
sons unambiguously exclude convex wave functions which give
too small branching ratios, while the wave function (4.10)

fits the experimental data well enough.

4,3 The © -leson "ave Functions

-

There are two wave functions of the leading twist 2,

Ny T
\‘Q? \?_.\ and .\Qg \t,\r s for the ? = ?Fa and ?_LE ?m;i
mesons, respectively (see ch.2), and their moments are determi-

ned by the fﬂllowlng matrix elements: ikﬁ5
10N oyl dsbeul |, = %\,m&ae Y,

<J\E’L'.\}i u%b\ U““}\? H\s t\' \%%\ <?1 oy 27V,

iRy exgl i R ue R b (Engp-eg):

et EACT IR
{ dye ),
4 (4.13)

e e e fadia ' N R ¥ s e n < T
G ERY ) MO = (658 1)) <™y,
L\,mms \u(\ er—a; SR
Here %? = i? and '%E are the dimensional constants

which determine the values of the wave functions at the origin

S b
and are analogous to %i « The value of %? >~ 200 MeV is

12

known experimentally from the ?°-4 e*e™ decay.
Proceeding in similar way to the case ~f the pion, we

use below the sum rules to determine the wave fuc.i’nn moments

and propose the model wave functions which fulfill-the SuUm 1l=

les,

4.3.1., [The Wave Function of the gp ~leson

The following :tor ie considered:
eV T ﬂlaﬂ‘a\w=kzw\““wa
y = K\\\ &H\\EKQBB \\\ﬂ

(4.14)

H

The currents in (4.14) are obtained from those in
( L.iﬂ ) by the replacement of ﬁ{pKE‘* %p « It is clear
then that on.v the fig.. 4.3 contribution changes the sign,
the rest contr butions, figs. 4.1, 4.2, 4.4, are the same as

for the pion. Tlherefore, the sum rules have the form:
gy ¢ Gae 4 & Puari

v . Mg\ Sn \&

‘ < \"’ e M o | i ¥ 1

KE‘H\‘U\ DA AN N (ned)(ned) ?\ n

e q(m) CATME

= 7
- o i G LAWY (4.15)
- < Lo }@I“w“*ﬂ W

Using the fitting procedure described in a previous sec-

tion, one obtains:

%: = {34 MV $.¥ 45 Gy

{K o Nl -%::’2,_6 {_‘-,a\fl? (4,16)

13




The sume 1ule (4.15) at n=0 was first obtained and treated
inf1ed42Fs

Reacaling the moment values (4.16) to the point .V”' one ob=
tains:

b e .
{32, [p 2028, 4l o 94 e S0, .1%)
In comparison with the corresponding values for the pion:

2V L5 W
Sttt o %%ﬂ (1.49)
3 Mo

It is seen that ? 73 T'lu\ is noticeably narrower than \?‘EK‘-' rhb
but still wider than Wugk{) ,and this agrees with the general
qualitative considerations (see the sect.4.1).

fﬁé.uge now the pion wave function (4.10) and the ratios (4.18)
te obtain the ?L meson model wave function:

% G316\ = 5(&-3)(@&5@ =) L)

For this wave function:

- & g < v

S aﬁ’} Q?U:T\i A ; S- A‘)) 2IIJL"'Q‘? Kl”ﬂn_-.g 043

L & A \) u'._L‘B_F g 7 SL& " 'y 0.2 _0.551
R MR RN

and this agrees with (4.18).
The pion model wave function (4.10) and the ?L- meson one
(4.19) have both the form of a linear combination of two lowest

Gegenbauer polinomials:

\'?'mmh.t b( ;V‘\r‘ %K&-l‘l\i L+ ALM({L %)_l " Q-L‘L%)
50,
A = AL 409/ 2] bt

We see that it is sufficient to use this simplest form to des-
cribe the main characteristic properties of the wave fucntions,
This simple model form (and the corresponding form for the three-
particle wave functions) will be widely used below.

1A

The sum of the nonperturbative power corections in (4.15)has
the same sign at N>22 as the perturbation theory contribu-
tion and so tend to increase the moment values (in comparison
with <LE“N>R¢ )« But this effect is more mild here than for

the pion, because one term at r.h.s. (4.15) has negative

sign.
4.3,2, The wave function of the ?.L -meson,

Let us obtain the estimate for the dimensional constant
T

%? in (4.13) . Consider with this purpose the correlator

| WAL Ju) TS 1Y = (G- G4 )T e

The perturbation theory contribution is zero in the chiral
gymmetry limit Wu=W3d=0, and the whole answer ie nonzero
only due to spontaneous chiral symmetry breaking effects. The
diegram shown in fig. 4.6 gives the main contribution at

\D\ < IL‘\\ S ‘l-"q‘ %m‘ﬂﬂ—"' <a\uu+aid\g\,, \ {q{)
L&\E‘J}»mt\“'\*—{ \\mf&&\ (4.21)

As the spectral density falls off rapidly at large $ &

it seems reasonable to retain only ? -meson contribution in
hS?n Elkiﬁ :

i = v [ o TN o -

T ImTE) = (5, me)(F, JBLS- M) e a2

Therefore, one has in this approximation:

7 <0\ﬁu*a&\ﬁ\> g
Aig:“ g Jﬂ:?_O{}sz%?_ (4.23)
Yo Ms
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—— - .-l e — _H-
T™ME ~:\'$ e Jm :Lm'\"-\ \"L"I U‘ & Q@*Q Vird iy w-l. %4

We'td like to emphasize that the relation (4.23) obtained from
the nondiagonal correlator (4.20) determines not only the ab-
solute value of E\ s+ but its sign aa well (i.e., the sign re-

'\_v

lative to %? only due to the

). The fac* that V‘_ F U
spontaneous chiral symmetry breaking is evident beforchand, be-
cauge in the matrix element Ciu\tﬁﬁv¢ \?;3 which determi-
nes %? : the operator is nct chiral invariant.

We cann't estimate the accuracy of the result (4.23) but
the value for §? obtained below by more accurate method
agrees well with (4.23). The values for g? which are more
or less close to (4.23) have olso been obtained in ]4.3—4.5]
by different methods.

let us obtain now the sum rules for the moments of the

T
wave function \Q (3} « Consider Tor this purpose the correla=-
tor: “Wl ,ﬁ (n) ‘ﬁg} We2 _ :
\&m G T3 O N = 2@) " T4,
Nhﬂ m=t'~h\€r~ﬁ‘ﬂr\h"1?\“&m1 iy T

The suq rfles have the form: st (.h
{ i e 3 nt {E6D Ea_L}_E‘k“_ﬂ< 10U

3
. L i ’ 1_1.H . .
LT S 58w (-mesn) 80850 T
(4.25)

Let us point out some specific properties of the sum

rules (4.25).

a) There is the E> =megon contribution and so one should

check that not the © -meson ,but just the ? -meson satu-

Fl
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rates thye sum rules, Using the procedure described in sect. 4,1
one can convience himself that the sum rules (4,25) &re in=-
deed gensitive to the ? -meson contribution,

b) The contribution of the fig. 4.3 diagrem intc the sum ru-
lea (4.25) zquals zero, If the contributions with the
quantum numbers 17~ anéd 1'" are seperated out in the spec-
tral density, this is not the case,end the fig. 4.2 contritu-
tion gives the vacuum matrix elements of the type *<0\q;hu‘?'

""*&‘\ﬁ,\» . Such matrix elements, unlike the earlier

considered ones <0\§\£p\‘n&q{ ‘thgfu\hwki 0

nonfactoried parts (see, for instance, { 4,6 I ), and this

can have large

leads to large uncertainities in corresponding sum rulecg,

c) It is seen from (4.25) that the main power correction

T
~ QE,‘LUU\\) has at WN27Z the sign copposite to the pertur=-

bation theory contribution. Thie meane (see the sect. 4.1)
that the nonpertiurtbaetive intersction tends to diminish the ro-
le of those émnfiguratiﬂns in which the total momentum is de=
vived uncqually between the constituecnts. }{EHCE;Tone can ex=
pect that the wave functicn \-?;'\?7] Yt"iufhﬁj is narrower
than \Qgﬁkﬂﬁ The gquantitative analysis of the sum rules

(4.25) confirm¢this expectation,

The results of the fit are the following:

Py 05 Gev (4.26)
G A W SeziScevy <3ty £ 0,00,
)\ =05 e\
The velue cf %; from (4.26) agreec well with (4.22),
As it was expected, the wave Unﬂtlan. H@{ (3, ??? 0.5 Gav- )
ig narrower than \51"'-_.;; [1,\' '.,L<, 1> U JLJ_I{; (\{‘f }1;: Y Q,Qt]_

Ueing the model form (4.191} and {Q.EE], ohe obhtains:




(o, fo56a)= 25 (L)), <=0z, ¢gty-00ls.

(U.2%)

—#&,4; CONCLUSIONS

On the whole, it has been shown that using the method of
the QCD sunm rules one iz able to find both the dimensional
constants %1 ywhich characterize the values of the wave fun-
ctions at the origin, and the values of the few first wave fun-
ction moments. This information, being combined with some gene-
ral properties (the overall normalization, the behaviour at the
boundaries,etc.) allows one to reconstruct the main charescteri-
stic properties of the wave functions and to write the realis-
tic models for them,

The main qualitative result is that all the considered wa-
ve functions differe greatly in their properties both from the
nonrelativistic and asymptotic wave functions. They differ
greatly also from each other. This difference in their proper-
ties results from the different interaction with the nonpertur-
bative vacuum fielde im the channels with various quantum num-
bers. The nonperturbative interactions meke the wave functions
wider or narrower in comparison with their asymptotic form

q&g(ﬁ\ . The signs and magnitudes of these nonperturbative ef-
fects vary from chammel to channel and are, as a rule, suffici-
ently large.

=18

5. APPLICATIONS -

._Tha general method for finding the sasymptotic behaviour
of exclusive amplitudes has been described in chs. 1-3 and
the realistic h:irnnic wave functions have been found in ch.4
abaiu; Th&refﬁra;'wu are now reaﬂ? to dO the concrete calcu-
lation ef exclusive prnnaaé'ﬁruhnbilities.

Our mein assumption in this chapter is that we can rest-
rict nurﬂilvaa;.withubeiaonahla_lccuracy, Yo leading terms on-
ly and ta'néglect':'- power curfd&fiﬁﬁq'whhn &alcuiafing two=
ﬁlrticle decays af.chnrmnnium levels (higher twist proceasses
lnd preperties of power corrections are diacusaad in chs. 8,9).
Thn main difficultr is, uf course, due to a small C  -quark
nnﬂﬂ. b&c = 1.5 GeV, It aeems at the first gight that the
charmonium mass is large enough, M2 = 10 Geve. Enwuvar,
the thing is that the large light meson momenta divide into

the smaller quark mementa nnd these are the latter that deter-

- mine the 1ntarnnl momentum transfers and constituent virtullﬂhgs
(sect.3 5'}rur instance, the mean gluon virtuslity in fig. 5.13 is:

ﬁ_"?{i \_1,1 M" ' where M 18 the chnrmonium mass,
Y. and b P8 are the longitudinal momentum fractions
carried by twe light quarks. The ohnrinttrintin values of
¥y ond Yy  are determined by the form of the light meson
wave functien “?\.‘O wxz o W) - i surricientiy wi-
ae, then ' %i 9 <<d ana Q2 << M? .1 Q

. ia teo small, then the power corrections will be large and the

operator expansion ia:haalaaa.

. We show below in this chapter and in chs. 6, 9, 10 that
it is posaible to describe a large number of variqus chermoni-
um decays in an agreement with the experimental data, using
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the hadron wave functions Y (\)  fulfilling the QCD sum
rulesg. Exclusive decay prcbabilities are, as a rules, very sen-
sitive to the form of the wave functions H#Lﬂ}§ . For instan-

ce, the decay probebilities corresponding to the wide and nar-

i (] e
row wave functions (both normalized by the condition E ﬁﬁ“QLGT=
~%

v ) can differ by two orders of magnitude. Therefore, the
agreement with the experimental data of a large number of pre-

dlctions confirma the correctness of the whole approach.

S.1. Charmonium decays

The possibility to apply the general method of operator
expansions to the description of the heavy quarkonium exclusi-
ve decays hes been pointed out for the first time in the papers

Zete 243l
We use below the nonrelativistic heavy gquarkonium wave

functions (see the appendix C).

5.1.1. Xo(3415) > 'Y

The amplitude has the form, fig. 5.13 [2.3] :
Moo )} B g ’f ~o(/m)

4 M R . 5417
\ wg w -—i-—~ L @1‘111\11 5
; : i - L AR}

; j—i (i 4 A-3a =30 4 L-33%:

Here: Eﬁt is the B -quark mass, the constant &Em

determines the value of the X, - wave function at the origin

and is analogous to %i. %T . The decay probability is

e
\M&M*fﬁ\l. (5.2)

TF&
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According to the Appelquist-=Folitzer receipe, the total
hadronic width of . 8 is determined by fig. 5.7 diagram

and is equal to:

“}

icd : ek Lot I\; % e o
\Niﬂ \‘i"A\M‘M) -KL_&-“H\ LqL e W (5.3)
Therefore, the partial decey width has the form:
a ; 2
" \N@ *Txn\ - ‘_aL_\L,_ % T '| i
%\f K{'t’#“ﬁ E '_""-_-_-_'_.—-__\ \ .l ”H-:'," T _[ 5 \ : N
W$11{154¥¢& M
and the constant %1m disapPangg** in (5.4) d: 15 the

seffective coupling constant (see below).
We calculate the expreassion (5.4) =as follows !1.&&] « In
the formula (5.3) we take Js at the point:
ig=: i${\Mijq3 ~ 0.,24. This point corresponds tc the case
when each of the two gluons in fig, 5.7 carries one halfl of
the total energy. In formula (5.1) we take gg dg¢ at the pcinte

corresponding to the gluon virtualities (fig, 5.12): d;;ﬁi\ =

- 4 e e g 3 ! i A i - J"S‘_ o G T
a4 Ki““-}*‘ —‘ij' M;) end d\ﬂc\zm}: dﬂk :E et M) i
we extract them out of the integrals over Sk and Y2

replacing ﬂiﬁ_ by their characteristic velues %%ﬁ qi "
the latier being determined by the wave function Icgm*Therrfnra,
&ﬁ in (5.4) ia: &g:YcL ”Eﬁl uf\/i WFTqﬁi
In order to show to what extent the wave function form in-

fluences th= velue of the branching ratic (5.4), we take the

nerrow nonrelstivistic wave funmction: ‘Yxi3 )= 0\}) , which

*) Although the Avpelquist-Politzexr receipc for the fotal decey
widths works up to a factor = 1.5-2 1in some cases, we expect

that the accurscy will be better for the ratiocs like (3.4).




deacribes tha cese when each of the two quarks carries one _

" hal? of the pion momentum. For this wave function: dgml-ﬁfuﬁ
CLS‘.&Q‘ M#/(H\ Q 24 ig =0, ﬂ-\ and the integral

B P 4n (5. 1) is equll to unity, We have then frem (5.4)
( Me = 1.5 cev, o= 133 HeV):

br \-“ia—v"ﬁ"f\ ﬁ’l.&iﬁa % gk (5.5)

!nnlagnus nnlnulltinna with 'l'.hu umptntic wave function

"?aka\ “?mb\ (A7) @
%r\*ﬁo—‘»‘i m\ 355_0 oy 2 L-.-—E (5.6)
z.sl '

%‘fbn-ﬂ*‘@\ (e 9*@?3/u._,__ e

o The uxparinuntnl *ulua 1-

'rharnroru, the narrow pinn wnv- ﬁmctian evidently contra-
dicts the uxpe:'i.llant. | : il _

We use now the model wave ﬁmctiun (4.10) which fnlﬁ.lla
the QCD sum rules and 1s much wider: Y 3, Mex500 MeV)= “‘“(i—ﬂ}
This wave function has the maxima at the peints: Y~ +0.%.

S0 the characteristic gluon ﬂrtuﬂitian in fig. 5.13 are:

Wi*(‘j")(—hmt (5ooMev)’, T (453)( 4 )M goy?

and cerrespondingly: clg = { Q, LL'& 0, 2{}/0 ‘J_‘il =~ 0.236 ( J'.\.“'iUDME‘-h.

As for ‘the chgrmt-riatia value F for the V -meson
wave function normalization point, it is determined mainly by
the propagator with the smallest virtualty im fig. 5.13, i.e.

']-1 ~ 500 nv« M~ 3 GeV . So we can substitute into

(5.1) just the wave function at low normalization pn:l.nt ‘? ('l, !.“.
500 uﬂ) (4.10).

We have now:
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Sy =44Y | T, =il (5.8)

Evidently, the wider is the wave function \Qq [\2,\ the
larger is the value of the integral I&.;. + The experimental
data (5.7) show clearly that the wave function k?:: L‘gd\\wi.({ce\h
is much wider than Qﬂ;(ﬂ , and this eagree with the QCD sum
rule predictions.

Let us obtain now the prediction for the '\r -family. Be-
cause Mg* 4,75 GeV, M; =40 ME = 2R Geﬂi’g, all the
charesctetistic scales increase by a factor = 10, The effective

constant ¢ is now: alg"ilL 0.25, 0.15!0.19] =0,21, and the
A 2 e
wave function (4.10) ie after renormalization: \Qﬁ LZF&*‘ zglf:‘,(,wf:"j:

%u:f\f@}zf;rgjﬁﬁ) . As a result:

AT
% k 5 > hhadr)

5.1.2. Y, (3555}~ 3%
The expression for the decay amplitude has in this case
the form [1444; 214{

S i B T

2
",I.
Nkﬁ.-ﬂ\ ‘E\ ox Ve \Q{m{l iﬁi LJ_% %HL%\ 7 i
- EimageT 5
\N{ik’j.‘?x:“{‘ hli\ ,%.11\ T %T‘ ki?_-‘ﬁﬁ*i :\Tlg%j% %ﬂ-ljlll (5.10)

e S n.\gﬂ k?,i\g&h\? hETA R \\1_}_ ‘ri-ﬁa;l (5.11)
FILT!

degn 7
e A R R A £33,

Proceeding as in a previous case, we hnva,fi.'i"l./:

)= ) s brimsw)=167% T, 4

e




2 R ()= s )= = (4-22):
PrigesVE Y1y X ook

c)

e el ils ; _wI:-‘_
R QT30

%T L\‘i::, """'ﬁdk'ﬂh\ = G.Zl{% : 11'1: ii (5.12)
The experimental value is /2.6_,’ :
By 3y -‘E*TTI\ = k 0,20+ 0.41)/, | (5.13)

Therefore, this example also shows that the pion wave function
at low normalization point is much wider than \?u_e_, (‘rﬂ « The
prediction for the /Y ~family 1is:

e aal P -
AR S AR/

5.1.3  Y(3400) > 1" ¥ /ly/

There is a number of contributions into the decay \k%ﬁ*ﬂr-_

see figs 5.2 - 5.4, The main contribution is due to the pho-
ton exchange, fig. 5.2, and it can, evidently,be expressed
through the pion electromagnetic form factor E;(Ql\ . The con-
tril:utiun of fig. 5.3a includes the additional suppression

ey EL:.';— g due to a loop, as compared with fig. 5.2. The
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contribution of fig. 5.3b, is zero in the exact isotopic sym-
metry limit, The nonzero contributien of this disgram is due

* i
te Wya=+ My, My =My > 3MeV or due to the antisymmetric

A=Y
in % part of the pion wave function Ut}“ (3\ , which is
nenzéro due to $U KZ‘\ -symmetry breaking effects, In compari-

son with fig. 5.3a contribution, fig. 5.3b 1includes the addi-
8

3% !

tional factor "‘(::i 41,5) » where: L:TJ,'EHJ‘:H— <‘§\>:<}L&'iu§t.

*) This contribution is negligible,
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L

A o - .
It is shown in ch.6 that: {Xg-R), = rat Q:Kﬂ ’:.(@\UH-H&N\//
ey i — . -3 =4
gu\umdé\\aﬂrk-m- Therefore: (fig. 5.3b)/(fig. 5.3a) X 0.2 and
so the whole contribution of the fig. 5.3 diagrams is < 10%
of that of fig. 5.2. As for the fig. 5.4 contribution, 1t in-
cludes the -particle pion wave function and is power sup-
pressed ( - i/Mi ) in comparison with fig. 5.2, Using the
& =particle pion wave function "'?w (see ch,9 ), one can
o | =1 . o o] e
obtain the estimate ( Y. >Ul-40 GaN™ Imarwg)= 44 Mev )
=
(B0 (fan b
___1__———— i 0 T 1[’1".“#'\"1";'5,5; \ - 1 . -
- T \ \{ wﬂl . T A _lLU :
k\iﬁ,l.(,&.i.jﬁ.\ \ Il",r

Therefore, our conclusion is that the decay amplitude

T

\lf—b;'ft*“&“ is determined by the fig. 5.2 contribution
(and so - by the pion form factor FE )} with the accuracy
~ ds/x = 407,

We can now write the decay probability in the form:

(5.14)

A EA) EEL T T R g

Eo A
One has for 5ER[\M"““}' :

A Saate g Lhshe At gt { Be/ih e
a) \QT&\E\:%G) s‘.is.:nL',L = 5 My )= ’1‘?‘\ I U-Tl‘-., Rowr s
- My B (M%) 2 0,05 GeN™
3

i ! ; § {5,16}




The experimental value of _Eﬁ L‘M;} cbtained from ‘E-»'EJ'IE‘
decay is ’2.6} : BT({H*E+E_\=(Lit{).ﬁ\iﬁ‘u

i -L . 3 n 2
o B Bl T e\
\ My E;\Mv)\ % U'ﬂ‘ +0.3) Ge
Therefore, the narrow pion wave function contradicts this
experiment alSﬂ.

s, st
We have for (-1 T decay instead of (5.16¢C):

B My =028 GeYT T =gt
; -0
Be, (X =T177) = 240

It is seen that in the T -region the two-particle decay

widthS are very small.
= ey 5
5e 1.4 :‘Ln,\f —“’?L?L; X;"’ ?LEL-_‘?L ?.L_

Let us remind that according to the selection rules (see ch.2)

Xo and \'f decay intc the longitudinelly polarized Ef?hﬂ

mesons only, while ‘Iz decays into the fransversely polari-
zed ?L -mesons &8 well. Evidently, the kinematics for the de-
cays into ‘3: ?: coincides with that into ‘ﬁtﬁ_ -decays and
so, the formulae (5.4), (5.10) and (5.14) can be used with the
replacement 4§ — %o, 9r@)> 9y (R) . Using the P -
meson wave function (4.19 ) which fulfills the sum rules, we
have ( “? = 200 MeV) f‘-m{: .
BY l\'};-‘»? ? ) UT:\P 11;&?\ v 05 = %TUL"’?L?L)

i dmilig
TRESEY Y0 Tale Bt (B, 217 )5 18)
[ s Y A
-L“E Sl *&il IL;‘;L >4 (5.19)
T:‘E lkq't\ %1. A%+

We predict therefore:

B Y38 CRE2Y) e 5

(5.20)
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E
}

By klc*gﬁ ?-\: U'EUKU :

(5.21)
r - "
By (X8 f‘-}: Y (5.22)
Let us emphasize that if the Y - and ?h -meson wave func-

t. ons '\?{“ b\ and "iq \3)  were much alike with each
ot. sr, one would have instead of (5.18): ©Y U'[-u"""? ? j/

By i\'ic"’ﬁ*{ \-‘k;?/.ﬂﬂ“\:ﬁ , and this contradicts the experi-
ment {IE.G{ *. Really, the QCD sum rules predict that the ?h -
meson wave function is narrower than the pion one and this

even overcompensates the factor U? %\ =5,
The ratio DY (.- ?.;.?;.)/ﬁf(ll-sf ! 3 has the

tem, {2utache Lo il ) i\ir-\q (11\
Br (%o T'Y) T M\ Ty, Jis.23)

Sk -SL hﬁ?guﬂ gL &5 ;Ul i
el G el e T
Using the wave function of the ?J- -meson \Q?‘\'ﬂ (4.27),

which fulfills the sum rules, one has from (5.2_3} [4.1, 4.2[
(.E«;- = 200 MeV) :
+ -
B (L >890 )
-—_—
Br (a1 )
Let us point in commecticp with (5.23) U‘that the coeffi-
T
cient in this ratio is very large: ﬂ_?_,\a'? /%g v 60 . There-

=& (5.24)

*) By K\-{-G""?qr?_j is not measured up te now, but it is known
that B""ki?"?vﬁ“-ﬁ-ﬁ\: U—."fiﬁﬁ)% IE.E f . Begides, it is
expected that the ?n ?G -mode does not dominate the S'u'"'ﬁﬁ# -
state {2.5 ’ .
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fore, if the ?L -megon and T -wave functions were much
alike with each other, than I ~ lx; end one would have -

Br (X2>99)/80 (ManTW)% 60 =, toe. BF(X2>99)240%,
Although the decay ( ¥, = § ¥ ) is not measured up to
fow, éuch e large branching ratio is, evidently, umnrealistic.
Therefore, this example shows unambiguously that the ‘?_-._-maaun
wave function "Q; \"ﬂ is much more narrow than UP,: Kﬁ\ ;
and thies agrees with the sum rule predictions.

Using the relation (5.2%2), we have for the total branch-

ing ratio ’4 2 :
%T kié‘*? ?‘* +?L?1\ AL - &y kﬂig%“?+?-\’3c'*37n§5'z5}
Q¢ \X, > . B \

5«1:5. Discuasion

Let us discuss here in some detail the questions cennected
with the accuracy of the formulae obtained above in this secti-
on.

a) We use the nonrelativistic wave functions for the heavy
quarkonium (see the appendix C) end neglect the PJ:Lmling ener-
gy in comparison with the heavy quark mass Mc . Although
the neglected terms are the power corrections < In/ﬁc , their
effect can be noticeable. For instence, the difference betwe-
en the mass qu and 'Z_EV'-I; is a power corection, but when
Zﬂg in (5.4) is replaced ’Bg ng , the answer is
changed by a factor (Zﬁﬁ/mihq o~ {_'J_B « When calculating
explicitly the Yo>%V _decay amplitude, it is seen that

£ ¢ o
*) The contribution of the term Eu i-}hf 1-3,.1, in square
brackets in I:-L'-,_ (5.11) 1is much smaller than the contribu-

tion of unity.

A

there appear both the ucurrant“ C -quark mass M: = 1.5 GeV
and the quarkonium mass Mﬁ/i = 1.7 GeV,and that the effective
mass ﬁf:. entering the answer (5.4) is in the region 1.25
Gev< Mc < 1.7 GeV. Our choice ﬁc_ >~ 1.5 GeV, we ex-
pect, accountimainly for these effects.

b) Our choice of I;; is based on the clear physical reaso-
ning. Some amall uncertainty arises, however, when we replace

\"'zii .5-_11-‘:}11) by d;Km—h Lj; M) . Note

in connection with this, that the integrals (5.1) and (5.11)
have been calculated also with o4 k—l‘ L‘I"M ) ﬂ-ﬁ%ﬁ L%Mlj
as an integrand factor. The results coincide (with the accura-
cy < 10%) with those given in (5.8), (5.12).

¢) Because the moment values of the wave functions are deter-
mined from the QCD sum rules with uncertainties = (15- 20%),
the form of the model wave functions can be variedwithin these
limits. This can give the uncertain-ty abnutmfa.ntnr o 2 -4in
branching ratios like (5.4), (5.10) (there is also the uncer-
tain-ty in the wave function mean normalization point F, but
it gives much smaller uncertain-ty).

d) It is argued in chs. 8,9 that the power corrections consti-
tute < 30% in the amplitudes at an oversll scale Q2=10 Ge‘c’E,
i.e, there are uncertain-ties about a factor = (1.5-2) in
the ratios like (5.4), {5.10}.

On the whole, we can calculate st present the ratios like
(5.4),(5,40) with uncertain:ties within a factor =~ 2. It
should be stressed that when wide wave functions are replaced
by narrow ones, the results for such ratios change by a

factor = 102.
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5.2 Gluon Effects in Charmed Meson Wesk Decays [1.44]

We describe in this 4eel, the application of the gene-
ral methods described above to the calculation of the two-par-
ticle decay widths of charmed ng (1870) and E+ (2020)-mescns.
It seems that the experimental data avallable at present JiE.EI
canmnot be explained within the framework of the stendard sche-
me [5.2, 5.3/ .
bution gives fig. 5.5 diagram which describes the direct decay

This scheme assumes that the leading contri-

of 'I:he_e C =quark, Indeed, the contribution of the annihileti-
on disgram, fig. 5.6 , includes the additional suppression
~ (Me/My) = a07h

There were a number of suggestions to explain the situa-
tion /5.4, 5.5! « The supposition about the strengthening
of the annihilation contribution due to one or few gluons emis-
sion, fig. 5.7, is the most fruitful, from our viewpoint. The
corresponding eatimates /5.4, 5.'?’ show that the contributi-
on of the fig. 5.7 diegram into the total Ba -meson decay ra-
te may be not small. The exact calculation of fig. 5.7 contri-
bution is not possible at present, however, because the large
distance interaction plays an essential role here even in the
limit Me>o , and one needs to know the W -quark wave
function inside I) -meson, which is unknown. The two-parti-
cle exclusive decays are prefereable in this respect, because
only fig. 5.8 diagram give the contribution at large Mc_ in
this case. The large distance interaction enters here through
the N and K _meson wave functions only, and therefore we
can reliably esatimate these contributions. .

It is seen that fig. 5.8 diagram for the 'DQJ*KT'E decay
is like t0 fig, 5.13 disgrem for X>WT decay, the main dif-
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farancu is thlt one hard gluon is raplm‘:ed by \N' -boson.

"Tharafure, the method uasd for the duacriptien of charmonium

. decays can. be _appliad. haru as wall-._

ii'_e. give below the estimate which shows that the annihila-
tion contributions, fig. 5.8 , play an essential role ( =100%)

g i 2 : ; +
in the two-particle decays of . D° and £ ~ “mesons. Taking

e L e

L+
30% of all ‘the D -meson daca.ra, cne can expec‘l:

accmmt that ‘the two-particle. duca.rs (KF XT
t:onatitutu

that ‘the ‘tuta-.l daca,:r rataa uf D and D -mesons, differ

- noticeably. Indeed, the available a:parimun‘l;l.l date are [5.8(:

v (M)t () = {zzi%%\

Lnt ua present now some utina.'hes. ﬂomidar the decay
Py KRR, m direct contribution, fig. 5.5, gives the de-

cay’ mplitﬁdﬁ. : Mﬁwuﬁ G%.F M'b s Where G is thn Fermi
- constant, ME is the

D -meson mass. The naive estimate

of the annihilation conﬁ:_vibutiun,_‘ £ig. 5.8, 1s: Moy G’h%ah Co,

where the constant '-lg'ﬁ = (160-175) MeV (see ch. T) characteri-
zqﬁ the value of the D -meson wave function at the origin
and is analogous with &ﬁ"-i 133 MeV and %K >~ 165 MeV, and
o ™ OUJ 15 & dimensionless constant. Theraforu, nccarding
to thie -atinl:tu,. Mﬂ..h/Mi.,r iz (%T* “/M'p)co iU'CE}”LU and it
seems that the snnihilation comtribution is negligible. Let us
remind in connection with thi-. that the analegous estimate:
QJT (iw"’-ﬁ 'ﬁ} \g‘l’/Mx) =40 L"Y (experimentally = 1%),
underestimates the smplitude by two orders. The main loophole
of such naive estimates is clear (see sect. 5.1). It is assu-

med implicitly that the hadremic wave function V() 1s like

the nonrelativistic wave function “_"tﬁ’[ﬂ and so the correspon-
ding integrals of the wave functionms I(\?\ are NGU). This
is net the case, really, and for imnstance, the integral
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T,.(%) multiplying the (Xo=>TT ) amplitude is: 1, ={H .
The same is true for the TD-*KT‘.’ decay. The T ol arid s Wors
meson wave functions are wide enough and the corresponding
integrals of them are very lerge. As a result, the naive esti-
mate Cu"OL_Q is wrong and (v 10* rsan/l:‘\_

Therefore, both the direct and annihilation contributions
are of importance in charmed meson decays and interfere with
each other. It should be stressed in comnection with this that
thelir relative signs can be determined unambiguously for each
Ziven decay mode., We show below that in all cases for which
the experimental date are avallable this interference works

in the right direction .

Bl MHrect Contributions

Let us consider first the decays of D -messn into two
peeudoscalar meson, D>pP « The weak Hamiltor!an has the
form j 5.9 |

=5 6,8 \(TKL*"@C-U\&AL*\@&' ¥Qy 4 \&v\m&\& kaﬁme‘(‘,l

Lo et 048 8in0, 4'= $easd-dding, Coarle, 0 (5:26)

§ de( Me . %
= 18, ¢ =082,

¢ = Cix{Ah,

S BT
¢ 5 2~-038

We uge the factorization of met=ix elements when calculating

the direct contributions (this is like the approach used in

kY il -+
_{5_10{ ). As a result, the D > K°T  decay amplitude has the

o Mc-‘?m the annihilation contributions die-off, of couy-

se, but at Me = 4.5 CeV “hey are still important. For

the % -quark the annihilaticn contributions into the amplitu-
des sre < 10% of the direct oneas.
32

NA=i00M/,

K

form:

Mtﬁ*‘&“’ﬁ\‘ -LMy {“1‘“ 5[(?03%

G:"K?J\E)g?t\ﬁm& \5 (Raafy)y + §

Below in this section we neglect the

+(carke )xg \k

(5.27)
(8- )y

U ‘\1“\) -gymnmetry break-
ing effects. Then:

Mkbﬂﬂi\"h %NM ‘YJ@‘J 3@*3 ~ (5.28)

The dimensionless form factor %.IL-L{}\ is unity in the exact
$TJ\‘~«L\ -symmetry limit. One should expect, therefore, that

it can be much smaller really, Eecause the S-U{Lh -smetw is
badl: broken. Using the experimental data iE E-I : By LD"PK" H"‘*
> 2% and the life time T(Ej\ kb“@‘\ AQ e sec, one has from
(5.28):

‘YSA“\ S 35 = v 3 (5.29)

5.2.2 Annihilation Contributions

The corresponding dimgrem is shown in fig. 5.8 (plus
three analogous diasgrems, fig. 5.8 diagram gives the domin-
ant contribution) and it can be calculated by standerd methods.
Let us point only that the virtualities of the quark and glu-
on propagators in fig., 5.8 are ~ OU"L:ZS at large M; and
we neglect the fnitial \L -quark momentum in the ]) -meson
rest frame in comparison with Mg « AS & result:

M&h“kbﬂ+1{'t{+\=~i,%tm§“% El’ﬁclg,% % REQ _T_I,

Lo Jl’u‘%mf\i*m ) (5.30)
Beats -&i CER L Sx L-Agie A
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n A
. Subsittuting the pion wave fumction \QT ('ﬂ (4.10) into
T, and I, we have: 1, = 2.5, while the integral I,
is logarithmicelly divergent. With logarithmic accuracy:

LT way
=80T )L (g h0), T en0ms

i ek L A
Let us compare also L and Lx, (5.1):

Sl 6o (el 4
As g"* A-3i S—i Ly i"-ﬁ?\:

T hgi LM SL a0 b)) L33
D i 1 g 2
ra T e 1-3 -3

It is seen that I-;, is certainly larger than 1  when the
wave function is wide,and the above estimate of 1, is rea-

=i

~1.5-2)T ~20-25.

sonable, from our viewpoint.

Teking expiaaaiona (5.28), (5.3C) as the characteristic
-values of the direct and anmihilation contributinﬁa, we have
for their ratio ( &}":%K - 165 MeV, see c.h..'i"; &i_'! 0.3,
see (5.29); d¢ =0.4, Ly 20-25):

?... ?:::u ; %];'E:l_ Sr:%m
ir M3 419
On the whole, we think ".'.h-t we have given strong &nough argu-
memts that ?‘:’-'1. (within a factor ~2 ). This conclusion is
one of the main results of this section.
Taking account mew in the standerd way ef the finsl state

11:"]-%“!--{} > : (5.31)

intermtian' we have (all numbers below are given for ?2-’.‘:. ):

*) The X~ -geattering pm.-i:ﬁg,_ md'sajg with isospins
T='2 and T=*2 are known in the D -meson region |5.11,
5.12[ and are: '54,_2 90° ’ E:;‘,"—"'?’ﬁu{thdra is the scalar reso-
nance K(1900) im the vicimity of the ) -meson).
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L ('g)“_,.'i:'“n“) £ 0.5
' =0 e
T (’i}"—r\fh‘lt*) 3 { 0.3

- & R’D{-—v X* 'T'-.'Jr\
£ w) D0 r)

(t L {5-32}
= 0.42 {(o.‘&tm) —,f--\
P4,

(if T}*/rt'-bn =22 , them [ {]_Lgt[}.ﬂg})

where the experimental numbers f 2.6{ are givean in parenthe-
ses. The fact that the final state interaction can play the
essential rele in these decay chanmnels has been peinted out
earlier ! 5. 5af However, it seems impessible to obtain simml-
taneously U(“T )/U( i e and Qk"”ﬁ )/(t“t +X 1{*54“1
by the phase choice if the ammikilation smplitude Mamn=0 ,
(Besides, at Muwm=0 the raties are very semsitive to the
precise phase values, while in our case the sensitivity is
small ).

Let us peint alse that the decay mede Dn—‘!--ﬁ bll is enhan-
ced significantly due te the ammihilatien contribution. We ox-
pect: QD‘-—‘: f“h")/(‘b‘-ﬁr K—I*) -0

The decays 'D > BV inte one plmdilcnllr and one vec-
tor mesons (¥, K ¥ ) can be comsidered 1n"complete uulng.

The vector meson has zere helicity im these decays, H-JEF (ﬂ-—-Pﬁ,

and se the kinematics of the ..D'*'BB anda DRV decays .
become¢ identical. It seems that the fimal state interactien
is of no importance there, because there is ne psewdoscalar
resonance in this region. One obtl.inl, in particular:

s Fo 1) Q% £-v*)
(@"’ = =0 Lo qim G ?)-a.ﬂa,k&tuﬂs-sn
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=R Is
(PGt Wepr)  (5.33)

0 Tn "b&-_\?fn +
Q):} K_? ) :m.i[a.nﬂ%_ﬁ \ )
@ > X e

5.2.3 Cabibbo=-Suppressed Decays of D  _Mesons

Let us recell that in this case ( ~ SinB cog 6 ) the
ennihilation contributions are present net only in D’ -decays
but in DT decays also. Consider here w decays because
the final stete interaction is of no importance here, The di-
rect and annihilation contributions have the same ~igns in

'D*‘-‘*:» -K_f"”lfqr decay and the annihilation contr® oution is ze-
ro in D{--’}T‘I*’In decny*. One obteins:
Q)*-‘a-%_“K*) - (D+4 E“K*'\ = 1_' 1 'l
m -":"».fg, ("D*-?Eu'ﬁ*) =19 EE"_":HL {9.15tﬁ.i5 (5.34)

Note also thet we do not expect that the QU(\}‘) -aymmetry
breeking effects lead to a significant invrease of the ratio
(.D-‘?-KK\/(D*‘HTW) . Indeed, the symmetry breaking not
only incresses %’1 - %’f_ Gy 2 %-u; ; but changes simulta-
neaus.ly the wave function shape, \Q-: bﬁ‘# \Q: Lq s L% 18
sk e U (71\ is narrower them Uy (3) . end
this tends to compensate the effect due to %v\\" gﬁ; (see ch.6

for details). We expect therefore that the enhancement of
*.

D>KX , D> XX decays in comparison with those of DT,

"D-::.?TT is meainly due to annihilation contributions.

*) There is the selection rule hI'-‘ i/?- for annihilation
)
contributions, and Ty state has 1=2 .

Se2:4 Ft =Meson Decays

The annihilation contributions in E+ -meson decays are
proportional to the coefficient C, end so are = 3.5 times
smaller compared with the effects due to ('.1 in D’ -decays
(see (5.26), (, 1is zero in the absence of QCD logarithmic
corrections). We have, in particular, ( %s“"’%w = 165 MeV, see
ch.T):

L (‘F*-v T[{'H_\ =1 E(fﬁf‘ﬂ'*\_

(5.35)

It is clear that it is of great interest to measure those
decay modes which are highly suppressed in the absence of the
snnihilation contributions. These are: D —» E" LL: K H'[,I’Eﬂh,
Y, T, P e, T, ek

On the whole, it has been argued abowe in this section that
the annihilation contributions play an essential role in char-
med meson exclusive decays. The account of these contributions
leads in many cases to predictions which differ greatly from
those of the standard scheme and the results are in all cases

in better agreement with the experimental da‘ta*.

5.3 The Cyoss~Sectiong " \{u\é-‘b Two Megons"

The role of investigations of the processes “‘“—3 hadrons"
is at present increasing. Interesting experimentel information
was obtained in the last years at the existing accelerators at
DESY and SLAC {5.13J « New prospects will be opened by LEP
end by linear electron-positron colliders such as VLEFP at
Novosibirsk ( \$ = (100-300) GeV) and SIC at Stanford ( {F =
(50-70) GeV) f5.14, .5.151 . It has been shown in ‘5.1E‘that

*) Further details can be found in f1.44f .
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the linear high-energy €Y ¢~ beams can be converted for these
colliders inte the %K beams without considersble losses in
the energy and the 1mn:l.nuify.

It i clear that the processes with the cross sections
which do not decresse with an energy are ¢f importance at high
energies. These are the processes with the vacuum guantum num-
bers in the t -channel. From theoretical peint of view,the
processes " ‘(X*“" MaMy are the simplest nontrivial exam-
.plu of the cross-sections which can be calculated at present.

There ars two types of contributions intal the “(K*Hir’la "
smplitudes: a) the quark exchanges, fig. 5.9, fS.‘!?I ; blthe
gluon exchanges, fig. 5.10, {5.1&, 5.19/ « It is well kmeown
that the two-particle exchange in the 1 -chammel glvea at
high energies the contribution into the amplitude ~ 'Sﬁﬂjri,
where "31.,2 are the particle epins. Therefore, the quark ex-
change contributions, fig. 5.9, give the cross-section decrea-
ging with the energy, &g/d{., i f"-i s, while those at fig. 5.10
give dg/(“: ai éﬂ and dominate at high energiesa. The virtua-
lities of all the propagators at figs, 5.9 and 5.10 are ~ O(t),
and so at H‘.l‘?'? J"‘i the hard kernel of the amplitude can be
calculated By using the perturbation theory, while the hadron
formatien is described im the usual way with the help of had-
:run:l.c wave functions.
| Let us point some characteristic features of the two ascat-
tering mechanisms, fig. 5.9 and fig. 5.10. .
1. Any meson pair can be produced through the quark exchange
wecheniam, t1g. 5.9: W N, o b ¢ 01 90 etc., but

? \p ) E "P} kﬂ'f'.i'_ The scattering amplitudes in terms of meson wa-
ve functions have been calculated in !5.1?I and have the form:

-~ 38

MLqu’Eﬂ U\ﬂt S g&gl\‘? L9 £ h\%bﬁi t¢§9 (5.36)

where Q is the scattering angle, Q;Lﬂ ere the meson

|... :

wave functions, &'1&5151,“}%‘ @) ofe the known functionsnonsin-
gular at \L‘,Dé.f:“l\% i , the explicit form of which can be
found in [5 1']"’/f The dependence of the scattering amplitude
(5.36) on c0$¢® through ‘E‘QSL 'ﬁlitﬂiej gives, in prin-
ciple, the possibility to ohtain ar]é.nfarma‘tinn about the pro-
perties of the wave functions \Q‘&ﬂ , by measuring the
cross section angular dependence. However, the dependence of
the integral in (5.36) omn e0$ ® ig smooth and so a high ac-
curacy of measurements in a wide region in tﬁ$@' is requi-
red really to obtain a reliable information about the wave
function properties. Moreover, the absolute values of the
cross gections are very small in this case and it seems it

will be very difficult to realize this program.

2. The neutral ( -o0dd mesons can only be produced through
the two-gluon exchange mechanism, fig. 5.10: Q" ¢° » E:-“ul ' 209
g“! , etc. The cross sections of these processes have been
calculated in f5.1a[ « Let us present here some characteristic
numbers for the process " XX"} ?ufn ",

The helicity amplitudes (two photon c.m.s., + show the

photon helicities, g ~-mesons hmre Zero heliuitiea) are:
Sy i) é 4
+4 - * ) g al
M™7-M =M M % QLM)U{W (5.37)
1
> 5
At é"?‘)l}Cl}" M : 04 u.')C é‘-‘lSG«Nl

&Gt\é‘é—‘r?"f‘) i e q&"l 'JP (5.38)
E‘&Eéﬁ}d ~ 1207 ol 3 \IJLIl 15, ot é:i{}“‘ Ga\"i

35




Loy |tl=2 cev’, ‘L,:cl;@[q\zu,zfsj fe=200MeV,

s(guet) Uﬂﬁ\ it S = 0.45wmbn ot |halb26es
st [ £ (Ge))

(5.39)

The total cross-section for the light hadron production, fig.
5.12, is [5.2{31 :

&Shﬂt ? f; L6y 2 H:‘\
Te- T x\wi W R
where

?{11(\ S =04 CeV' 1¢ the unkraved cul off. At \tn;nliiﬁt\’l,

1

a'Lg--U'B

) &%(&E“‘*\ ~ i nln, Eﬁgmﬂ =W,

u'lf. %Huh S-‘G“t
The two-gluon contributions into 0y 00 ama §\.

cross sections are shown in fig. 5.11a ( and denoted as (\5): ?:31%1
end (?f.“ﬂ- ). Also shown in fig. 5.11a and fig. 5.11b are
other two meson production cross-sections which are due to the
quark exchange mechanism (this contribution into ?E ?3 is
denoted as (?: ?sz
using the formulae for the cross sections (?u \1.{; (? ‘Q)z%g
from {5.18[ end for other cruss sections from {5 17| amd the

g ®, ana §i -wave runctions (4.10), (4.19 ) and (4.27).
It may be seen from figs. 5.11 that the two gluon contributions

) A1l curves have been obtained Ln/ﬁ'dﬁ/

exceed considerably the two quark ones at small angles.
Let us point also the following. The above described con-

tributions, figd 5.9,510correspond to the hard "point-like part"
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of the photon. There are also contributions due to the soft
"hadron-like part" of the photon, which are described by the

vector dominance model (VDM). In the VDM framework:

T e et (ppar'e?).

g
However, at large \‘E\‘?’) ]’1 :

ds(99>99)
T

-’L/JCE’ - dimensional counting

i /tg - Landshoff pinch

$of contribution 2

while[ds "\(K'*’? ?)/Au H?“ ‘ot ia/ﬁli. Therefore, the VDM cont-
ributions can be neglected at sufficlently large H:l « They
may be noticeable, however, at intermediate valuea of \'H
Unfortunately, the cross section ?QE’G- 0" at iw M* 4
not known at present.

On the whole, the hard parts of various cross sections
" %X = two meson" can at present be calculated reliable
anough*. Their properties depend essentizlly both on the spe-
cific features of the QCD perturbation iheory and on the meson

wave function properties.

5.4 The decay "*&:'L'B!«..DD)-?"HEF%

Let us define the decay amplitude as followz:

Qe glt@b=ile-e-e)Im,
T = Cune bt BYs

*) See also f5.21[ , Where the cross section KK-* PP haa

-
-

been considered.
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where %g and “E.} are the photon and \E -meson polariza-
tion vectors. The contribution of the fig. 5.14 diagram with

the phcton exchange has the form: & a E"‘}. L
40 Mgy OB
eMy = EOL“\ h%‘- I Si_—{\q“ L},M} LLT{5.4?;

The ch&mteriatic normalization point F of the pion
wave function is determined here by the virtuality of the
quark propagator at fig. 5.14: Fﬂi Ur—# ME{E.“G {5 Mi”iEGﬂi
Renormelizing the wave function \Q'ﬁ ( e Mo =0.5 GeV) (4.40) to
this point, Qg b = L 5 beV \ U_- 1}(0 Tﬁ-lf + 0, ﬂhs.{u)
one has: _1:1_"5 %

The estimate shows that the total contribution of the
two-loop diagrams, fig. 5.15, which describe the small distan-
ce contributions, is amall*. There are, however, the contribu-
tions like those shown in fig. 5.16. They correspond to such
a region in the loop integrals for fig. 5.15 diagram, where
the gquark emitting a photon has a small virtuslity. Confining
ourselves by the ?D -meson contribution, we come, evidently,
to the VDM:

T () S | (D= -0 TE_:{?\S?‘ {8 mﬁ"(ﬂ\ $|¥la),

(5.42)

<%§k«m~m\ SVE L5(Q-9-7) TN,

|
If: e&@‘h?\ ?:Lu'-’? 59

*) This two-loop contribution doesn't contain any large loga-
i
rithm ~ Pjn M‘*’/JM"" » because the corresponding one loop and

the Born diegrams are equal ZEXro.
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Therefore, the total decay asmplitude M, has the form:
N i
Mo = E( My M?{iM?& ; (5.43)

The amplitude My of the ¥ ?T‘: decay is calculated
in sect. 9.1 (see (9.5) and below) and the relative sign of
M, and MY  is determined unembiguously: LM"'/Mi)‘:C'*
Therefore, the photon exchange and the VDM contributions add

to each other in (5.43).
e Y »>e'e daca:f width is:

-‘?EE-
[ly-¢ \ m::: Ur;? ) %T&\h u.\ /{2-'3(.(5.44}
Using (5.41) with I =22 , we can now represent
By Uﬂ el @/(\lf-a EE-} in the form:
by Br (43" \ lel & —1\?‘
%T( b e, EE\—\ pr(¥>ee) M?\%‘, i) =
‘_L[ g_‘ \% |.!_ (5. 45}
0Y4°% elXy 2 i :
t 115%\ M?ELO«—L\ 10 -(L'.Hi u\iﬁ 5310

The amplitude M:& is calculated in sect. 9.1 but in order %o
obtain more accuru.te number we substituted into (5.45) the
experimental value of By (‘lf“?? n ) {E 6 ! We have finally
from (5.45), (5.44):

Kw VS

Vs all (5.46)

The experimental val-e is f5.22/1

-5
B‘Ktﬁ\‘ (26xi4r08)40

80 that the agreement is good.
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Let us emphaédize that the inferference of the two contri-
butions in (5.45) is of crucial importance and the theory
predicts both the magnitudes of these contributions and their
relative sign. The opposite relative sign contradicts the ex-
priement.

5.5 CONCLUSIONS

It hes been shown abnve in this chapter that it is possi-
ble ‘o obtain & large number of predict’..:c for variocus exclu-
give procssses - *n= sirong, electromagnetic and weak decays
of heavy mesonj, the form factors, etc.,in agreement with the
available experimentel data. Besides, it was demonstreted that
both the nonrelativistic and the asymptotic forms of meson
wave functions contradict the experiment, while the wave func-
tions obtained with the help of the QCD sum rules lead to an
agreement with the expariﬁent. We want to emphasize once more
that the absolute values of the exclusive process probabiliti-
es are, as a rule, very sensitive to the precise form of had-
ronic wave functions. Varying the form of the wave functions
conglderably, but keeping the normalization intact,giigwibhzil
we can get the probabilities changing within tw;dhrdurs of &
magni tude.

The sum rules predict that some wave functions (k? kﬁ) )
are narrower while the other ones L‘QF Uﬁ ) are much wider
in comparison with the asymptotic wave function and this-agrees
with the experiment, while the opposite case clearly contra-
dicts the experiment. - |

The large number of confirmed predictions can hardly be a
mere coincidence, but shows that the theory works really in

the charm region. We know no other'approach which allows one
to describe simultaneously all the processes considered above.
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