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Abstract

The hyperfine structure of caesium and francium levels
has been calculated using the relativistic Hartree-Pock (RHF)
method and with the correlations being taken into account by
means of the many-body perturbation theory. The hyperfine in-
teraction has been included in the Hartree-Fock equations. The
effect of the finite size of the nucleus has been considered.
For the § and Fﬁ& statea, the agreement of our calculations
with experiment is not worse than 3%. Using the experimental

data on hyperfine estructure the magnetic moments of isotopes
Fr are obtained.



1+ Introduction

The RHF method and meny-body perturbation theory enables
one to calculate the characteristice of heavy atoms with the
good accuracy. In Refs. /1-5/ in such away the hyperfine struc-
ture (HFS) constanta of the s-levels of alkaline atoms from Li
%o Fr have been calculated. The energy levels and fine-struc-
fure intervels in Cs and Pr as well as the HFS constants of
nine lower e and p-states of Cs have been calculated in Refs.
/6=9/. At present, the calculation of the hyperfine structure
of Fr seems to be urgent. The point is that the experimental
data available on the g-factor of the nucleus of 211py (Ref.
/10/) end on the hyperfine splitting of the Te-level of the
francium atom (Ref. /11/) are not consistent with each other
by 20%, eccording to the calculetion which has been carried
out in Ref. 5. There is the other calculation of Fr HFS /12/,
but it does not take into account the correlation corrections

In the present paper the method of including of hyperfine
interaction in the relativistic Hartree-Fock equations is deve-
loped. The hyperfine structure of a number of levels in Cg and
Fr is calculated with correlation corrections taken into mcco-
unt. The result obtained for the 7s level in Pr is in dig-
agreement with the calculation made in Ref. /5/ but is in agre-
ement with the experimental data (see Refs /10,11/).

In calculating of the HFS constants in the frameworke of
the relativistic Hartree-Fock method, at least, two approaches
may be applied. In the first one, both the hyperfine interac-
tion (HFI) together with the residual Coulomb one are taken in-
to account using the many-body perturbation theory. Such an
approach was used in all the papers of the New York group ci-
ted above (see Refs /1-5/) and in our previous work dealing
with the HFS of Cs (see Refs /8,9/). In the second approach,

the HFI operator enters in the Hartree-Fock equations, and on- -

ly the correlation corrections are calculated in terms of the
many-body perturbation theory. It is the approach that we use
in the present paper. This approach takes into sccount the co-
.re polarization more accurately than first one, since it is equiva-
‘lent to the summation of a certain infinite pubsequence of dia-

grams. However, this difference from first method is not very
gignificant. The main sdvantage of this second approcach is pu-
rely technical: the calculations of correlations are simpler,
although the very Hartree-Fock equations are somewhat complica-
ted. This question will be discussed below in some detail.

2+ Relativietic Hartree-Fock equations in
an external fileld

-

The vector-potential A s, created by a magnetic moment,
ig of the form

/‘ - 23 (1)

Correspondingly, the Hamiltonian of the hyperfine interaction
between a relativistic electron and a point nucleus equals
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where of is the Dirsc matrix, /H is the magnetic moment of
the nucleus. In the calculatiom of the HFS of heavy atoms, the
finite size of the nucleus needs to be taken into account. Let
us use a gimple model: we will assume that the nucleus repre-
sente an uniformly magnetizad ball. Then,
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where 7 =ff,4%(m ( A is the mass number of the nucleus).
Of course, it is & rather rough approximation. The distributi-
on of the currente in the nucleus i1s determined by external
nucleons and is of the very complicated form. But it has tur-
ned out that the HFS 1s weakly dependent on & particular dist-
ribution. We shall discuss this problem below.

For the charge density of the nucleus, we use the standard
formula
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where / is the constant of normelization (S?l"?Jﬂ'* =Z), according
to Ref. /13/ -:;A,m.m,q‘?/f’m, L 2= D.E‘?ifm. In the range of
small 7 , the potential of the nucleus is determined by the
numerical integration of the charge density.

Let us now consider how the HPI operator can be included
in the Hartree-Fock procedure.

It 18 known that the approximation of the frozen core (or
the LIW'U approximation, see Refs /14, 1-9/) is convenient
%o use as the zero approximation for alkali atoms. In this ap=-
Proximation only the electrons of the core are included in
self-consistence procedure. The states of an external electron
are calculated in the field of the frozen core. Without the
hyperfine interaction the Hartree-Fock equations for the ortho-
gonal orbitals of the core are of the form
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where }»fﬁ is the Hartree-Fock Hamiltonian
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Here ;> is the electron momentum, » and £ are Dirac matrices,
A is the number of electrons in the atom, and ,‘brmr) is the

sum of the direct and exchange self-coneistent electric poten-
tials
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Index " ¢o " in formulae (5), (&) and (7) implies that the cor-

- responding quantities are referred tn the case without the HFI
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being taken into account. It is well known that the states of
an external electron in the frozen core approximation satisfy
the same single-particle equation (5) (see, e.g., Ref. /6/).
Thus, equation (5) generates the complete orthonormalized set
of single-particles orbitals. Equations (5), (6) and (7) take
into account exactly all the relativistic effects proportional
to the powers of the parsmeter Z which is rather large in
heavy atoms. In thip case, the magnetic interaction between
electrons, retardation and radiative corrections are omitted.
Their smallness is caused by the fact they are proportional %o
the lower powers of Z .

In teking into account the HFI, the using of the /A 7
approximation seems to be natural. The equations for the ortho-
normalized orbitals of the core and external electron are of
the form

H%h =& %
Z ‘/(}V’-f)

= Lprpm=-1)-38 [ 4

(8)

Since we consider the HFI in the linear approximation,
the Hamiltonian (8) contains only the electrom part of the
nptutor; namely, the vector [’(}’) (see equation (3)). Note
that \ 4~"4 /Y tpe HFT has 11ttle influence on the wave-
functions (WP) and on the energies of electrons. Hence, we ¢
write down %

T TR S e £ (9)

where §§; ama §§; ere the mmall corrections to the WP and
to the energy of the state with number 4 . Let us substitute
the expansion (9) in the RHP equation (8) and omit (5}‘ )2- 55'5%
(Sr )3- Taking into account equatiom (5), we obtain the equa-
tion for Jy;
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The second term in the right-hand side of equation (10) corres-
ponds to correction to the direct Coulomb potentisl and the
third one corresponds to the correction to the exchange poten-
tial. The above equation is written for an arbitrary small per-
turbation ,"-:;_-L (not necessarily for the HFI). As for the HFI,

it 18 clear that the correction to the direct Coulomb potentisl
equals zero, since the electron part of the HFI is a axial vec-
tor and, hence, it cannot change the Coulomb field of the clo-
sed shells in the linear approximation. An expression for Jhé}{

is derived by multiplying equation (10) by % (’;‘,) and by inte--
grating over 7, . (One should bear in mind that due to normali- __

zation of ¥; the correction Jy, is orthogonal to y‘{”"}.

Wt
e 7 R « 1 0 @ T £11)
Se= W m £y, f-w/?;g ﬁ[}gra%r‘a]?i % /?:%@a/:;a’zz”

The Hamiltonian // conserve the angular momentum. There-
fore, &y’ _1is convenient to expand in the states with defi-
nite orbital and total angular momenta of an electron {{V g

s =) 5% (12) -
4 '

where £ = {—-;f)“" lk{f"i( J*% ) + The matrix elements of the

HFI operator are different from zero for the transitions with
ﬁ{a = 0,2 and &j = 0,1. Correspondingly, x
the expansion (12) takes the form
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We will take into consideration only the corrections cor-

responding to af = O. The contribution from the -1-nondiaganal' :

6

corrections is very smaell due to the smallness of the corres-
pPonding matrix elements. For example, <4y, |Fl ?d.ﬁ)/?ﬂfﬂ?.fé =
©=0.52°107°  ana <954 IFIydly,) [ty |F19alyy =-10210" gor
Cs. The control calculations for Cs show that taking into acco-
unt the l-nondiegonal corrections changes the HFS congtant of
the external electron not larger than by 0.2%. Thus, we have

two corrections for the states of an electron with {# ¢ : dlia-
gonal and nondiagonal with respect to j « For the s-states
there exists only the diesgonsl correction.

The dependence of the corrections to the wavefunction and
to the energy on the projection of the electron angular momen-
tum M is given by formulae :
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Here } is the angular momentum corresponding to the correcti-

on, Ja is the angular momentum of the state to which the cor-
rection is calculated. The function Sfﬂ.l'aﬂ is of the form
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The form of equation (13) is due to.the fact that the HFT
operator included in the Hartree-Fock equations, is an axial
vector.

Equations for radial 'cumponenta-%;, f’. are rqaa_i’ily deri-
ved from equation (10) and are of the g T T
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T b &‘ is the Kronecker symbol.

,I is the nuclear magnetic moment in nuclear magnetons, I is
the nuclear angular moment, MP is the massg of Jhe proton. In-
dex of mnumerates the correctiones to the WP ; index ; nu-
merates the corrections to the WP %v , mﬂ

the radial components of the non-perturbed wavefunction. !'ha
self-consistent direct and exchange potentials ‘\[. and f, are

determined by the equalities
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The apgular matrix elements W-{'d.; C“(F.nml 4.“', are
of the form

via e gl 1 ot Y]
f= =2j~{

ftx) =

¥ '__ JA"‘J?”‘" /Ja _
Cﬂ.g;?‘(f) { }‘:}J 0,,_ q‘,g (16)
DL, =1k 1 o »"‘}
4 [ / < jpjel * %
where

L4

8 e p

¢
Qgp v&&*ﬂf-’{'ﬁ}(:}‘*ﬂ{%f-y [ /-f ¥ ] (
=V, ( s ) f(x-r&n’)

For the corractinn to energy J4f, we have
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Thus, if the eigenfunctions f > ) ana the eigenvalues {m"l of
the Hartree-Fock Hamiltonian } are known, the solution of
equations (15-17) makee it possible to determine the correcti-
one to them induced by the HFI. As seen from equation (15),

the equation for each correction to the WP is dependent on the
corrections io all the functions of the core. Therefore, equa=-
tions (15) should be solved selfconsistently by iterations,

for all the corrections to the functions of the core. As we
have already mentioned, the correction to the WF of an exter-
nal electron is calculated in the frozen-core approximation.

Let us introduce an abbreviation RHFH which denotes the
relativistic Hartree-Fock equations with the hyperfine inter-
action. The used algorithms for solution of the RHF and RHFH
equations for a discrete and continuous spectra are given in
Ref. /15/. The HFS constant Aq_ is then obtained readily in
the RHFH approximation:

A = d¢a —
q V(Iﬁfﬂ,‘:’:‘fﬂjﬂ

(18)




3. Calculation of correlations

In order to calculate the correlation corrections, we will
uge the perturbation theory. A perturbation operator is diffe-
rence between the exact Hamiltonian and the RHFH one:

A o N o> . -1/
H=H-Z%(@)=Z oy -Zl/m) (19)
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Due to the fact that the HPFI operator has been included in the
RHFH Hamiltonian, the calculation of the correlation correcti-
on to the HFS constante reduces to the calculstion of the cor-
relation corrections to energy. The first-order corrections
with respect to the residual Coulomb interaction equal Zero
exactly, while the second-order corrections are described by
four graphs in figure 1 (mee Ref. /6/).

§€V= (eR- 562 52 s8fY
We use the conventional Rayleigh-Schrodinger perturbation the-
ory and the second quantization technique . The letterem and
n denote the states of the occupied shelle and the letters & >
V and W denote the excited states. Let the HFS constant of
the state with number W 1s calculated. Let us consider as &n
example the contribution from the graph in Figure 1a to the
HFS constant of the state U . The corresponding correction to
the energy is given by the expression

SE;‘J: Z @?ﬁ:ﬁ% 2 (20)
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According to equation (9), 9’:9}‘9.’.:‘;“?/ and f-=£""’+4‘{ , whe-

re Y, § £ are the corrections connected with the HFI. Let us
now expand equation {20) up to the first order:
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Here AF = f_‘;:“’f' bn — €y —Ew > Quyaw ey, Yo o Y lis the
Coulomb integral. The sign 'tilde' in the Coulomb integral
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indicates that the RHFH correction is substituted instesad of
tlhie corresponding function. For example,

Qu ﬁz e Q %m.ag " %w %{ay

The first term in formula (21) is the same for all the compo-
nents of the HF multiplet and, hence, can be omitted. This is
& part of the correlation correction to the energy level calcu-
lated in Refs /6,7/. The remaining terms contribute to the HF
constant. The correlation corrections corresponding to graphs
10, 1c and 1d are expanded in a similar way. Figures 2a, 2b, 2
and 2d demonstrate graphically the different terms which contri-
bute to the correlation correction. The cross on the line means
that the corresponding §/ induced by the HFI should be taken
instead of the wave function and the energy shift of the this
orbital should be taken into account (see equation (21)). Figu-
re 2g corresponds to the expamsion of graph 1a, 2b corres-
ponds to 1§, 2¢ farrespon;{s to 1c, and 2d corresponds to 1d. As
We have already pointed out in the Introduction, the relative
simplicity of the calculation of correlations is the main rea-
son for which the HFI is included in the Hartree-Fock equati-
ons rather than is taken into account uging the many-body per-
turbation theory together with the residual Coulomb interacti-
on. Although a variety of graphs appears in the expansion of
the correlation correction to energy, their number is still
less than in the standard many-body perturbation theory and all
they are calculated in & completely uniform way. With formulae
(13) taken into account, the summation over the projections of
the moment of the states N ,M,Y end W in the corrections in
figures 2a, 2b, 2¢ and 24 is made analytically. The correspon-
ding formulae are given in the Appendix. All the intermediate
orbitsls with £ < 4 have been taken into account in the nume-
rical calculation of the correlation correction. Ag far as the
RHFH correctiona to the functions 4 are concerned, we ha-
ve already mentioned that it is enough to take into account

the - -diagonal corrections. Moreover, in calculating the
correlations one can confine oneself to those which are diago-
nal with respect taj + Even for the EP’& state of {§ the contri-
bution of j -nondiagonal {}U to the correlation correction,

11



congtitute only 0.5% of the experimental value of the HFS. For.
the Sf&_ and P’Q atates this contribution ie much less.

Summation over the intermediate statés of the discrete
spectrum has been carried out up to n = B for the § and p
states, up to N = T for the J states and up to N = 5 for
the )f states ( i is the principal quantum number). The con-
tributione from the higher states of the discrete spectrum ha-
ve been evaluated according to the quasiclassical asymptotic
formula, i.e. under the assumption that their energy dependence
is |E,]%+ The contribution from - functions of the discre-
te spectrum has been omitted. Integration over the states of
continuous spectrum has been performed by the Simpson method
within the region 0.12, £E £ 25 Ry« The contribution of the
lower energies has been taken into account by means of the qua-
siclassical asymptotic formula. The contribution of the higher
energies is negligibly small,

4., Results and discussion

Tables 1 and 2 1list the results of the calculation of the

HFI constants for the 13309 and-211Fr isotopes by means of the
RHPH method with the correlations taken into sccount. The spin
of the nucleus '>°Cs is I=7/3 , the magnetic moment is M =
- 2.578/1" (Ref. /18/); the spin of the nucleus 21'Pr 18

I=9/ end M =3.99 (TT)My (Ref. /10/) (the calcula-
ted HFS for 211Fr corresponds to the average value: /H-

= 3.996;&;). For comparison, the experimental values of the
HF constants are presented in the Tables. It is seen that the
HF structure of the § and P,& states of Ce is reproduced
with an accuracy not worse than 3%. The same error should be
expected for the 5 and states of Fr. This error is likely
to be connected with the higher orders of perturbation theory
in the residual Coulomb interaction. Since the ratios of the
celculated correlation corrections to the RHFH values for Cs
end Pr are close (0.38 in Cs and 0.32 in Fr), it is naturally
| to accept that the relative contributions of the higher orders are
the same as well. With this supposition, there is no difficul-
ty to see that the value of the nuclear magnetic moment of
211pp, e 3.996 (TT) My ( 91 = 0.888 (17)), measured in

12
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Ref. /10/ is in agreement with the HFS constants (Ref. /11/)
with an accuracy not worse than the experimental errors ( ~ 2%).

For the 54 level in Ce, where the relative magnitude of
the correlation correction is high, the accuracy is worse com-
pared with that for the § and p states. The situation is
the same for the fine structure of the 54 state of Ces (Ref./6/)s
Fote that the inversion of the HF structure of the Sdﬂi state
of Cs is reproduced already in the RHFH approximation. Accor-
ding to the calculation, the thﬁa state of Fr has the inver-
ge HF structure, as well:

A

-3

RHPJ‘“{’%) ==2.0310 m

The largest contribution to the correlation correction to
the HF constant comes from the terms wich correspond to graph
2a (I). Paking into agcount only this graph and graph 2b (I)
enables to achieve good coincidence of the calculated data with
the experimental ones (about 3¢4% for s and p&;stataa]. At
the same time, it is clear that these graphs describes, indeed,
the renormalization of the Coulomb interaction of the external
electron with the core. Therefore, this correction can be ta-
ken into account within the frames of the single-particle ap-
proach, by a choice of a certain additional potential acting
on the external electron. (Really, it is the Bruecner or natu-
ral orbitales approach. See, for example, /'17} This fact expla-
ine the success of the semiempirical calculations of the HFS
constants.

Tables 1 and 2 clearly indicate that the correlations in-
crease the probability deneity of the external electron on the
nucleus by 30-40%. In view of this, taking into account corre-
lations is extremely important for the interactions which are
singular on the nucleus, for example, for a parity-violating
weak interaction. The same conelusion followa from the fine
structure calculations of Cs (Ref. /6/). It ie worth noting
that the relative contribution of the correlation correction to
the HF structure is much higher than to the energy. The mecha-
nism of this enhancement is similar to that occuring for the
fine structure (Ref. /6/), namely: the correlations "break" the

13



occupled shells and lead to the effective inclusion of a large
hyperfine interaction of the internal electrons.

Let us now proceed to the discuseion of the influence of
the finite size of the nucleus on the HFS. The matrix elements
of & hyperfine Hamiltonian between the Hartree-Fock wavefunc-
tlons for Cs and Pr are given in Tables 3 and 4., The first 1li-
Iles corresponds to the zeroth size of the nucleus, the next to
the finite one. Note that for the second lines the charge den-
sity and the HFI operator are defined by formulae (3) and (4)
(i.e. this is the case for that the calculations have been
made in the present paper). It is seen that the correction to
the finite size of the nucleus.constitutes 3% for Cs and 19%
for Fr. This is consistent with the standard estimates (Ref.
/18/) and with Ref. /12/. Thus, the correction is substantisl-
1y larger than that indicated in the Ref. /5/, where the HFS
of the 7s level in Pr has been calculated &t the zeroth nucle~
ar elze. It is worth mentioning that if one decreases the re-
sult of Ref. /5/ by 19% (that corresponds to taking into acco-
unt the finite size of the nucleus), the number obtained will

be in good agreement with that calculated in the present pa-
Per.

Thus, introduction of the effect of the finite nuclear
gize needs to be done. As far as the charge dénﬂity is concer-
ned, formula (4), epparently, corresponds quite correctly to
the real distribution, wheress formula (3) only corresponds
to a certain model: the uniformly magnetized ball.

In order to clarify the question on the sensitivity of
the HPS to the megnetic moment distribution, the third and
fourth lines of Tables 3 and 4 give the matrix elements calcu-
lated with Hamiltonian (3) at different values of the magne-
tic radius (the charge distribution is fixed, equation (4)).
Finally, the fifth line presents the matrix elements at the
completely other distribution of magnetic moment: the unifor-
mly magngtizad surface of the sphere, i.e.

Uy = B 3 Fery)

- LR B &
FI%) = % 4 (22)

H t2m
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It is known from the nucleus-electron scattering experiments
that the mean square radil for the charge and magnetic distri-
butions usually coincide within good amccuracy (Ref. /19/). In
this connection, the model of an uniformly magnetized ball with
Eﬁﬁ=éhf gseems to be most reasonable. The case of a magnetized
sphere (22) is likely to be scarcely realistic and can gerve
only for the limiting estimation of a feasible error. Refer-
ring to Tables 3 and 4, one can conclude that the error in the
HFS calculations, which is due to an unknown distribution of
the magnetic moment of the nucleus, does not exceed, for the
§ -electrons, 20.3% in Cs and 1% in Fr. Ae for the p and
:{ electrons, the error is yet less. This is confirmed by
the experimental data. According to paper /11/ value of the
ratio A(l&i)ﬁ ('ﬂ,é) ie constant to better than 0.5% for dif-
ferent Fr isotopes. It is natural to believe that the magnetic
moment distributions for different isotopes differ from each
other. Since this distribution influences on A(;-SQ&nd
A(;lt,ta,4 ) in different ways, this fact directly confirm the
above statement.

Using the known HPS constants (Ref. /11/) and the results
of the present paper, it is easy to calculate the magnetic mo-
ments of the Fr isotopes, which are not directly measured. The
corresponding numbers are given in Table 5. The precision of
the prediction is approximately 1%. -

In conclusion, we would like to thank I.B.Khriplovich
for discussions and his interest in the work and P.G.Silveatf
rov for the help .in calculations.

19



Appendizx

Here we consider the derivation of formula for correlation
corrections. To do this, we first calculata the Coulomb integ-
ral for the functions with given { eand J :

szn J.'f U?’{?) ! S"fﬂr)}’fﬁ)d‘?df (As1)

Let us use the axpansion

= 47 Zu f (&,)Y ( (A.2)

The ralat:l'ra contribution of tha lmrer componantas of the
WP to the Coulomb integrals does not exceed 10" and can be
omitted. Hence,

yre)= /nu 1j4m) (A.3)

The expansion of the state .'j-l’#!) is of the form

h i l-$+m ;
I}!m)_-:ZC{_(}r!&)i}!d? .-.-Z(_ﬂ . H @?ﬂ{fj)’”ﬁz‘“’){km
s oo~

Substituting (A4), (A3) and (A2) into (A1) and using the known
expression for the integral of the product of three Y -func-
tions, we obtain

o Jetht +}* in‘!-%if
Qﬂ;? él:_)fk}-‘ *g

¥ 2)# f)f!#ﬂ)f.!‘b*f){% ff}(:4+ﬂ(2 §ri)(2d+1)(2 {,.*f) X
Led)/ i K o H}: /r BEN[BER], B
(Ma)(,gn:. {f{ 4)(1;-; er/

{,{w,{m -}%}; Lifrids,dy, =
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The notation Qt{u 74) for the matrix element of the Coulomb
interaction is here in duced:

] Jl.h Ii'f

Q (1234)=(V ,,ﬂ){;w)«'wm/, *) ;(x«.uc),-

(A.6)

X ;(.:4,4) j' f" his } I{m/ r5) & /a,;gfm/e

and the relation
b k). - 4G R) (e Jo &
$-% a) ;(x"'ﬂ)' Vilrih2dey)[ ' x

000/4 4 4
f for even X
Fa" for odd X

is taken into account (Ref. /21/).

As an illustration, let us now consider the derivation of
formulae for the graph in Pig.2a(])(the second term in the
right~hand side of “he expression (21)).

ﬂ) Z @.m.r @‘" UYAW

Avw

We bear in mind the HP correction to the WF is proportional to
the 3j-symbol (see equation (13)) and use the expression (A.5).

Then,
:6:) _IZ Z—(_Uﬂ'ﬁ‘hnﬂ.ﬁ“ ml"*" Js. f Jﬂ

RYWE Ko, mi, 0 My,
T g

X
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F(j‘? xj.,;) Jn K j...) Jv K Ju _(,i., K Jn Qe (wVrW) Q(Tvnw)
.ﬂgiﬂw -nl-;m,,', -,q,,-’ %? ", =

AEyuynw

o 1 Ju Q luvnw) QL Vnw) (4.7
-1(—9 .hj,? (.Z;uff)(l‘g'fﬂ > :

Huﬁ‘ m, dEHVHJI’

Vwnk

The sign 'tilde' denotes the correction to the corresponding
function.

In order to make the summation over the projections M,
Mws M, and 4 , we make use of the standard formula for
tae sum of. the products of the 3j symbols (Ref. /21/). It is
clear that the value of the projection m, is fixed. The shift
in energy, given by the expression (A.7), is recslculated in
the HPFS constant by means of formulse (13) and (18).

The general method of deriving the formulae is evident
from the sbove example. It is necessary, first of all, to sepa-
rate the dependence on the values of the angular moment projec-
tions. To do this, we note that each Coulomb vertex is propor-
tional to the 3j-symbolf- f}g”"("' ¥ h and each hy‘perfina HF
vertex is proportional to the 3;1-sy-mb01 as well{-f)"&*’f oH "‘
Summation over the projections is made by means of ata.ndar
formulee (Ref. /21/). The result is then multiplied by the cor-
responding matrix elements of the Coulomb interact,ion' (ﬁ.ﬁ.‘l.

It ie worth mentioning that the result does not contain the
matrix elements of the HF interaction because they are alrea-
dy taken into account in calculating the correction to the WP.
At the same time, the dependence of the correction on the pro-
jection ja,:m is only determined by the fact that the HFI
operator is a vector.

For the third, fourth and fifth terms in the expression
(21), we obtain, in a similer way (see Figures 2a (II), 2a {II[}
end 2a (IV) reapactivelx)

# for HH
8 ﬁ‘w@ﬂ“ v ! (ﬂ Ju f/a: mevn w) Qxfmfnw) =
AEyn w - Akr{ y X J‘ﬂ' AE ynw

K, Jir
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lﬁuvnw Quynw Z{« f"ﬁ"*’!"z;f K 75}!) Q. (uvnw) (@, t’uﬂnw)u 9)

Euviw J,/jr ‘Euwlw

@uvnﬁ'é?uﬂw:zf_v’;v;f/;‘vw 1 . "7 1 Ju Juf Qe(un W) G (UURW) (4, 10)
AE vnw s Jﬁ)b'
1

K K AE, ypw

-
In these formulae the factor (-g/ o & M) is omitted.

As for the terms obtained from the expansion of the energy

denominator (see Eq. (21)), since { and {f are proportional
to the same 3j-symbol (see Eg. (13)) the angular parts of the
expressions, containing fy/ and §f , are the same. For the
graph in Figure 1b we obtain in a similar way (see also Pigure
2b)

Qavaw ﬂuww__z Jv‘f,f; Qe (Avnw) Geluwny) (4, 11)
uvnw (1# *U Jlt}ﬂ' &}u 'ﬂERifﬂlw

uyAw Huw _.Z

Mﬁﬂ' Z_g‘f”‘* '77 'L Ju}[ & Ju Ji ] G, (uvni) Qo Cawnv)

Guﬁuw@uwmg=zf_ufz+);f}b f{;,{;}{ﬁ Jx,’v} gx,f#fﬁ!w)&f# wny) (A.12)
“Euvnw ki Jo JT)UR o Ju AEvnw

u.h MN‘!’”& ! i "" Qe (urivw) Qe (4Wn )

AE uvnw
unw K, Q'}i' JN ‘lw Ky

Eyymw ¥ Jr‘}w zf}u}" AE ypw (A, 14)

K& o
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Formulae for the graphs in Pig. 2¢ (I,II,ITI,IV) can be
obtained by means of the substitution v -—m,n—=>v, wan
from (A7), (A9), (A10), A(8) correspondingly. And for the
graphs in Pig. 24 (I,II,III,IV) - from A(11), A(13), A(14), A(12)
by means of the same substitution.
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Table 2. llutrix elements of 1:11&:‘HFI:\:I':}-B'EI“_-I for the 6s, E‘Pti-
6 Pap, functions of Cs in the RHF apErcximation at
different distributions of the nue ear magnetic mo-

Table 1. HFS constants for 133(‘:3 (x 10"’3 em™ V) ment (for explanations see the text)
Level RHFS Correlations RHFHi+Corr. Experiment /I.?/ ! 65 bpes _ 6pw,
- ‘oint nucleus (2,=%W=0) 48,77 5.39I 0.7974
g el S gt e | 7. | Ball with Ry = 5.61 fm 47.31  5.3T3 0.7974
Ts 15.59 3.139 18.73 18.22(10) |;: B v ] Bell with E,n = 6.73 fm 47.20 5.372 0.7974
6Pu. 6.672 2.864 9.537 9.737(4) | Sphere with R, = 5.61 fm 47.11  5.3T1 0.7974
TP, 20371 0.7834 3.154 3.147(1)
Bpy, 1. 109 0.3256 1434 1.433(3) i Table 4, Metrix elements of the }IFIx]Dch__1 for the 7s, TPeg
o & ¥
6P 10427 -~ 043113 1.738 1.679(2) oy Ry T s
TPsn 0.5116 0.0613 0.5729 0.5539(2)
8 Pye 0.2402  0.0129 0.2531 0.2528(3) AN R
5 dy, 0.5507 0.9703 14521 1.621(7) Point nucleus (%m=%,=0) 231.7 22.00 1.639
5ds,  -0.8119  -0.2293 1041 =0.74(2),-0.7070) R, - | Ball with 2, = 6,57 fm 194.2 20.81 1.639
6,57 fm| Brll ﬂ'.'{Lth R = 7:.88 fm 192.6 20.7_'5 1639
Table 2, HFS constants for ' 'Pr(x 10*3 em™1) Ball with 'E':; 5+47 fm 193.5 20,88 14639
Theoretical values corresponds to 51 = 0.888 Sphere with 1ty = 6.57 fm 191.9 20.72 1.639
Table 5. Magnetic moments of Pr isotopes (in unites Mv )
; _ The errors pointed in lest column are due to the un=-
Level RHFH Correlations RHFS+Corr. Experiment /17/ certanty of the magnetic moment distribution in nuc-
. lear and to the error of extrapolation from Cs to Fr
T8 228.4 72.39 300.8 289,94(35) the contribution of higher order correlations
. 58.54 Te19 65.73 A I Experiment Values obtained fram
TP’*"I'. " 25-59 11-91 3?-49 HF_-——E
8 Pln 9.013 3.114 12.13 208 T - 4467(T)
(N 2.818 0.5911 3.409 3.157(T) 200 - & 3488(6)
8 P 1.034 0.1912 1135 210 6 - 4433(7)
211 ~ 3.996(77)2 3.93(6)
212 5 - 4.54(7)
213 - 3.996(14)° 3495(6)
" a Ref. /10/
b Ref. /28/. Values obtained by extrap lat;_.ﬂn with use of
results of 9 -factor measurements for ( gé) proton states :f
N nuclei with neutron number 126.
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