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3.1, General properties,

The properties of logarithmic corrections are investigated
in great details at present and are described in the literatu-
re /1.25,1.26,1.28=1,32/. For this reason,we describe below
various formal results in short and put the main attention to
the physical meaning of results. Besides,some new results are
presented.

The main idea of the whole approach has been described in
ch.1,that ia the separation of the contributions into the ampli-
tude which are due to the small { ~ 1/Q) and large (~ UJ\A]
distance interactions,and the derivation of the corresponding
operator expansions., It is clear from the physical reasoning,
however, that the querk-antiquark pair gq produced in the small
vicinity (~ 1/Q) of the point "O" with g and q heving the vir-
tualities ~ Q2 resembles very little the final meson. Before
the &Lhu.l meson will be formed, q and g will interact by
exchanging gluons between themselves and decreasing gradually
their virtuslities from QE down to -v‘ﬂi. Juat this evolution
of the gq-pair is described by the perturbation theory loop
corrections.

The situation here is esnalogous to that in the deep=inelas=-
tic ep-scattering,fig.3.1. The quark snd antiquark produced in
the small vicinity (~ 1/Q%) of the point "O" interact then
with each other and diminish their virtualities from ~ QE down
tafvrﬁv This final state interaction gives loop 1ugarithmic
corrections to the Bornm amplitude M(x),s0 that M(x)~-> M{x,qfﬁﬁ).

These effects are described by accounting for a dependence of

tha bilocal Qpemtgr(?ﬁ“?kﬂuqll'._ohgi &.E;‘Eu\-s\&}]‘?.tn\\?>fm




on the normalization point PL"' 1/%.1.\” Q* .
1t is natural, therefore,to suppose that analogous resulti:
will be correct for the form factor as well. That iz, the ini-
tial and final state interaction effects can be accounted for
by a dependence of the wave functions RQ tj} on the maximal
quark virtualities, \? (‘13—} \Q (‘i P““ Q ) 5
dependence of the bilocal operator (n\"f ‘H%) EBLQ[L %S i<, %Qtﬁ]}

v |,

ie. by a

I‘m ik on the normalization point ]\ Q'E‘)"'Q
In order 1o calculate in an explicit form the dependence

of the bilocal operator on the normalization point I‘\L\,{ ﬂﬂ;“'.s;,

ig the upper cut off in loop integrals enterinca the matrix ele-

ments of this bilocal operator),one should expand it into a

2
geries of local operators ﬂ“. The dependence of 0“ on P“’““

is determined by the renormalization group:

J.g{,ﬂ'i &
{ Oyt = OO0 w[l ;u\( Wy e

where Dh is a multiplicatively renormalized local operator,

\E‘“ is ite anomalous dimensionality, ?Lnl\} is the Gell=-Mann-
Low funciion. After this,we will have instead of (1.5) the ex-

pr..am.on.

{31 7 L(ﬂ Z_ (?1\ - @\ﬂ> Ch e kg'z .,ul.;)(b nﬂ} ?a.>

3.2

Coihp ,ih=ﬂm.ki,mﬂ\_es\?[1 wbﬁ WO

d¢lp)

where t‘ﬂim are the corresponding expansgion coefficients., It

will be shown that the operator expansion of the type (3.2) is
indeed true within the QGD-perturbaticm theory (at least,for
the form factors of the mesons with N;=\;=0  and for a

number of other exclusive processes).
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The problem is,of course,to prove the validiiy (or non-vali-
dity) of the operator expansion (3,2) in tﬁéﬁ%%}turbatian theo~-
ry (pert., th.). :

It is much more difficult to calculate and to sum logarith-
mic corrections to the Born diagram for a hadron form factor
than for the deep-inelastic scattering (in a covariant gauge),
Each loop gives no more than one large logarithm ~ Jgkﬁtﬁaki
in the latter case (the summation of these logarithms was per-
formed by V,N.Gribov and L.N.Lipatov for the first time /3,1/).
In the case of a composite state form factor we encounter im-
mediatly the diagrams which correspond to the form factor of
elementary constituents,fig.3.2. Such loops give the double
logarithmic contributions ~ igqﬁﬁ;u;}? a la Sudakov,i,e, there
are infrared logarithms in addition to usual "collinear" loga-
rithms. :

It has been shown in /3.,2/ that leading contributions
«:(&5Q?E'Cf)“ in n-th order of the pert.th, cancel in a sum
of diasgrams for a colorless composite state. Therefore,the pro-

In-4 .2
blem is to see whether all terms from ~ fig ) Q dowvn to

i) ul? ba™t o

sum all rest terms ~ d. i‘h

cancel out B.lBG and,if so,to what function
: yagrees their sum with thé
operator expansion (3.2) or not.

The simplest approaches to the problem have,evidently,been
used in the first papers on this subject,whiﬁh appeared in
1977 /1.25,1.26/. The verification of the operator expansion
(3.2) has been performed in /1.25/ as follows. If one calculates
all quantities entering (j.Ej-qnefficients Cthi , anomalous
dimensions \gh ,matrix elements {ﬂ\Uh[\‘D\?> yetc.,in the 1:::-—

west nontrivial order and then expands (3.2) into a power se=

ries in Jﬂ: ,then one obtains the predlctlﬂns for the sum of

“¥Tgee the next page




leading logarithmic correcticns in all orders of the pert.th.
From the other hand,these logarithmic corrections can directly
be calculated from the Feynman disgrams in few lowest orders
of the pert.th. If the results agree,this is a strong argument
in favour of a correctness of the operator expansion (3.2),
Such a verification has been carried ocuf for the pion form fac-
tor Y‘.‘ Lﬁ.ﬂ at the two-loop level. That is:

a) it has been shown by direct calculation of the Feynman dia-
grams that the contributions ~ %19,111 {lg' and '*-"’;'Q.hlill? %hﬂvmsz
cansel and the rest contributions n-tg'g.h _ﬁi and ~ tkli H‘“i Q
have been calculated explicitly:

b) the terms =~ Ugﬂ,‘n Q2 and ~ Uﬁli Q.ﬂl ﬁi
of (3.2) into a power series in.[&f\“ have been calculated

in the expansion

and shown to agree with the direct disgram calculation (see
the gsect.3.2 for details). .

The ladder disgrsm contributions into E[ Lﬁij have been
gummed by D.R.Jackson fi.EEf uging the Feynman gauge. The lad=-
der diagrams,fig.3.3, have no double logarithmic contributions
in this gauge. The selection of ladder diagrams allows one to
write the Bethe~Salpeter equation for the pion wave function.
Using the solution of this equation,one can easily obtain then
the "asymptotic behaviour" of the form factor. The sum of lad-

der diagrams,fig.3.3,corresponds,evidently,to the operator ex-

pansion of the type (3.2),but with gauge non-invariant wave
functions ~ <ﬂ\ Y?k}\.\ka_b})\?> (i.e., without the gluonic

string between the quarks).

i

* (from the previous page)

The renormalization group formulase (3.1),(3.2) describe,
evidently,the situation when the leading terms in the n-ih

n n_ 2
order of the pert. th. are =~ dg Rl"ﬂ Q.
)

T i

The formal methods fof%%ummation of both leading and nonlea-
ding logarithmic corrections in all orders of the pert,th, (in
the Feynman gauge) have been presented in the papers /1.28,
1f30,3.3£,see also the review /1.32/, All the authors agree
that the operator expansion (3.2) indeed takes place for F;(Qll

Useful contribution to the subject has been made in /1.29/,
1t has been pointed that analogously to the deeﬁ-inelastis gcat-
tering and to the Drell-Yan prﬁcess/aH;&SAthe uge of the "phy-
aycal“gauge simplifies considerably the problem,because sll
leading logarithmic corrections are given in this gauge by
ladder diﬂgrgﬁgéfhut with an account of self;eneréy corrections),
fig.3.4. The problem can again be reduced to & solution of the
Bethe-Salpeter equation,but the solution describes in this case
the true asymptotic behaviour (see the sect.3.3), The dominance
of ladder diagrams maKe{selfevident a correctness of the opera-
tor expansion (3.2) and gives a simple and beautiful picture
of the process,

It has been pointed in /1.30/ that one encounters new type
of logarithmic corrections when calculating the Feynman diag-.
ram8 for the nucleon form factor., These appear first at the two

loop level, fig.3.5,and are not described by the renormalization

. z 8
group. For instance,the regions K;, i C\{ , i=1,2,3,4, Jﬁ({ K‘:ﬁ E[f'
%

J=55¢+..10 and KLENW(E 1=5,6,7,8, If’-::-: ‘ﬁf:&i\z L e
4,9,10 in the fig., 3.5 diagram give the usual renocrmalization
group contribution Jl-;l Q.‘ni u:., A1l the masses can be put equal
zero in this case, These contributions are connected, evidently,
with enomalous dimensions of three-particle uperatm; _‘;‘ml are
described by the operator expansion (3.2), It is shown in /1.30/
thfa.‘b theri is ag.ﬂn t];.'e con;:vribgtion E.N cl: }hﬂi from the re=-
%wn: Kg ~ Ko~ W ) K11K5<4C|/ ki 'pC',_.;Nlml‘Vi,

T




This contribution is tightly connected with the quark mass W
and is ebsent if W\ is taken zero beforehand, It has also
been pointed in /1.30/ that (in the abelian case) higher order
corrections suppress such contributions.

411 two=loop contributions of this kind into the nucleon
form factor have been summed in QCD in /3.6/,and the explicit
Iorm of the corresponding hard kernel has been obtainedtherc.
Besides,it has been shown in /3.7/ by explicitly calculating
three-loop diasgrams,that analogous suppression mechanism works
in QCD as 1.'."!311.1;)lL

The physical meaning of this suppression is simple. The cor-
rections like those from the fig. 3.7 diagram lead to an appea-
rance of double logarithmic contribufions :.rhich sum into the
- Q,h%;?,m%’g yyultiplying the

i Y
external current vertex., There is a large leap of virtualness

1 1 %
at the vertex for K, ~Xs~ E‘m"&" . Q

the Sudakov form factor suppresses such additional contributi=-

Sudakov form factor v E'i?]:l'..

(gee above),and so

Qng,

Analogous,but more complicated situation takes place when
one considers logarithmic corrections to the threshold behavi-

our of inclusive structure functions and to large angle scat-

tering emplitudes /1.30,1.32, 2.4/ ($ee the sect 3.8).

* The contributions under considerations,fig.3.5,play no pra=-

ctical role,because they appear first at a two=loop level and
_ 2\ 1 -3
include the additional small factor = ki“—[_%—z\ < L0 |

i
i

@Uﬁﬁ= @E_m&ﬂ_— % Qm%; \ﬁak‘iﬁ‘-}’e\ +%

Those readers who are not interested in details of logarith-
mic corrections calculations,but would like to see the results,

can confine ourselves to the sects, 3.,4,3.6-3.8 only,

3.2, The verification of the operator expansion.

One~ and two-loop corrections.

) ¢ 1
Consider the pion form factor Fu @1\, Q= _QY‘ The Born exp-

ression (1,8) can be written in the form ( H*—'Kr‘h ngi’*/},}

24=- f:_:} 9 m ‘~|E ’\-"]\) due to the neEat:.ve pmn G—par:.t;r)
'@L @) 4T oy g oL

The method used in /1.25/ for a verification of the opera=-
tor expansion (3.2) is the following. The initial pion is sub-
gtituted by two free massless quarks with the longitudinal mo=-
mentum fractioms: Xy=Xo, Ya=4-%o (Yys¥e Ma=4-Mo  for the
f:r.na.l pion),that corresponds to the wave function wmhﬂ Uu =

K% U,_-h}dr%(h 10)} in (3.3). Then the Born approximation

has the form:

-_Y_E““_ L ¢ w“( 1) : = 3
ST LL:-{.,[\L-M IEN (SR

Let us calculate now the logarithmic corrections given by

one- and two=loop Feynman diagrams and represent the answer in

the form ( de= nlgu‘ﬂ"l)'-

o ﬁz .
E{Q“ r*‘\ ﬁllﬁ,\agl& ¢ BB

The contributions of one=loop diagrams into ﬁ;(iﬂ,gn) are
presented in the Table 3.,1. The Feynman gsuge is used every-
where in this paper,except for the sect.3.3. The regularization
of infrered singularities in separate diagrams is performed

here and below by introducing the gluon mass " M ",the gquarks




are massless and on the mass shell, Note that each of seven die

agrams N°8 in Table 3.1 contains the Sudakov double-logarith-

Tﬂi F-E'3-{ mic contribution ~ :ig Q,h?' {lt ybut all such contributions can=
Di ¢ ' sel in the sum of the diagrams N°8, As a result:
iagrams Ar : : 2o K \ L i I \4-(1{ _3%}]3 (Li 2 .
oo : = w— +U-% ‘n“‘“_ o Ve %F-
b AR TURTARE OB e
. Fia\ Tty =y ) |
The number of two-loop diegrems is very large {"'1{}3], I'ox
Wil

this reason (and taking into account that the one=loop results

agree,see below),only leading at Qi'iu\]{'{ !L, u:\in){{i contributi=-

2

ons have been calculated (there are 8till =~ 10° diagrams). The

result 13 :

A,=0 U{m"’ ij:g\ K&* 0 Q"ﬂ LHJ\—X (3.7)

R
w _ y / { 1 Un the whole,one can represent the results of the one- and
'T -2”-5.4 (Bn;-_—)-( * fﬂ W 'i,f_} t+ l'.k"'-hw two=loop calculations in thezif'om: o "
Rl @\ W (@) P\ At gt
: i\* { . r @ L "‘\_@hw“ ﬁl‘iuﬁ /\&:L k ‘th ( :3 (\33)
AN 79 f p.%h
i F P%k&\ Qﬂn % Q+L iQ.—*\% L\)
S S gy ' _\
@ Llzas 43 ) %kﬂ t;&‘iﬂmm iy *ﬂ\Q“" th (2.9)
e ¥ g }hl
ST et G+ -3 o) e bt | L 0( e

ii(ﬁlyiﬂﬁ L “:—K s a“SJQ“F

A 2
4 Separate diagrams have the terms """ulq_Qf'l'"L Q

af) 3
and ~d.¢ 9-1ﬁ Q
but all such contributions cansel in the sum of diagrams,

see f1.25f for details.
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Let us compare now (3.8),(3.9) with the operator expansion
(3:2). In the leading logarithm approximation the operator ex-

nongion (3.2) is equivalent to the replacement‘ in (3.3]):

: \ Born L&
d¢ —F -:J.s{._ﬂlﬁ}} ‘E —FIKE}.)=&_ %L \Q

1
B 2

where the wave function \Q‘ﬁ h,& ) is the pion matrix element

of ithe gauge invarisnt bilocal operator normalized at the po-

; N O1 (- ey % : .

int "Q7", Decompose Ng\G /M into a series of matrix ele=-

ments of multiplicatively renormalizable local operators (see

the appendix B):

A 2 R T liif 1 gk 3 5 g
LI‘ I:::‘-,. Q;l"x}: \jell"i\‘? E-. - [\LGL\J C.‘ﬂ 11\?]}! \P'& I'. J: L'Lk hﬁ \‘Ili 3 {J¢10J
b ) ]d" 3 LS y
| =0
Jn w
where n are the Cegenbauer polinomials and ’i (\&) are

the correspcrndlng navrix elements.

<u O,.= ELU—L— Cﬂ# : k“ 1}/2?) tiba‘)\ﬁ kgb % LQ_
o Lﬂ 1a(0) Lli_ L&ﬂx W) - Eh't
£ @)=k, (ﬁ 20 EL gw 1=k r)e

wel 4 t&. !.'1.)

— 1 L e T 2
Eh" I':PK'&__ Q\*Lﬁk“*z) +LL%.1 3 :

1 de(p {1 ns
“C:“EQM Ll , me-‘i"ta"ﬁh%*‘--
Substituting (3.10),(3.11) into (3.3),0one has:

Ii:n,g,k{ﬂ: : Z kﬂ,i—k L\)& (‘1\ E“T..Ih“ ,_t‘

ven. o

(@) (3.12)

For comparison with the result of the perft.th. calculations,

12

é.

one should expand (3.12) into the dyzd¢(p2)  series:
R C R L R RS
for tho waat v tmction Yot} —[%Lg-m% RENE
%"“ E )G )= E [ e

(3.14)

"f'l'.h.lt'l"-
To calculate one~loop correctiocns,i.e. 'gli. T R B U L B

it is sufficient to confine ourselves by the firgt term in the
expansion of Ef\?[\_ En E ’g

~EnT E
T ds()\E e & t 3,
e ‘1“(?‘\} U_ Hg Q, ?,‘n ) = i E Q‘n * ¥ eria)

Subatituting (3.14),(3.15) into (3.12),(3.13),0ne has:
an.
?{MQ’H % (&*}l\Qh TR #BCF : (3,16)

that coincides with (3.9). It is worth noting that all charac-
teristic features of the non-abelian gauge theory show up at
the one-loop level already and so the above described verificas
tion of the operator expansion (3.2) is highly nontr:n.rlal,
Expanding in (3.15) QE
gstituting them into (3.12) and keeping only leading at (1_—}{ )«i

up to the terms ~ &5 y SUb=

terms,one obtains (it is sufficient to put Eh—u_{:; Q.\"'.Qn)
in this limit):

%w\ N Q,H i i_Jr O(Qn Uﬂ{ggl §350)

that agrees with (3.9).
On the whole,the verification of the operator expansion

(3.2) at the two~loop level confirms its correctness,
13




3¢3. THE "PEYSICAL"™ GAUGE.

Although the direct calculation in a covariant gauge con-.
firms the correctness of the operator expansion (3.2),the use
of & covariant gauge has the great disadvantage. Indeed (see
the Table 3.1),leading logarithmic contributions give in a co-
variant gauge not only the disgrams like IN°2,but N°8 as well,
in which gluons comnect the initial and final states, Hence,
the fact that the sum of all logarithmic corrections factorizes
iike (3.2) is not selfevident beforehand,and the result looks
like a trick.

The answer in an arbitrary gauge includes the matrix element
of the bilocal operator (i.e. the wave function) of the form:
<D\QL%‘1EH\? [].L%S-ngq %Lﬂﬁ‘ﬂ‘ﬂ\?) It is just the gluonic string
in this operstor which corresponds to non-ladder diagrams in
the QCD pert. th. The question is reduced to the féllowing:
can we choose such a gauge that the gluonic string operators
can be put equal to unity for the initial and final hadrons
(at least,in the leading logarithm approximation,LLA)? If so,
then the ladder=like diagrams only will be the leading ones,and
the whole problem simplifies considerably.

An expansion of the gludnic string operator into a power se-
ries leads to an appearance of diﬂgraés like those shown at
fig.3.8. If a suitable axial-~like gauge iz used {(for instance,
the planar gauge / 3.5 f‘:ﬂrx%rﬁo, “;0‘?‘.\"'%?.[& ),the fig.3.8 ai-
sgram gives no logarithmic contributions into initial and final
states, This shows that the gluonic string operator gives no
leading logarithm contributions in this gauge and so,it can be
replaced by the unity operator in the LLA.

At the same time,the fig.3.9 diagrams do give logarithmic

- contributions and all this shows that only the ladder-~like dia-

14
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grams (with self-energy corrections) are of importance in this
geuge in the LIA,fig.3.4. .

This can also be seen directly from the QCD pert.th, The pro=-
perties of the QCD pert.th. diagrams for collinear (or nearly
collineer) processes in sxial~like gauges are well known since
1978,when the paper / 2.5 / appeared. It is shown in / 3.5 /
that the ladder-like diagrams only are of importance for such
processes in the LLA.* The ladder character of leading diag-
rams allows one to sum them essily by solving the Bethe-Salpe-
ter equation.

The use of the axial gauge for a calculation of the hadron
form factor asymptotic behaviour within the QCD pert.th, was
first described by G.P.lLepage and 5.J,Brodsky fi“lgf. Foim face
tors also belong to collinear processes,and so all the machine=-
ry described in / 3.5 / is directly aPFEicahle here es well,
The case of the X%ﬂﬂ -form factor cénsidered in /129/ in de-
tail;fig.3.10,is much like to the deep=inelastic scattering
/ BLH f,fig.3.1;while the case of the mesoun form factor,fig.
3.4,is much like to the fig.3.11 ﬁracess,the agbsorptive part of
which is the Drell-Yan process,

The ladder-=like character of the leading diagrams in the
LLA allows one immediatly to write the form faclor in the form

(see fig.3.4):

(@)= f}m&io\ﬁ ‘?kﬁ; Q) Tyl ¥ Q, Mu‘ﬁ Q1 Q) ]' (3.18)

N N S S A N s o - s i N g e

* It seems,that there is no such a gauge which leads to the
dominance of the ladder-like disgrams in large-angle scalte-

ring amplitudes in the LLA.

15




where |, is the hard kernel of the process and the pion wave
function 9,8 ) Pulfills the Bethe-Selpeter equation. The
wave function 'Y'(:i'l,r‘ﬁ_) is used also in /1.29/,end it is con-
nected with \Q‘(JL}Q\ as follows:

9y, a) <o TUale3) :\?\%) oY, Lk
Elll burh 5 Sl(l (.GL Lfo 3 KL)]] ] Pﬁ-*ma
Ko topr e O, amtapoket OL%70)),

i

Xe/8,

where Xt and X2 are the quark momenta, &Fkﬂ KQXI \ ig the
quark propagator and KF is its anomalous dlmensianallty. The
function "\f&?u;]"&, has the meaning /1.29/ of the probability
amplitude for finding two quarks in the pion with the longitudi-
nal momentum fractions iL end X2 ,with the transve:rse momenta
t-'ea_ and collinear Up to & scale ~ Q) (ﬂ.}t P~ c:a),

The one gluon excange contribution serves as & kermel of the
Bethe-Salpeter equation in the LIA,and this allows one to write
the evolution equation for the wave function,like that of the

Lipatov-Altarelli-Parisi evolution equation /3.1,3.8/. This equ-

ation has the form /1.29/: . :
s.‘hQ . B (x Q)= e;tﬁw&galw (3,9) (9, 8) - Xox, by, 0)§ 3-20)

where E(‘i,&\: \Q(‘L,ﬁ)/hh’ and the kernel Vu,ﬂ i )

N (,9)=2 Rii\s?_%mﬂg(ﬁ éi—;ﬂ +(£a+z)11 e

AD (3,Q)= %K‘i,@} =ik Q),
&1\3 = d\lid'ﬂl ® k’r‘-"r‘iﬂ.
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The Sudekov double logarithmic contributions manifest itoel-
ves in this gauge as the poles y\_l;_u‘;(;_ in the ladder dia-
gram contributions and as analogous poles in the quark propaga-
tor &.1: (in {; )Je They cancel in the total expression (3,21)
(i.,e. the term ﬁ/‘:l -%i is regular) and this confirms that
there are no double logs in the sum of diagrams.

The integral equation (3.20),(3.21) can be Solved by expan=-
ding [t)u {l) over the kernel ugenﬂmctions. These eipenfun=
ctions are the Gegenbauer polinomials Ch (L*‘f.?) and the corres-
ponding eigenvalues are the anomalous dimensions Eh_ ASB @ re=
sult,one has the solution of the form (3.10),which demonstrates
an equivalence of this approach and the method of operator ex-
pansions. :

The many particle cnmpnnenta,ﬁt“u;;l(; $) ,0f the total had-
ron wave function are introduced by analogy in /1.29/, The quan=
tity ‘fi‘hbl ‘&19\ igs interpreted as the probability density
to find in the hadron (at PE-'H)D ) just N constituents with
the longitudinal momentum fractions Xy , the trensverse momenta
X\" eand with the definite spin structure "S", The normaliza-

tion cc:nd:l.tlon 15 then, by definition:

ZS dX W ‘}j‘:z\& W ¥ §)\ (3.22)

and the structure function (i.e, the one-particle probability

distrlbutlon] ia:

-2 .. % ATl

Lkﬂt‘*

%ﬂ&n Ely =1

17




We want to point out here the following. We calculsate in

next chapters various two- and three-particle wave functions
\?&itll\l 7 \Q; (:1‘.'.11!3) .

through the matrix elements of gauge-invarient bi= and three-

The wave functions which we use are defined

local upe-ratorﬂ and correspond to the "collinear basia".* The
two=particle wave function of the leading twist, \fuiill\ yig
simply connected with rtUL.xikL) ,s5ee (3.,19). But our twra—par-
ticle wave functions of the nonleading twist,three-particle wa~
" ve functions,etc.,are connected with '*.‘h[\‘ihffrl'?s) in a very comp-
licoted way.

3.4, THE "IMPROVED PARTON PICTURE"

The "parton picture” means here the approximation used above
in ch.2 (i.e. logarithmic corrections are neglected). Namely,
the target (pion) is characterized by the non-perturbative
"goft" wave function ‘QLT‘] Tﬂ':'\?[\th&nd the form fﬂc‘h{:::l::' has the

E? HHL& &‘11 \Q\ﬂ??wmb] 5 JJ\Q 2 ) (3.24)

where ‘{QW“ is the form factor of the two "soft" quark system,
caleuleted in the Born approximation (see (3.3),(3.4)).

As it hes been shown sbove in sects., 3.2 and 3.3,when the
leading logarithimic corrections are taken into account, the

answer can be represented in the form [1.2641.28,1.29/:

L —
F?. (Qﬂ 4"’% &HL% &H‘L‘EQ L_In, IQT.) d?.iurn\h }1[1 ; J#Lleq bl!. : {f)f (3.25)
T4

=1

——— - v - - o i S . o -

* The use of the collinear basis for the matrix element

<0\Dh\?++°“> means that all the derivatives D L @and D..

sregent in the operator 0':; , are expressed with a help of equa=-

+ions of the motion through D* and operators of additional

particles.
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The "improved wave function" \Qb &1) in (3,25) is (see (3.10),
(3.11),(3.15)):
lz

Qy,0)= ‘Qm(ﬂZE . je, } R &&1?\“1])('_ @)

(3 26)
L ()
Q&%&H\:%Q&f-ﬁl i EQ“ 4:-;. f@.\? U: \E LIAE \Q (} ) ft:n) q

The use of the "improved wave function" U\)b‘.l‘t) can be incon
venient in some cases,however,because the contributions of the
large (~ ihﬂ ) and small (™ L/G. ) distance interactions are
mixed therein, It seems natural to separate these contributions
and to.express the answer through the "soft" wave function

directly /1.25,2.1/. With this purpose,let us introduce the

Green function:

63 ,0-2 ¢ e

® L‘t] ﬂ 32
C'th' "1 'th-n &—/—’* C’h'—'ﬂ(b\:i_] E‘h=o=0: Eh';g_':)o'
\ u.#h)\?m#(ﬂ : . :

One can represent now (3.26) in the form:

QG )= %Aa)% t‘m, G(i, v )N R),
\Qh{l’.*aﬁ—b Ve S &3 Qkﬂ

Substituting (3.28) into (3.25),let us write the pion form fac-

G(i,,‘:!ft*vo)-b 1

(3:27)

(3.28)

tor as follows {compare with (3.24)):

() S M\ﬁwhﬁbm 140 ,2) %00
: (3.29)

@_Rhm,h@,ﬂﬂ Shl %m,uﬁw(’m J,a,@)@(}ll,’t)
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f—

s @hl“il dg “L) is just the form factor of such a quark pair,
\ | | Bl 1 :
G (1] 3 n':')z ' G(‘Lillj 1,’1':)\“)14 b” : (3.30) and 1t can be calculated completely within the QCD pert,th, I'i-
e . :
nally,the non=-perturbative wave function l‘?(’ﬁ) degcribes a trans-

formation of the soft quark pair into the pion,

The funution@buﬁtrd,i@)lrt) in (3.29),(3.30) is the form fac- j The adventage of the formulae (3,29),(3,30) is that all the
tor of the two soft quark system,calculated in the LILA, A information about the large ( 2 L/J“) distance interactions is
The formula (3.29) has a simple meaning,fig.3.12. There arisge | concentrated in the non-perturbative wave functions \?LQ ,while
two querk pairs in the small (~1/Q) vicinity of the point "O" the small (‘;i}_ﬁ ) distance interactions are factorized out and
during a hard stage of the process,and this stage is described W can be computed explicitly within the pert, th,
by the amplitude ?!Ewh k'l“_ T,,_ d ) The quarks have virtualitiea In particular,it is convenient to represent @ »(3,29),in
~ Q and the longitudinal momenta U, P,_ % ?Q and (‘51?1 '“.’s ?) the form:
Tl:;ese two quark pairs evolve then independently of each other. §(HL,H1,&QF) £ ,\h b i.;t)?éhnk‘ﬁin]lldﬁ)%&(lh{)
For instance,the left quarks at fig.3.12 exchalega gluons bitween g ‘1h . ua i et e )
themselves,diminish their virtualities from~ Q~ down to ~ and
have after this the momenta UL?LI'E?Q. The Green function E’b’ﬂ:ﬂ) ‘\\:h "‘:»\ \Qm‘ék’?)i K_ > [\‘mi)i\“’c?-\ C b\e ’J{\(}T U\ (o
.describes Mk Shds. avclution of Fkie GUEXL palE. The function ’\k_\b 1!‘[:\] hasg the meaning of an effective two-qu-
The formula (3.27) for the Green function is,in fact,the ex- ark wave function which arised due to an interaction, The formu-
pension over the partial waves in the gg-channel, Let the initi-

la (3.31) gives the possibility to trace the behavicur of the

m
al (1,6, befure ol e*.rolu'l:icn} QREC @Rtr ko Nave Ws agitin two=quark form factor @_ at \ 1.,_\4? A. When one of two quarks

1] )
Sisneibustonl ol suel Lomm C’ (-ﬂ 3 Co> @ ,which corresponds to carries a small momentum fraction, \1"‘+-_L,then nearly the whole

" L1 trﬂng" -
FHEHRLE 0 ManEE SHEATTLRa DA n’. Because the A momentum is carried by the rest quark, The form factor of such

mamentum®. n 45 ‘canserved,edch paridal wave wikch desorfpes ihe two=quark system will then be proportional to the quark form

: i it " 4 2 L1
state with the “energy E’“f evolves ‘then independently with factor and hence,it will be suppressed. Indeed,keeping in this

the "time" T. 1imit only the 1ead:iing 1:::%5 in each order of the pert.th. (i.e.
Q
the terms NKJ@, Q,"n?i Q,‘n i—;’% ),one obtains from (3.31) (compare

’t(ym\w E‘L?EL ity Qﬂn Qm i‘w]] i‘—a@, )‘-’f‘*ita 32)

Hence,we have after this evolution two quark pairs with the \

parameters Ui}in,vl) and Lgia\‘l’l,}ﬂ) The function

* The quantum number "n" is the value of the conformal angu-

lar momentum /3.9,1.28,3.10,3.44/ which is conserved in the LILA.
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and this resembles the quark form factor in the double logarithm Roughly,the contribution of the region where one of two quarks

&
approximation., The behaviour (3.32) is correct,in fact,at not is a "wee" (for imstance,the lower quark line at fig,3.13 at

too large QE only, More precisely (see (3.31)):

20T
-7 20T < A e
) JAD dalw
Afbw."i\ i , a5 Qh j; Q. (3.33)
5'-11 \ ) ‘2(‘:{1; =1

11.«\.},1{? l{/ Q),is evident beforehand, Because the wee quark does
not influences a dependence on Q,the meson form Pactor reduces
to the fom. factor of the rest energetic quark (the upper line
at fig.B.‘l}}i. This 1i3 the Sudakov form factor: ';L_Qil rll) ~
-&'i?[l.- %Qh%in’hu-h%ﬁ _Hence the contribution of this region into

S&N S Mg W;}: 1 |

T

the pion form factor is:
Therefore,logarithmic corrections "improve" the behaviour of &E k 9-1\ E%I-a}.; gg $K \
the form factor @_k‘tmi "() at \?]5_1\—1- i ,as compared with L

hm&l,m That is,the effective wave function “h(‘s 't) suppre-

gses contributions of those regions where one of two quarks be-

(3.35)

1Y i i Wﬂ.

(the wave function with the small virtua.l:.ty enters here,becau-

ge . 'I:he gluon virtuality at fig.3.13is \"S f" in this case),
LY \Qm U,ﬂ k‘L 1\ at X*41  (gee chs. 144),then the contribu-

comes a "wee'", As a result,writing the pion form factor in the

form (see (3.29),(3.31),(3.33)): A
&1’ tion (3.35) is:
3

S@-ulTEl Tl I BTV S TC S RGN Loty u%ﬁ

we see that the region \'l‘—‘ri\ does not influences the asympto-

i.e. it is highly suppressed at large QE.

tic behaviour for any nonsingular wave function \?(2(.) : »
It is clear moreover,that the behaviour in the region Qﬁ‘.{l{(i

Dy THE ROLE OF NON~LEADING LOGARITHMS /3.1%./.

2 . i
THova ard laoable lognrithn contribhts any (s ds Q.'I.{LQ el should go over smoothly into the above considered behaviour in

‘e Mraderigbny DS Ry T/ '
.00op ) in the QCD pert.th., diasgrams for the hadron form factor. the "wee-region 2~ 1/Q.Let us consider how this happens.

: W e ourselves he E
11l"superfluous" logs cancel in the sum of diagrams in each or- e confine ourselves here by the double logarithm approximation,

[ 2 .
i.e. we keep only the terms ~ o'.i_ Wz per each loop,whatever

er of the pert.th. due to a neutrality of hedrons in colour. 2/ o
is the argument Z of the logardithm: &/f" or X320, The results

here remains,however,the "trace" of these double logs in the

Vit addl‘tlﬂnal Q,h'i i th u 1} ) as are tedhe of the two-loop calculations are presented in /1.25/ (see also

‘rom NK%QM Q,"ﬂ x\ (leading logs) dovm ‘tc«“(,,[i Q,'n Y\ (non-
eading logs). All such logs are of potential importance in the

egion X>0. For this reason,let us consider the properties o) da A Al _}@_ Q‘i f. Q!
Q T~ Born i—— "rE"C.;.S).*' 9 E ?. ? ¥
yf the pert.th. contributions from this region in more details. (% 3"[\

/3.13/ where a complete calculation of the ene-loop correction

is presented) and are:

22 ' s




o= (-2,

It is seen from (3.37) that the result coincides with the first
three terms in the expansion of Eifﬁdd—gtfﬂ:klience we agsume
that the all orders answer is E.\L?LL

1‘359"“ TR %5 b Y, <«<d
L%

_t_ i&:ﬁmd deal with the

first order contribution only,
&FSL} in (3.37)%

How can one interpret the currectlon(

It is clear :E’rom (3.31),(3.32) thet the term
b ds €)1
( QFQM u‘ﬂi \a\ (!\." HE;Q.‘!'!FT_ QMTJ 5." C QM ?)ng)

in (3.37) is the leading logarithm contribution into ‘IL{) S ['*r't}
1 ¥
which is caused by the evolution of the wave function. What is T’

the meaning of the non-leading logarithm in (3.37)7 This be-

comes clear when the correctian is written in the form:

t;a\ (i ot tius EM“&— CFQu"%;)*
. (3.39)
(&— Lie, h-‘;{%‘qﬂ S 3,0

The first and third factors in (3.39) describe (in the used
approximation) the effects due to an evolution of the wave fun-
ction from the initial scale 62, determined by the gluon vir-
tuality at fig.3.13 diagram,down to I‘.i, The second factor in
(3.39) is the Sudakov form factor which arises because there
is the leQp of a virtuality at the photon vertex in the hard
kernel: from the initial virtuality QE down to the gluon vir-
tuality t‘:s’z' s from which the wave function evolution starts.
Therefore,on account of non-leading logs the form factc;r can

be written in the form:

24

i

@(mﬂ{ﬁiah\e&al,&)ﬁmétuiel)'w(h,@l),
b O (e
S TER . =
A?Ufﬁl\:k%) , - %uQM d¢ Uf)

2
where éUl 161) is the Sudakov form factor wh:r.ch accounts for the

(3.40)

virtuslity 12ap from "q2" to S, and R(3 €*) is the wave
function with the constituent virtuaslities from ~}l up to S’ii

The expression (3.40) coincides with (3.35) at Y, = ki ) ~

(H’\ M/Q.  In the zaa: $(Q%s ):L, '*'Eb,.es )-‘Qt‘nﬁl),
and (3.40) coincides with (3.25),(3.29),(3.34)".

The approximation used in (3.40) does not spoil e ladder-like
structure of accounted diagrams in the planar gauge. But the
evolution equation for the wave function becomes more complica=-
ted,because the limits of the integrals over \'C_-._ depend now
on the corresponding longitudinal momentum fractions,

In conclusion of this section,let us note the following.

a) The formula (3.40) does not correspond to the operator ex=-
pansion and the renormalization group,because it sums non-lea-
ding logs in an another way.

b) The above given interpretation of (3.40) implies that the
form (3.40) is sufficiently universal and is applicable not %o
the pion form factor only,but to other cases as well, The ef-
fects considered are especially importeant when the Born ampli-
tude @hrnbi,) is highly singular at h;\-ﬁ-i , and both the usual
LLA and the renormaslization group are inapplicable.

* Of course,not all non-leading logs are accounted for in (3.40),
only those which are most important at \?'i,i-\'} L
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c) Although the Sudakov form factor will suppress at suffici-
ently high QE any power singularity of @hn h,_) at \?ﬁ\\-ﬂ_ and
80 these regions will not influence the asymptotic behaviour,
this suppression can be insufficient at experimentally accesi-
ble values of QE. The power corrections WQKE'*HI/{'F) which are
always present in the denominators of quark and gluon propaga-
tors,can really be more important at such qz,and Just these
terms serve then as cut off parameters.

3.6, SOME RESULTS IN THE FORMAL LIMIT Q°-0.

We present in this section some results which can be obtained

G 1
in the formal limit 0°» oce ,when not only power corrections ~ M

but the logarithmic corrections ~Eh£nt (“ Th/s
One can retein in this limit only the lea.dlng term in the ex-

pension (3.26) over the partial waves,because the "energies" €,

increase with incréasing the "angular momentum" n,see (3.11).

For the pion:
— 84T

\Q:k‘lﬁ\* \th\H}:%(bf) } e =ij'8°={} (3.41)

( €q is the anomalous dimensionsality of the axial-vector
. current A‘G]\é?‘\ﬂ "J.ku ). Substituting (3.41),into (3.3),(3.25),

one nbtalnﬂ

I [:;;\ E-—-—-—-\Q bﬂ-ﬁr Jg(&&) = Q;Lll%*'ﬁ? Dﬁu‘-' ii‘%“gt,

3 g?.*r wdel@ }\ 3’9"“1 l%‘\l
1;“* (&) > ul';k ) ) @w - g

ATtk e, O

A | A \M = 05 GeV?
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can be neglected,

The pion form factor asymptopia (3.42) was obtained for the
firat time in 1977 independently by D.R.Jackson /1.26/ and in
/1.25/ and reproduced later in many papers 1 BB w29 30

Bvidently, the same asymptotic form have tne form factors of
?; and K* meaons{$ [ Yhe medown Q?Lh}:

({1\) T?}%f‘_é—(ﬂ %“200”‘-1\5 e=165 Moy

\Ez*@i\\‘ FelE Rl = 2 45710
SEDRCINDSHA AN IR IR

The wave function of the teusur F\l \=q meson, \Q (?J is anti-

(3.43)

gymmetric in in the isatoplc 5p1n symmetry limit:

| TR U Aspu O, 81 & Q“ﬂ a0, 0,1
o T gl haped = 8 ?‘m m )= 4

Therefore, the asymptotic behaviour of the Ai.?:,.:umeson form fac-

a.hll)

tor ig determined by the first nonzero mairix element %h in

(3.,44)., One has from (3.3),(3,11),(3.26),(3.,44): Q’
i
LE ’l} 5y < 22 m—-—t- = o
\lek}{t\# E%MK{‘:H -']e' ) Eim % 2 d@({ﬂ !

m(a%u
IMMJ L4, 0 > % %h,{“‘@/i; \
" ds(Q) %q VSl o\ @.45)
En‘;k&\l 'Z(}OT 5()& I (:1 ,

The value of the matrix element %M in (3.44) was found in

/3.,14/ using the QCD sum rules:

1§, (p=tca)|= 100 MeV.
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The asymptotic behaviour of the %E"{{“ form factor Fﬁﬁiqf' D)
]
(2.19),(2.24) has the form [1.29/:

; §7 & U 0716V
Evkﬂ‘ 1{13 - —:.;1— :\Eﬁ“@’ﬂ\ X E‘@:k“r“\ 42

(2.M6)

Our experience shows that two questiions arise usually in con-

nection with the above givenformulae g
1) Because D,R.Jackson /1.26/ summed only the subset of all
leading diagrams,why the answer he obtained for the asymptopis
of Fﬁ L‘Jﬁ coincides with the exact answer (3.42)? The reason
is that the ladder contributions,fig.3.3,which were summed by
him (in the Feynman gauge) correspond to the operator expansi-
on (3.2),but with the gauge non-invariant operators qux&?gq)“?
with the anomslous dimensions: E“: t;ﬁ:‘.\.*m\} %En at W¥O
(compare with (3.11)). The Eﬁ U(l\ agymptopia is determined,
however,by the N=0 cpe_r&tcr QXQ&;‘Y

answers for the first leading terms coincide.

and, therefore, the

2) Having the experience with the deep-inelastic scattering,

meny physicists get accustomed that the deep-inelastic amplitu-~
T@)exph 105 de 8. Mot

de <P\ = ? ud‘_! LA T‘ Q should be expanded into a

geries of local cpera.tora( TEET‘\; ) :
[Eent )] (Tarew] &~ 4fRarEs ol

and the leading contribution gives at Q°»(Q the first locel
term _\ELQIY(G\) ,fecause the anomalous dimensions Eh inere-
ase with n. ' -

Then by analogy,because <0\ 1@) [‘5 Cﬁﬁh HK@\ﬁ(j‘b—*S}'ﬁ 71“' kQ':L[\lii);.
see (1.13),it seems that the asymptopia of Eﬁ(ﬁﬂ ghould be de=~

termined by the first local term (i.e. without the derivatives
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G;\h ): i \ L i
A A . A
T () :S{IT\Q“\T] I‘»\f—:ag }H‘qn e B8 — _%;H NERAEES
Iy -
But this result differs by the factor(j}fE)frcm the true result

(3.42). o ¥
“r :
The reason is,of course,that the operators %Y;b]}\] \}( do not

renormalize multiplicatively. The correct expansion has the

form: .

(2T ol 3] <[ Zon eo sl T en 65T 46 - el tonve)

o
sativafe)s = {mg%ﬂheaf%m\:m\ i) -
- €T

— L et P BT
L Tolta] ¢+ e ol -

Hence, the leading contribution is really

Fﬂk?t\\isaig[\_m]}%k'}\ﬁ q"* dE’,E“t %‘ﬂ_dr -L,_; E}? + ‘..EY‘J{K&\L“{U\‘JL _

One can say in this sense,that the leading contributions gi-
ve not only the local operator \Y(ﬁ)ts‘lﬁkﬂ) ,but all the opera-

on T

torsiﬁ\%m\ \Ykﬂtﬁ"&[lﬂ‘} as well,and the "superfluous" factor
: = 3 e

3/2= (L& 5 * - * Guland)

butions of these operators. All these operators give no contri-

-lis caused by just the contri-

i
bution into the deep-inelastic scattering,because = <?\‘Y_(ﬂj§j‘!((t{}\?>: 0.

&




3. PFLAVOUR=-SINGLET hESONS AND QUARK-GLUON MIALING

Mavour-singlet mesons have two types of wave functions -
quark and giuonic ones, For this reason,the transition form
factor for such mesons includes the fig. 3.4l diasgrams,in ad-
dition to the fig. 3.3 one.

Two-gluon wave functions of the leading twist 2 can be intro=-
duced in complete analogy with the {wo-qﬁark ones, Because both
gluons have the helicities }‘L,z'—"ii yonly the mesons with
the helicities N=0 and ZN=%2 have the leading twist two-

gluon wave functions. For natural mesons with Ih:[}‘.

<ﬁ\ G‘!‘“"(ﬂ ‘Z‘L?[LLEifﬁ%ﬁﬂ&f‘ﬂk?)\u',)\-‘- U>h - %: c‘”q(“
™, Lt goe

-

(2.47)

For natursl mesons with \= ¥2°

&\G Gpla) E*‘itt EGJ.%("})\ \\=2 > !’Y : g !5:1, &Q 3 )
U%Eq?-t\,,e@ﬂf;—(q{reu-%ew\q{ﬂ , (3.hs)

L ol o oo .
where Qi?*e-d.ef% 13 the polarization tensor, For unnatural

mesons: GFJ—? GT“’ 7 E,!.Haﬁ, G.g,? in (3, \ﬂ-) L’E. llﬂ) The cons-

tants S’t’;‘. and

‘*71(2"1\

have the dimensionality of the mass

o

and are analogous to ,g

g
ve wave func'tlcns 1 H. 245-3, !‘-.'5; ‘b;(?? ].l-‘rw) é} (}}1-}9@}:
K&_— 1‘\ (gee appendix B),and nothing more 15 known about

The asymp‘tutic form of the abo=-

theae wave functions at present. The constants %,; and %g
are also unknown. The reason is that the QCD sum rules for the
gluonic operators have peculiar properties which hamper their

treatment /5.1/7.

30

At the same time,various formal questions comnected with
properties of logarithmic corrections for fthese wave Tunctions
are investigated in deteails /3.4 345-313/. Analogously to the
deep in=-elastic scattering 53-101’5.%5.},4:111&131{ and gluon operators
mix with each other due to higher order pert.th. effects, If
this mixing iz neglected for a time,then the multiplicatively

renormalized {:pex-atcrs have a form f%.ii73.1.5'4-?>. i.'}/

é' GH" - K%&g/E-EBGQF ) P.h = EF"’E?:' L%‘E/%T)Gq} %
=ug}
.L-.ﬂ o Gv‘q Cﬁ:_ k%{-;/%c’ﬁ) G'.t? ) imz 0 3 w2 : Lgblg)

5y
where c-h ( } are the Gegenbauer polinomials normalized by

21 L‘ﬂar‘lﬂ aitey
H“lb’ \ thb‘) R {mﬂt(‘“‘fﬂ T Q)

Anomalous dimensions of the operators {3.1’19,3 can be found,

for instance,by calculating in a standard way the divergencies
in the Fig¢, 45,316 diagrams and are(ﬂ?;lj‘.

a) for Z=0" u Ll w 'L
é (E’. \%-—C{ %P( Q{-L\‘n Q\ﬂ“ml} \‘\ —k ’&Eﬁ

P &\%'C& ‘lgﬂa nkm*“%_'l— 340349

I;rl for h\\:li ..k { l
e Al 6.0 4 304
L_n" Et‘*#& !s_. +\\'2'_, _

" -on
Let us remind that for the leading twist two-quark operators:
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= 3) Y L oy
Vh*%thi‘\’ (s,\ E n\w L\g{ j 1
mﬂmg%‘@*:& (B =(eny - wrt,

- - W 3 (35@
T \‘35}4?6—“- ¥ E“:CF\. &.*\'\%T‘B
desides, the operators -\Th and i&“ﬂ correspond to helicity
Zerc mesons and Tn -to helicity one mesons. Therefore,only the
operators (gu H-\Th) and (Qh"”‘h‘n) mix,when the contribu-

tions like those shown at Fig. are taken into account:

(G ._Q.’E'fi(;q}‘ e (\v%v-—}it \?

. =5l Q\\) ‘(‘.jh' \
KG W Cw G“\ XY"X hed

It can be shown /348-3.49 / that the operators (‘éhﬁ'\fﬂ
(or E e P\n ) mix "es a whole",i,e, the multiplicatively re=-
normalized c:-peratorﬁ have a form: (&,“ “+Q,-\r j (u“?har%“pt )
where ﬁ-n %u '-ln and % are numerical coefficilents, As &
result, the mixing matrix for (éh,vh ) coincides with the cor-
responding matrix for the unpolarized deep in-elastic scattering
f'g-j'-ﬂ /ywhile the mixing matrix for L?n,ﬁ‘\h ) coincides with
that for the polarized deep in-elastic scattering f%.li/:

; Ay (s (BN = EN]
v

3%2-;&’ .
et =~ (et AN

(M=) (n+2)
hm(hi-i\l ¢ (5_51)

9 0 Qx SR 4
QE\ QE\ s § Bgrer n(nen\ (et (mﬂ

The eigeniunctions and eigenvectors of the mixing motrix

(Eh\uf‘{ ngvhq:x i \'\. QF “RE

(3.’5&)*(%.'51\ deternine the evolution with Q° of the quark and
gluon components of *he* |Ja~rf_ur-31nglet meson wave function., All
~
anomalous dimensions Eh 3 En grow,as usually,with N ang 50,
only the operators with minimal anomalous dimensions survive at
>,
let us consider,for instance,the asymptotic behaviour of the

nroces UE.E*?@I 3, i'%l The form factor EXL{' is determined ana-
Logously Lo ECE yaee (2.19),(2.22):

T wa%[e Ueis + (Ud) + L‘Hﬂ]
ﬂ\sa(%n mwwuﬂké S RN

= +Q¢ & A 1
Byl -~ 5 S ), 09

The quark=-gluon mixing plays no rcle in the formal 1limit

\E\;;_\ —» R ; the minimal anomalous dimensionality has fthe axial-

vector current,and so:

B () - W/Bel ey

The constant %\.1\ is analogous to &-_ﬂ_‘. Rv‘ll ™ 'LQD M{-‘,\J
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+ —_
The process € € \6 has been considered in /2, where w
E EEm ht /3 iE' /s v Je conaider here the pion structure function EL {_‘,ﬂjﬁi") , becau-

ig the charmonium ground state. The form facter of this ) : .
Hf‘ gse this is 2 zZood example to illusirate main characteristic fea-

rocess can analogously be expressed through the intesral: . z ;
5 = 4 = o & turcs. Other stiucture functions can be considered analogously.

& : C | i Let us consider the piocess jL + - = in the region
Iw-\%i i‘j-ﬁl \Q\L(H}Q‘i} : <“\ C’\ST‘KEEM[“—L?)E‘F b&ht\th(smq;') Let us considex i ._.,_..% Uﬂ T (?) Y_

L L 1
Q:-W:’-rm? “‘14*3:(.?&‘\) L8. ghe typical Born disgram is shown |

-

: 0 A N KEiSS) gt Fig. libo. Two Tinal quarks with momenta ?5_ and ?'.L
o . : 9 [ ERAE
ps wive R R 0 "1':’ i s S ‘Ne [-s} T" &LLM‘E' T can be considered as fiee ones at $‘?3j{”i{!"ﬂ-ﬂlhe cross section
% GeN \ = %L‘ﬁ in the non-relativistic approximation, . ; . ' i . :
I( 3 \.\M"\-L 5 \ L\*m \Qg(. y _.’_EL i J I( N .3 in the Born approximatiocu can be calculated in a standard way
B U‘l At I( 'LW 2‘1 TIFE' 4 LL_‘S ) on E‘l =8 and has the Fforum: Lo QH( ) {
The evolution of ith Q¢ is sh t Pig, 3:4% A6 T \E -
ev on o QV ) wi OV igs shown at Fig /3467, Qifs'A"v?{f’\:Hﬂ U_m fh\ g&h&gl&hl\%l T 3 Skzri:b‘
and all logarithmic effects are accounted for here,including -3 : -Dtﬁg &:’Eﬁﬂu
A
the quark-gluon mixing. It is seen from the Fig, 5.7 +that the 1 \Q,ﬁ tﬁh x 0 k%:g \ F\{ L&Q_l ei.) g.:é
] e e — i —
evolution is extremely slow, ' L-2,+A .Dk‘ﬂ'h ity s AW ; it

: ; ¢ " L : : | 3.5@
In conclusion of this section let us point the following. 4 : __M B % L\
)= () /(a-53), As = ¢=(-0)Q7x.

The experience with calculations of logarithmic effects due to

anomalous dimensions,the quark=gluon mixing,etc,,shows that all A £

: : Here: \Q“ (:ﬁ) is the leading twist pion wave function, E-"—-{‘_Qﬁ 9,
these effects are not large numerically and become really signi- 9
here is the scattering angle in the oton=-pion c.m.s.
ficant at very large QE only, At the same time,exclusive cross e : ph . i
Mo is the infrared cut off. The formula ( 3.50 ) gives (with

n LAY
the logarithmic accuracy): Q E‘L(élﬁl\ Nk%ﬁ éA‘tf‘:’)N (-_L-\Q'J’,
in accordance with ( L.L%F ). It is seen from ( 356 ) that the

gections have.power fall off with QE, and can hardly be measured
at very large QE. It seems therefore,that the logarithmic effects

described above in this section are of academic interest mainly.

: tion is highly sensitive to the infrared cut off 0
Further details :of the questions considered in this section ke e - M
(in spite that the gluon virtuality at Fig. 3430 is large:

can be found in the original works /?:n.‘..i 2 A8 -3, ig/_ % 5 v 3
: Elz ?“QA :Q&%"\(\»ﬁo}.anﬂ this agrees with the general con=-

3.8 THRESHOLD BEHAVIOUR OF INCLUSIVE STRUCTURE FUNCTIONS siderations presented in the sect.2.3.6.

In what way the threshold behaviour of structure functions Let us consider now the role of loop logarithmic corrections,
ELQI}QL){see the sect,2.3,6) will change when logarithmic cor- Fig. 3 4%% ,and write the answer in the form: i
' ) L R il
rections are taken into account? This question has been conside- Eil.s Ké‘ ﬂ'.l_\___b( % &\ &H &2 &?‘ \Q“ (7” 5::) th.[\‘gg,l_) éi_ U.\ L |
. A\ ™) ) ) AN hT WY L ) &
red in a number of papers f"3.1;1,i.i,i.bi,i.51,3.ﬂ/_mhe described = > i -DRZHA S l‘iﬁn
below approach follows mainly to / 2.4 /, !.
ih
: : |I.
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a (Ei 2 Sit] 5‘11}
QL_- 2 +D) (A- 21*‘5)

There iz a number of effects.

el S2)di(s) %
- bk?jq : EM\'}I, (3.5'1)

1, The pion wave function evolution:

Gl st) | GG+ ke s),

% A - 1-2.0¢8\ 0%
6’ iy :(.._ihl)(————l———\@\

The pion wave function \Q.ﬁ ('2, N ) describes the evolution of

(3.58)

= 3
the quark pair from the virtuality =€ down to ..i]-{ﬁ and a
subsequent formation of the pion state (see sects.3.4,3.5).

2+ The "Green functlcan" of ‘the final quark pair:

G@L,:u nﬂk\ gﬂ& G(h‘% o Yo \Gh 11’“ Gl)’ (3.597

l L 4 J~$[F1\'
G‘(?—L?:l:.s s'll\ Z-?"&%ye 2\Q % GL%'(G:.)?D?

where [L?hk%\lj is the system of orthogonalized polinomials
corresponding to multiplicatively renormalized operators, En
are the corresponding anomalous dimensions, E Ll't; ‘ﬂ(“\
> 4 %iand To determine the evolution intervals, The
function G(‘-E. x ¢t r\) describes the evolution of the final
quark pa1£ from the virtualities = down to I-i: . The
function G-(%s.;ﬂ; 6:1:’}43) describes the evolution from the

; i 1 1 2
virtualities *.1"35-'1L down to ]Ulq and again up to = '5'1 Roughly:

T e )= T BRI M) g™

G = 3.6
G(%'burt"":% = %(%fzb y @(‘-2;-”"11-*“) I tbh$J[. 0)
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3, The functions $L 2 are the Sudakov form factors:

é’ %&Q %+\s\\ “?tl. 1 Q’“&%a-\s‘ni h(js. a:?

The total leap of virtuality of the quark is from Q down to }lg_
The radiation of gluons with momenta Ki (see Fig, 3. ik ) a1
minishes this interval down to QQ -"1'93 The evolution of the
quark pair from ‘51 down to ]‘\ yWhich is aﬂcounted for in

the function 6(211\;'51,143 , diminishes this interval down to
(@P"—JKG.J'B On the whole,there remains the Sudakov suppression
in the interval (Q = é'*\‘slm-

The behaviour of the integral I in ( %.5% ) is roughly as
follows, At small "evolution time" T,Lr:‘t,_:o: E = g[&r 21),
and the intefg'ra.l over 2 in ( 3.58% ) diverges linearly at
=>4 1” &#(L*'i%rh L‘-‘-'L""(%/}k:\"’?!l- ;,and is highly sensiti-
ve to the infrared cut off Mo. The "evolut:.nn time" rt:li. is
large in the deep asymptotic region Q—‘r‘-’“ and/or U_-—':qua-{}

(‘, - 0&‘-‘-} in this formal limit,and the answer beco-
mes ingsensitive to the infrared cut off }h and can be calcu-
lated unambiguously,

In more details,the contribution of the region ({L-‘ihn, [i‘?;,)ﬁ A

S
has the form: A= %"- Eﬁ:} 1445_‘ \& L\N\ﬁi\,‘,&um’

1-To

cl-;(}*“'\
R(&-’ig%&* B H’ da(n ﬁ*)

i) I3} . é*- )
‘% =é =$'—"—°—‘LQ€I ‘thK$+h&qQ’“& J_iii\}-&

To—q £ :
TAE) T Y ey




Therefore,this contribution is small at Tu}ri_ The main cont-
ribution gives in this case the region Lﬁ_—ii\a«:(ﬁ:%qw O(i) ,and
one cen neglect A in comparison with (’-1'"11,1) in (3533,

On the whole,the structure function has the form:

i =To_
Q“‘GA%,@E\% QQ\EE%?- bt Q&?«E\ % (3.62)

?

where Cn and Qj* depend on the asymptotic variables QE,(L-E)
and on ]ﬂi only weakly (logarithmically). The first term in
(%.6L ) dominates at 'T:u){. and therefore,the structure func=
tion can be calculated unambiguously in this region,

Analogously,for the nucleon:

s i
e (L (B el g

and the answer has no strong dependence on ]4a at '&n>'l-
We do not pursue these questions further here,because,it Seems,

they are of academic interest only (the "evolution time" W, ~1

at (i ﬂ‘-’m only).

3.9 CONCLUSIONS

Two methods are widely used at ﬁresent for the calculation of
loop logarithmie corrections:the operafor expansions and the
renormalization group on the one hand,and fhe Bethe-Salpeter
equation (the evolution equation) on the other.hand. Use of
"physicel'gaugea for the exclusive (as well as inclusive) pro=-
cesses leads to a simple parton-like picture,

The properties eof loop corrections are investigated af pre=

sent in great details and,it seems,the main properties of both
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leading and non-leading logs are well understooded now,

.Gne of the main results has been obtained yet in the pioneer
papers and reads as follows: the summary effect of loop correc=-
tions is mild and does not change the power behaviour,determie
ned by the Born diagrams for three-point functions (form fac—
tors, two=-particle decays,...}*. For instance,the selection
rules deacribeﬁ in ch.2 remain true when loﬁp'correctionﬂ are
accounted for,

All double logs cancel in colourless channels,and rest logs
describe here 2 slow evolution with increasing maximal virtue-
lity, At the same time,one of the most characteristic features
inherent to theories with vector gluons,is the presence of
"internal Sudakov effects" (gee gect3.3.5,3.8). = If the régi;
ons with large leaps of virtualities are encountered in colou-
red chamnels when integrating over "internal variables" (lon-
gitudinal momentum fractions iL ,398Y),there arise Sudakov
form factors which suppress contributions from such regions,

In practice,howewer,loop logarithmic corrections play & mild
role at experimentally accessible values of QE,and are really
gignificant at enormously large QE only, The exclusive cross
sections fall off quickly with Q howewer (unllkﬂ tc inclusive
ones),and it seems, their measurement at Q »lﬁﬂ GE\"( G. =400 Gey”
ia the qf- region) will be hardiy possible. As a result, the

knowledge of non-perturbative hadronic wave functions is much

* This is unlike,for instance,to the deep in-elastic scatte-

ring,where the longitudinal structure function FL('.( Q) @ A0
at the Born level,and £ (‘i ﬁl)” \P [Y.) in the next order in o4,




more important at experimentally accessible values of QE.

The investigation of properties of various hadronic wave fun-

ctions is described in the next chapters.
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