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Abstract

A many-dimensional version of the method of finding the
periodic orbits in dynamical oscillator systems, which has
been suggested in Ref. [1], is described. The techniques un-
der discussion are used for a study of the sequenceeg of peri-
od-doubling bifurcations of the particular four-dimensional
Hamiltonian mappings. The process of storing such bifurcati-
ons, which goes on as one of the parameters is varied, is
shown to be not subjected to the regularities revealed not
long ago in the two-dimensional mappings [2,3].



"

le« Introduction

A lot of information about the nonlinear oscillator Hamil-
tonian systemes has been gained from the study of the motion in
the vicinity of the resonance states [4]. However, only the
gystems with a emall number of degrees of freedom have been
analysed in considerable detail. This is due, to some extent,
to the difficulties encountered in a search for the many-di-
mensional periodic orbits. At the same time, there are impor-
tant physical phenomena which can be studied and cleared up
only in & many-dimensional phase space since they have no ana-
logues at a small dimensionality. One of the examples of such
a kind is the Arnold diffusion - a very fine mechanism of the
universal instability of the perturbed Hamiltonian syatems
With the number of degrees of freedom more than two [4]. The
study of this diffusion is connected with the necesegity for
locating the initial states inside the stochastic layer and
the simplest way to do this is to search for an unstsble peri=-
odic orbit belonging to this layer [5]

: In recent years, the investigation of the sequences of
period-doubling bifurcations has acquired especial significan-
ce (at this bifurcation a periodic orbit loses its stability
and a stable orbit of twice of the period appears simultane-
ously). It is worth emphasizing that the studies dealing with
diseipative systems have been carries out most thoroughly,
since for thie systems there are the effective algorithms of
searching for many-dimensional periodic orbitse (see, a.g.[ﬁ]).
The processes of storing the bifurcations mentioned above,
which proceed in the physical, chemical, biological and others
systems as one parameter is varied exhibit & remarkable uni-
versality and a scale-invariant description can be made [?,E].
As to the Hamiltonian systems, similar features for them are
found only in the two-dimensional meppings [2.3]' Moreover,
the many-dimensional dissipative systems turned out to beha-
ve as the one-dimensional ones in such processes (if the dis-
sipation in not too emall [B]). This important circumstance
enables one to study 'with legal reason' a gimple motion ra=-
ther than the complex one. As has been pointed out in [2],
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it seems expedient to find out anything similer for Hamiltoni-
an aystemsa.

The solution of the problems indicated above and of the
others is strongly hampered because of the absence of & prac-
ticel algorithm to search for periodic orbits of the many-di-
mensional Hamiltonian systems of general form. Indeed, the
only approach to this problem, which is known to the euthor
[9.10}, makes the success only if the dynamical variables ap-
pear as simple powers in the Hamiltonian (the method is pre-
sented and discussed in the second chapter of the book by
A.J.Lichtenberg and M.A.Lieberman [11]).

In what follows a many-dimensional version of the method,
suggested in Ref. [1] and based on the representations on
partially periodic manifolds and their intersections, is des-
cribed. As an illustration (see Section 3), we consider the
four-dimensional Hamiltonian mapping, for which the initiasl
parts of the chaine of period-doubling bifurcations are de-
termined. It turns out that upon variastion of one of the pa-
rameters such bifurcations are not subjected to the regulari-
ties discovered comparatively recently in the two-dimensional
mappings [2, 3].

2. A pearch for fixed pointe in a
many-dimensional phase space by the crossing method

Let us consider an oscillator dynamical system with
f7Z degrees of freedom, which undergoes the external perio-
dic action with pariade + Location of this system in a
phase space is determined by the vector

S0 Yo Fom) = (90PerBePry - Tms Pm )y (1)
where (@y,.. 9m)= g end (p,,.. P,)=f are the generalized
coordinates and momenta.

The problem of finding a periodic orbit with period 7g
proves to be solved if one succeeds, at initial moment of time
‘fﬂ y in indicating such a state of the system for which the
equalities

j;;(‘f#)’y’;(éc*?:) (2)
are satisfied over all the ?Bri&bl&5/i= 1,2,... & gimultane-
ously. Let us refer to the trajectory passing through the po-
:lnt;({,} as a partially periodic one with respect to some dy-
namical variable ;f,{. if the equality (2) holds for d‘ = ;‘r
with the behavior of the remaining variables being not taken
into consideration. For a very broad class of dynamical sys-
tems, the set of all trajectories, partially periodic over 7L
variables, forms the (é’m-u+£} -dimensional surface S,
in an extended phase space. This circumstance can be useful
for the construction of a very simple, in its idea, method of
finding periodic orbits. It is relatively simple to "arrive
8t" the most extended surface S, . It is the thing that we
do, providing the partial periodicity with respect to the va-
riable Jf, « Without loss in this quality, we go over to the
surface S:EC S;: and add the periodicity with respect ’tzr::-‘;("2 s
etc. Such a process looks as the motion along the chain
S::)Sz:) S .. ‘S’En-f::*‘s;h of the subsets of decrea-
sing dimensionality, imbedded into each other. The periodic

'tra;}ectnry S.?m is found as & results of this motion. The

‘erosging method' is described in detail in [1] for the case
of a phase plane; its generalization to the Z2m-dimensional pha-
8e space 1s given below.

Further treatment is more convenient to perform in terms
of the point mappings of the phase space onto itself. Such
mappings naturally appear when studying the continuous gystems
by means of the Poincare cross section surface method [11];
furthermore, some problems in the nonlinear dynamice are sta-
ted, from the very beginning, as the mappings (eee, - [5] Yo

Let ue essume that the time interval between the succes-
sive intersections with the surface of section and the period
of orbits 7; are both divisible by the period of driving for-
ce Tg « In this case, one or several fixed points will serve
as an image of the periodic orbit and instead of the period
T, 1t is more convenient to speak sbout the minimum number
of iterations N'ﬂ » Wwhich provides the mapping of fixed point
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onto iteelf.

Let us define the operating region in the phase space as
the &Z# -dimensional hypercube &5, the one-dimensional faces
(edges) of which are oriented along the coordinate axes. I+t
1s necessary to find the fixed belonging to &0 points of a
certain mapping. The set of all phage pointa, partially peri-
odic with period /N, with respect to the first #1 variables
J1r s, -+ Fr » forms the (E#2-/2.)-dimensional surfsce 24
in the phase space. It follows from this that: 1) the inter-
section (if it is not empty) of ﬁ with the (72+4) -dimensio-
nal face of @ is a line and we refer to it as the 7 -line;
2) the intersection (if i{ is not empty) nf.?g_ with the 2 -
-dimensional face of a0 is a point and we refer to it as the
#2 -point. With these definitions taken into account, one
can sey that the problem consists in searching for the ,gm:-
-points belonging toc &0 . Below one of the versions of such a
search is presented.

Beginning from the vertex of & , we go along its first

face {y‘}, y‘itt.'ansf, €= £3,.... 2772 and search for the

1 -point lying on it. Beginning from this point, we go along
the f-line (which contains thie point) in the plane {3(1._32},

Ye<Const, €234, ..... 2wz and search for the

2 -point on it. This offers the possibility of going over to
the & -line located in the three-dimensional face f My Yo Fs f
Fiotomat..  whHE, .. . oo y etc. The
last stage is the motion along the (2#t -4 )-line in B
and the finding of the unknown fixed .c?#z-—point on it. The maj-
or element of the search is the motion along the 7 -line in
the (#2+ 4 ) -dimensional face of 35 and some details need to
be explained.

Let us define the vector f(y, )\/.)" {f;} and the
matrix G-(},')J,): é?"‘,‘f 3

il )= 4"-% (3

Q? (y,n/p)ng?:,' {'J:{a....,?m_ (4)
/4

where y‘* is the image of the point £ after making A/ﬂ ite-
ratione of the mapping. It is easy to test the equality

G(y,/‘/ﬂ}"m(ﬁ.f{a)"—r-‘ (5)

where I is the unit matrix e 4 AW (g‘,h{,) stands for the
matrix of small divergences at the point }f (see formula (12)).
The accuracy of determining of the #Z -point is convenient to
estimate by the quantity:

& (4.0)= 2. a%/é (y.4.). @
<=4

Let :7 i belong to the 7Z -line along which it is neces-
sary to shift by one step of & long and to occcupy a new posi-
tion y(&) « The accuracy of arriving at the 7L -=line, found
according to formula (6), should be not worse then the given
value {)*. One should search for the first 72+% components
of the shift vector 6} (z) ——*;f(‘y —;t 7 (ghe remaining com=-
ponents of &1y (% are zero since the motion occurs in the
(72+1) ~dimeneional face of & ). For this purpose, we will
solve the set of linear equations (here and below the summation
over the indices writing twice is assumed to be made):

Fiw (& (f}%)'gjf’;ﬁ €=12..70; o« [2.. 7201 ; (T)

{1)
with further normalization l 8}" I*“- d. + The meaning of the
system (7) is simple: the motion must occur in a tangent to the
72 -line, i.e. orthogonally to the gradients of the firet 7L
components of F. Generally speaking the point }((J-" -
- y.(‘)-fa' (1) s found in this fashion, proves aside from
the 72 =line and the required accuracy Q* cannot be achieved.
For compensation of such a deviation the corrections .:5';; (3)

to the value of ;t(") need to be found from the solution of the
second set of equationa:

F2 (G N)+ e (15 M) -8y P= g,
{30{:5.1_ Jz.iﬂ)';jff= 0 ' (8)

€212, . X242 .... 7+,
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The first L equations in (8) guarantee, in linear approxima-
tion, e partial periodicity with respect to the variables
F1:42,- Em » whereas the last equation makes the point to
approach the 7Z -line perpendicularly to the direction of the
tengent. That remains to be done is to find out whether the
fixzed ('ﬂ-*z') =point lies on the section yt‘#{ 31' < :’(‘E".-
= % 1+ 8% P, 16 4o tnis, 1t 1s susfisient to compare the
quantities _')f;lh, Q‘:‘M‘) and #,,, (y R)N. /s 4f they have
different signe, then the (72+1/-point is, as & matter of
Tact, on this section and cen be localized with the required
Accuracy by means of the decreasing of the step a.

Any stage of the search can fail: when we go along the
#2 =line within the operating region, we cannot find the fixed
(#2+4) -point. In this case, the order of introducing the dy-
namical variables ¢; , Oy 4into the phase vector 7 (see for-
mula (1)) has to be changed. If all possible versions of this
ordering fail, there is nothing to do but to conclude that the-
'e are no fixed points of period-!\(‘, in the operating region.

Some of the practical methods, used on the plane and des-
cribed in [1] (dividing of the operation region into several
adjacent subregions, remembering of the "tailsg" of the already
passed parts of the 7L -lines, etc.) prove to be suited for
the meny-dimensional case as well. Upon motion along the 7Z- -
~line, observation for the behaviour of the functions £, ,
J{ > 7. can favor substantial acceleration of the process.

In analysing the nonlinear dynamical problems it is some-— _

timee important to elucidate what is going on with the fixed
points and with their stability as the parameters d?.={'£1f,‘?z,---)
entering into the system, are varied. It could be permisgible,
after the variation of the set of parameters, to address again
to a global search in the hypercube, but this problem can be
Bettled in a simpler way.

Let us assume that, at @ =2, tne fixeda P#r-point
ie already known and its new position needs to be found.at
G = @ tairly close to &, Recall that the g -point
has been found in going along the (P#re—1) -1ine anad that
this line itself has been uniquelly determined by indicating

8

the set of parameters ﬁl('f The new set-a(ﬂalso determines
Unequally the 'own' (‘@m~£) -line being in phase space some-
Where nearly with the already found one. This enables one to
conglder the fixed é’m -point (which connected with CZM) as
the 'incorrect hit' on the (4‘?#?-:15} -line (which connected with
@) and to use the correcting algorittm (8). The transition
to the nw(gﬁz*i}-line and going along it in the direction of
decreaging the quantity oz &s (fgﬂ) enable the new C#z -po-
int to be found.

Further application of the above representations is more
convenient to illustrate by means of a specific example.

3+ Period-doubling bifurcations of the discrete
Hamiltonian system of coupling oscillators

As an illustration, let us consider a time-dependent sys-
tem with two degrees of freedom and with the Hamiltonian

H= 2o B )« bl pny e B0

where 81 is the periodic delta-function with a period of uni-
t¥. This gystem is a discrete analogue of two nonlinear oscil-
lators with a linear coupling and a driving force acting upon
cne of them [4,5]. Let us introduce the phase vector 13, =

= (%4,Ps, X2, P2) end write down the mapping 13-.."3' expli-
eltly induced by the Hamiltonian (9):

ﬁ:p‘-'-acxf+)-(xa+8é(£); ¥

KX+ Py, ?. (10)
F);'Pz""{'x:"')*m* '
_d:-z::xz-l-'ﬁa. J

It may be observed, by the way, that it is the mapping (10)
which was studied in considerable detail with respect to the
Arnold diffusion [5].

The matrix of small deviations per one iteration at the
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point 13. is equal to

‘4=-3a0c] 4 M0
-3Lx2 4
Mﬁ_(’}) or ShE Hz x (11)
MO0 4-340¢; 1

[ =l &
The matrix of small deviations at the same point for !UL ite-
rations is defined by the product of the form

M(gN) =M (g (Net)) < e, (3 (1) s, (3 (o)), 12
where Y (0)5"3 — g(i) e, - (I‘Ju‘i)"“y (f‘!u)?_y*is the se-

quence of phaee points, which is formed by the mapping. We
will be interested in the fixed points !3‘.(::) i (No) of pe-
riod N, , the stability of small oscillations eround of which
is determined by the eigenvalues ﬂi,_}xz‘ _23 and \;\4 of
the matrix 'ﬁd_(g‘bfa)- Recall that by virtue of the conser-
vation of the phase space volume and the symplecticity, the
eigenvalues are rairwise complex conjugated and pairwise reci-
procal. Therefore, only five; qualitatively different locati-
ons of these values on the complex plane are possible amcng
which only one loceation (on a unit circle) corresponds to the
stable small oscillations [12]. Thus, after a stable fixed po-
int has lost ite stability, various situations can occur, but
the "birth" of the twice-of-period fixed points is observed if
only two eigenvalues arrive (through the eigenvalue .7\1 = }==
= -1) at the real axis, whereas the two others remein on the
unit circle.

The mapping (10) contains two internal parameters ol
and.JA e At JJ==G this mapping is, in essence, degenerated
in the system with one degree of freedom -{Dci,pll'nmich de-
monstrates the chain of period-doubling bifurcations (see Ap-
Pendix A). This process confirms properly the regularities
comparatively recently discovered for two-dimensional Hamilto-
nien mappings (see, €.g., Refs.[:z,q]). In particular, the bi-
furcative values of o{k have the cluster point in coming nea-
rer to which the Feicenbaum variable [T]

ﬂ‘(dk-z‘aéﬁ)/(dh—o{,), /cszeh/ﬂ., (13)
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tends to the limit gm =S X80 087 . ... {2, ak

With j=const# O and with variation of the parsmeter
ol in the four-dimensional phase space of the system (10),
the sequences of period-doubling bifurcations are also obser-
ved; the initial stages of such processes are considered by
means of two examples in Appendix A for the values of =
= 0,001 andl}L = 0.002., The results show that in varying one
of the parameters entering into four-dimensional mapping (10),
the latter behaves in a significantly different way than in
the case of a two-dimensional mapping. It is not safe, even, to
say that the chains of bifurcations, described in Appendix A
fcrI}Lni 0, 'reach the end'. For M = 0.005, for example, such
& chain breaks already at Iﬁﬂn 16, since, instead of period-
~doubling bifurcation, the other bifurcation arises: all the
four eigenvalues, remaining the complex quantities, leave si-
multaneously the unit circle (in this case the simultaneity is
also the consequence of the conservation of the phase space
volume and the symplecticity).

In order to obtain the numerical results containing in
Appendix A, use ies made of not only the above methods, but so-
me specific features inherent in the period-doubling bifurca-
tions. In Appendix B, a simple example of the first bifurcati-
on of the two-dimensional mapping, corresponding to the sys-
tem (10) at J =0, is considered. It is shown that at this
bifurcation a) the twice-of-period points scatter from the lo-
cation of their 'birth' along the eigenvector direction; b) im-
mediately after their 'birth' these 'daughters' and their
'mother' (the unstable point of ordinary period) are linked by
the lines of partially periodicity. Both these facts are like-
ly to be of fairly general character since they are observed
for all the bifurcations given in the Appendix A in two =
- (X = 0) and four-dimensional (}1% 0) phase space. The
first fact sherply decreases the uncertainly in the choice of
the hypercube inside of which the global search is arranged.
The second enables the twice-of-period points tc be found with
the help of a simple motion over (any of four) the 3-line pas-
sing through an unstable point of ordinary period. True, in
this case, the points which have been just born are searched
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for and one has to shift them over the paremeter for a long
time (see text of the emd of section 2) until they themselves
"give birth to" the following bifurcation. At large values of
the period ﬁdu » this seems, however, to be more convenient
than a time-consuming global search in the hypercube.

4+ Conclusion

The presented method of searching for periodic orbits
(fixed points) has, in our opinion, some attractive features:
1) absence of principal limitations on the dimensionality of
8 space 2) independence from the character of stability of
the orbit to be searched for; 3) applicability to the discre-
te ang continuous, Hamiltonian and dissipative systems of ge-
neral form. As mentioned earlier, there are some proper com-
putational methode for the latter, but they use most often
the Newton's iterative procedure (see, e.g. Ref. [6]} and
their success is dependent on the availability of a "good"
initial approximation. If there is no such an approximation,
one should make use of the crossing method which is capable
of starting the search 'from a distance'.

This method, however, needs to be improved, especially
~in the case of & large number of degrees of freedom . and
of large magnitudes of the period PJD « Some of the partially
periodic pointe, found of the beginning of the search, are
then excluded because their connection with the periocdic or-
bit of the required period PJD is not confirmed. The number
Of such points strongly increases with increasing ML ang Id,
and it ie desirable to have a criterion for their rapid recog-
nition. In addition, it may be well to be able to quickly
find out whether there is the object to be searched for ing
the operating region.

As has been indicated in the Introduction, the process
of storing the period-doubling bifurcations, as one of the
Parametere in meny-dimensional and in one-dimensional dissi-
rative gystems is varied, proceeds, in esgence, in the same
IEy[B]. The results of section 3 permit one to assume that

12

this is not, apparently, the case for Hamiltonian systems. Tt
ie likely thaet with a simultaneous change of both internal
parameters ( ol end At) the Hamiltonian mapping (10) can de-
monstrate a sequence of bifurcations similar to that in two-
~dimensional mappings [2,3], but this problem is need in a
special analysis.

The author is indebted to B.V.Chirikov for his attention
to and his interest in the work.

APPENDIX A

Bifurcative values of the parameter a(. of the gystem
(10) at €(t)=4 enda 4= 0.5 0.001 end 0.002.

These values are listed in the Table. In considering the
latter, it is necessary to bear in mind the following:

1. The Table presente the values of ol at which the
fixed point of period N, loses 1ts stability and the fixed
points of period EN}, are born, i.e. the period-doubling
bifuﬁcatinn occurs.

2¢ At such a bifurcation on the complex plane, two eigen-
values of the matrix of emall oscillations shift, through the
point ﬁ,-;la'-f, to the real axis, while the two others
remain on the unit circle. The value of the parameter of is
regarded as a bifurcative one if the smellest of two real
eigenvalues is within the interval -1.001 c'éamﬁﬁf: -1+000.

3e The fixed'point is essumed to be a localized one if
the accuracy of mapping it onto itself, calculated according .
to formula (6), is not worse than 10~ 1°.

4. The Feigenbaum varisble é?' has been found by means
of formuls (13).

13
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Table
M=0
N.;F E’,k O(-rk -S'K
1 243703703702702370 -
2 3.37272774837°9668 -
4 3.5091682617 18750 7.346479
8 3.525084649658203 8.572329
16 3.526914030761719 8.700422
32 3.527123843383789 B.715118
64 34527147902197266 8.720821
128 3.527150660902405 8.721051
256 3.527150977227295 8.721113
512 3.527151013498535 8.721094
}x = 0,001
Ny=2k ol 'k
1 2.370047607421875 o
2 3+372343750000000 -
4 3.508776214599609 T.346463
8 3.524691786193848 84572263
16 3.5265209587097 17 8.700969
32 3.5267307 19604492 8.720274
b4 3.526754785897827 8.715962
128 3526757544002897 B.T725662
256 3+525757859548889 8.T40738
212 3.526757895440722 B.791582
14

V'

Table

ju = 0.002
N2 . gk Sk
1 2369556 250000000 -
2 3+371760351562500 -
4 3.508180048007812 T+3464T7
8 3524094434925781 8.572099
16 3452592383 146704 1 8.699254
32 34526133731735596 B+715551
64 3.526157729800781 8.746550
128 3.526 160459800781 8.790500
256 3.526160759374258 9.112956
APPENDIX B

The first period-doubling bifurcation of the mapping (10)

at P#)=4 and J\Ls 0

At ja = 0 it suffices to study s two-dimensional mapping
(in what follows we use simple notations X and fJ instead of

..','r:‘ a.ndp; }l
Pap-Loxc®+& , i}

X =0+ P »
The coordinates of the fixed point of period Na“ 1 on the
{x. p} plane and the eigenvalues jfnﬁ, .’22-‘1'1 of the mat-
rix of small deviations from this point are equal to
3 )1!3

Xog = (-; : Al © 52 (B.2)
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3=1+-—3-'-d.a:3f( SR R ) (B.3)
. e Wfi 3d X2, 1

Bifurcation occurs at the critical value of .?\ =.RER"iwhich

the following values of the parameter ol and of the coordina-
tes correspond to:

3
-2
Leg = (é—) g (B.4)
QCr.R:%E , Pee=0. e

At )l "}c,n the eigenvector igs directed along & line given by
the equation '

s
P"P¢n=%°¢mxtn'(xixcn}“2'(95:'1';&)- W)

The coordinates of the twice-of-period N,,’“E fixed
points can be found, for any of > ol ., Trom the relation

: 5-2,0,,7*/3 2hs +E j‘/3
el . . " R =72

I1f we restrict our consideration to the condition CQ':C. =
‘a("afq‘({{, we have

5/

o WIS R &),
g’ge ﬂgqucs— i.a;rrg' € Y - g "‘(0(%2)

='iFé;Végfiéfﬁy?ci};i%%/E§E§}}i%inQZ?ijEE} -af}a

(B.8)

L I, vy e
S R P = 5 Ol B

a“xae o TR~

It is worth emphasizing two facts:

16

a) Comparing the equalities (B.9) and (B.6), we see that
Just after their 'birth', the twice-of-period points
(xaz . iPﬂ.E ) are scattered from the point, which’has gi-
ven born?to them (X,,,H..) along the line containing the
eritical eigenvector.

b) Let us fix any, close to o{m s value of the parameter
ol > Odc.k sy find the coordinates (.’I.‘u, PH) of the ordinary-
-period unstable point by means of (B,1) and construct the
x~ (periodicity over x only) and P-lines (pericdicity over P
only) of period N, = 2, which pass through this point. It
turns out that these lines aleo pass through both '‘daughter?
points (Z,p, F,,) of twice of the period.

The fects mentioned above are observed in all the succes-
sive bifurcations of the mapping (B.1) (see Appendix A and
the discussion in section 3).
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