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Infinitedimensional abelian group of general Backlund-Ca-
logero transformations for the evolution equations integrable
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rary order 1s constructed. Structure of the recursion operator
and transformetion properties of the Backlund-Calogero trans-
formations under the gauge group are considered.



1. Introduction

The inverse scattering transform (IST)method is a power-
full tool for the investigation of nonlinear differential equa-
tions (see e.ge. [1-4] )Je Numerous partial differential equations
have been integrated by this method.

One of the main probleme of the IST method is to describe
effectively the claass of nonlinear equations to which this
method is applicable and snalyse their group~theoretical struc-
ture. There exist different approaches to this problem. A very
convenient and simple method of description of the nonlinear
equations integrable by Zakharov-Shabat spectral problem was
proposed in the paper [5J. The method suggested in [5] (ARNS
method) has been generalized to a number of different spectral
problems [6-15] « The advantage of AKlNiS-method in comparison
with the other versions of IST method consists in that it al-
lowas to find the general form of nonlinear equations connected
with given spectral problem in a compact and convenient form
and to calculate the infinitedimensional group of general Back-
lund transformetions for these equations. The so ealled recur-
elon operator plays & central role in the AKNS-method.

In the present paper we consider the general Gelfand-
-Dikij-Zakharov-Shabat spectral problem, i.e. the general sca-
lar N-th order spectral problem

(‘)f i< %f—:@"t)aﬂwﬂ‘ A £)d f'M/.r,f));’/ﬂA"'gﬁ" (1.1)

where 3#3/31 ’ A is a spectral parameter and V._.,(.I, t),

i ,V‘;_‘f(_’-r’ ;t) are scalar functions such that %{_@t}ma ’
(#=0,1,...,N=1) ;in the fremework of AKNS-method. In the
frames of the IST method the spectral problem (1.1) hes been
considered by Zakharov and Shebat [16] for the first time. This
Problem and associ{ated evolution equations were investigated by
snother technique by Gelfand and Dikij [17].

In tke present paper we construct the infinite-dimensional
group of general Backlund transformations of the potentials for
the spectral problem (1.1) = 80 called Backlund-Calogero (BC)
group. In order to define the autig} of thie BC-group on the
menifold of potentiels { VL2V = (W, Vs, ..., Viy)T} ome
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must calculate the recursion operator. The principal equation
for the calculation of the recursion operator is of the form
A"‘fgxa) = FX(A) , where 9 and F are certain N x N
matrix differential operators and is a colum with N compo-
nents. The main feature of this equation is that the rank of
matrix (9 is N=1 and th;efore the equation AM@X - fx
k=1

contains a constraint i Xk =0 .

The standard way to deal with the constraint éfﬁfk”o
ig to golve it , for example, with respect
to Xﬁr and to introduce the quantity A, ;‘:-/( e S ey O)r
which contains only independent variables. As a regult, one
obtains (Aﬂ"-f') f(f‘-"'-.f) matrix recursion operator /1.,; which
acts on the space of independent variables X(y;: A,v /ffﬂ’) =
= A‘f}.’rﬂ' . The case Vﬂ_f-ﬂ was consgidered in [14] .

The second way of dealing with the congtraint ‘5; g,{w /rﬁ =
= (0 is not to solve it at all and define an action of the re-
cursion operator /1 on the whole M—-dimensinnal gpace of all
components Xz,:--» Xy ~AX ")H).’. One can introduce such a
recursion operator but it is not defined uniquely. The uncer=
tainty which appears in the calculation of such recursion ope-
rator can be effectively described. With the use of thig recur-
sion aperatorA the action V — V’ of BC-group on the ma-
nifold of potentials is given by the relation

N-1
S B OHV ALY - AN =0 , D

where 1‘5* (.A.’: f) ) f{fl‘: f) are arbitrary functions entire on
AT AT, MY, &7 - are certain operators and P(x,t) is an
arbitrary scalar function. Infinitedimensional abelian group of
transformations (1.2) plays sn important role in the analysels
of the group theoretical properties of nonlinear evolution equa-
tions integrable by the problem (1.1).

In the paper the transformation properties of (1.2) under
the gauge transformations which conserve (1.1) are congidered.
It is shown that the whole uncertainty which appears in the
construction of transformations (1.2) is of the pure gauge na-
ture. A manifestly gauge invariant form of transformations

(1.2) is also given.

The paper is organized as follows. In the second section
a group of the gauge transformations which preserve {1.1) 1im
considered. The gauge invariants are celculatede. In the third
section a direct scattering problem for (1.1) is discussed and
gome important relations are obtained. In section 4 the recur-
sion operator is calculated. The BC-group 1s constructed in
section 5. In section & the transformation properties of (1.2)
under gauge transformations are congidered and manifestly gau-
ge invariant part of (1.2) is obtained. The general form of
nonlinear equationa integrable by the problem (1.1) is calcula-
ted in section 7. The examples of transformations (1.2) for the
cage N = 2 are given in gection 8.

II. Gauge group

The spectral problem (1.1), &8s it is easy to see, ie inva-
riant under the transformations

Yzt — Tt )= g@OVEEY
— ”"k
V. 2. t) —V, (2= 9 1) 2 CrunVhen(@ 0 W9,

where Q(I, £) is eny differentiable function guch that

£ 2/ :
9(%,t) yrw 4 and Cx ™ 07k, "o trensformations (2.1)

form an infinite-dimensional abelian group of gauge transforma-
tions for the problem(i.1). This group is the subgroup of the
general gauge transformations group which was discussed in
[18, 19].

Tt i clear that there exist N-1 independent functions

WtV Vs oW (Vs oo Wiy o Wl (o, sVomd)

which are invarient under the gauge transformations (2.1),1i.e.
i bt dhe adih thet T WISV = W O e
(k=0,1,...,/-2) . An explicit form of the invariants We ,
W,y...» W,.z can be found directly from (2.1) by excluding
the function @(%,z). For our purpose the following set of the
invariants is convenient [20.24] :



Fd ¥k k : -1
M{E = Vk i ngcfrﬂ%+u(d#'ﬁ-u-g) V,.y'.-;, ﬂ“ﬂ...,ﬂf-g)_(e.zi

The gauge invariance of the problem (1.,1) allows us to im-
Pose additionel constraints (gauge conditions) on the potenti-
als Va, V;,..-, b:f-'f « For example, one can transform any linear
superpoeition 2. Ol I(H(I, £) into zero and, in particular,
any (but only one) potential k into zero by an appropriate
gauge transformation. We will shortly refer to the gauge condi-
tion as the gauge. The transition from one gauge to another
one is performed by a certain gauge transformation.

Por the further purposes it is convenient to represent the
spectral problem (1.1) in the well-known matrix Frobenius form

dF
= =@A +Pai)F, (2.3)
where [ =(Y,0¥,..., 2" ¥)" and
010.,.0 g 8.0
Anl 8Ll P e _ (2.4)
e N

The gauge transformations (2.1) have now the form
FF =CF, P—~P=C(A+P)C™ -A +6)-c™, (2.5

k-1 \ I~k 2 .
where Gt =Cros 0" Gm2), L3R, Cip=0, i<k . pire.
ducing N-component column V Mb V.f,..., l{,;__f).': one can repre-
sent the gauge transformation (2.5) in the form

V—=V=2r9)y + 40 (2.6)

vhere t(9)=9C7~ and ¥;(g) =Cy 93" 42/3) (k=0..,.N-d).

Ueing the explicit form of Z’(y} and 7'(?) s 1t 18 not
difficult to show that

PRHE) =09, V9g)=2)T0)+ Vig) , (2D

i1.e. that the transformations (2.6) indeed form & group.

The form (2.6) of the gauge transformations (2.1) is use-
ful for many purposes. For example, the invariants ll/,:_- can be
written in the form

W=2® + 7% , (2.8)

where Wﬂm,..., W,.;,a)?' and F(%Q“W(‘f’fa'x’%- ‘ﬁ:’zﬁ

Then the potentials Vg can be represented as the functions on
invariants Wf and "gauge" variables 'P('z, z)

Vi t) =z + 71p) . (2.9)

III. Direct scattering problem and some important
relations

We will study the problem (1.1) in the form (2.3). We as-
sume that bﬁ.(:r, t)-——-—o at [X/—s o0 80 fast that all in-
tegrals which will appear in our calculations will exist.

We iﬁtmduce, in a standard manner [1-3], the fundamental
matrices-solutions /-+(fr, t,A), /C"'ﬁr, 5 ,{) of the problem
(2.3) given by their asymptotic behaviour

Ff/'zr f?A)#:'E(‘IJJ)r F-/-x:f:%}_z“;__—:ffx,A) LE34a)
where f/:r,/l) ='_Dﬁ|)6=7§0 (II) - the fundamental matrix-

-solution of the equation afft).z -AE y Where A- is dia-
gonal matrix: L* =)1,g".'"f Lk y i = 4 agf-vi—i ’
(&8 #) ana -&goﬁj.ﬁ/y) :yHere and below
Jl,-:,t is Kronecer symbol ( P ={-f: iy BT SHEE PR note that
Jg‘h‘ 5 ﬂ-.f,..., Af') are eigenvalues of matrix A, by defini-
tion A >0 and A=DAD? ,

In a2 standard manner we introduce the scattering matrix
SIAt) © Filxt,d) =F (at,) S0,

/
, Let P/r,fg end ID/:!;# be two different potentials and
F :F* 7 3, S be corresponding solutions and scattering
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matrices for (2.3). One can show that
S (08-S =S dx et ) *(Plet) - Pl t) 1tA)". 3.2

Formula (3.2) which relates a variation of the potential
to those of the scattering matrix plays a fundamental role
in the AKNS method.

The mapping P""’S()l I'.') given by the spectral problem
(2 3) establish a correspondence between the transformations
Fa ——-P on the manifold of potentials [P/I ;5
P(i,f)fﬂ*ﬂ ﬂ} and the transformations S BN Sf on the
manifold of the scattering matrices {S(A t)}

We will consider only such transformations B that

SAt) —S'(At) =B (A1)S8A,)C(A\¢) (3.3)

where E(A, If) and E(/\, f) are arbitrary diagonal matrices
(i.e. E“ =B£()I,t)ﬁg.£k ; C_;:‘t =C£ (A!f)&fi&.? £, )E'"--'.f,..._, ” ).
We confine ourselves by the transformations of the form {3.3)
by two reasons: 1) the linearity of the transformation law
(and, therefore, its readily integrability) of the scattering
matrix is a main idea of the inverse scattering transform me-
thod (see e.g. [1-4] ) and 2) the generalized AKNS-technigque
allows us to construct in an explicit form the transformations
of the potential P —= P’ which correspond to the trans-
formations of the scattering matrix of the form (3.3).

Let us rewrite the trangformation law (3.3) in the form
S'-85 = (:{-E)S'-S(j_ . Prom the comparison of it
with (3.2) we find

S(1-B)§). =~ Jd=(ETP-PFY)). 0w

where for arbitrary matrix 99 we denote by ??,. the off-diago-
nal part of matrix SD 3 (Q;)ﬂ _— @ik o 99,;; J}:a’c 3

(4, b, i ﬂ) . Purther, it is not difficult to justified
that the following identity holds

L™

(S0, -BA)S(,2), i
= fd’.r {F (ot ) (Plet)(1 - B(NE) - (1-BA )Pl T t,A))f,

where B(Aft)“.pgﬁ, f).D-'f . Equalizing the left-hand and
right-hand sides of the equations (3.4) and (3.5) we obtain

J'afx tr(B(N )P (x, 1) - Plz, )B()!2) 5"""@,ﬁ,,|}=- 0 (3.6)

2
where fr‘ denotes the matrix trace. The quantity [;D ia the
tensor product (F')' and F': (@fdvﬁm (/-_)“ér* o A
(ﬁ,ﬁ,f,ﬂlﬂ.fr-.-_. NN ),

Since all elements of matrix A are different, matrices B
and B=D"*RD cen be represented (see [21]) in the forms:

P M-S - P 5 N1 g
BV t) = 2 B (WA, B =2 BN

where B;f (.;l"j zf) are scalar functions. Using these expresei-
ons one can rewrite (3.6) in the form

(RO - PAS OB, (4% B> =0 .1
where {@) g’r’i;{x fr(@ﬁz))

The equality (3.7) is the fundamental relation between
Plzt), Plx,t) eaad F'(=,t,A), F7(=t,)) under
trangformations (3.3) of the scattering matrix. This equality
contains the quantities ’{'(/{M) Be (A% L), //’5 =0, ..., N-2)
which explicitly depends on spectral parameter MY, Wext step
(which is standard for AKNS-technigque) consists in the conver-
ting of the relation (3.7) into the form which does not con-
tain explicit dependence on )s#. In order to do this one must
calculate so-called recursion operator.



1V. Recursion operator

So it is necessary to be able to exclude the explicit de-
pendence on in the expressions of the form
AKON)P! = PAXND B (A" t) T, (f = 0,4, ..., N=1) in (3.7).
It can be done with the use of recursion operator. Let us calcu-
late it. Using eqqat?‘_{&ﬂ and equaticnaf"731'=-f'-.ﬂ fp) 3

one can show that satisfy the equation

2 (in) 47 £e LI/in
3 ?‘r (.‘.:I',f,/‘) i [A’ @'(‘#yf.p’aﬁm“@‘ﬁ Jl)‘ (4.1)

In virtue of the special forms f the matrices A ana
P, £) , all matrix element of %{") can be expressed
through N matrix elements (g {‘"”)j, - ﬂé -7..:, ,v‘) [14,2@.

Let us introduce the operation 4 orf projection onto the

last column of the matrix: (@d)‘:k - @iygﬂ.y} (.{.',,é-.'f,..., ﬁ’).
With the use of (4.1) and explicit forms of A and P one gets
[14, 20]:

iﬁa’”(éiau,,) = A ”éi (42)

’ ae/
where P = J = "pﬁrrf); (Q"Mw).{,{v= @;‘e V,ar e Then it
s not difficult to show that the operator P 1s linear on A¥
Ve d
S g v *Sw, m=0,4,... N. (4.3
Substituting (4.3) into (4.2), we obtain
, ff{,‘.#; """(fn,l
A g@; 0")":5?-@'4 (A) | (4.4)

where
N

N |
Gy = T e Y

el w=o

where Vy = 1 .

With the use of equations (2.4), (4.3) and (4.5), one can
show that the matrix operator 9 is & lowertriangular one:
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g 0 0 i
i‘?zi Sk | SRR, S
g& =y "91: @ﬂ 0 0 0 (4.6)

%f: %z ‘g’u- - ,%,_IU
where ?l:i-'i - —Na B V#_‘. ——Vyf_‘ 3 /im‘i‘? 2,.--,1"’;) 5 ?‘_* = 0’
k>{ and all the rest matrix elements of 3’1 are more compli-
cated. The elements of the first line of the matrix operators
84 are:

TR el e
(6,0_;3 =0, l=kr2,... . N; k=1,..., N-2.

Bl =C o EI) =Y, t=1,.. N

(4.7)

Therefore the matrix operator g& is a degenerate one.
As 8 result, the first equation (4.4) isg = rei}ation between
s (K=42,...,N) which does not contain A" , i.e. the con=-
straint. The expression for this constraint can be obtain with
the use of (4.7):

M f{'{x;
A=
where
M‘i‘!"f f-.i = 7
G = Chn-: (—-3) V{'m-—.f_l/&—.r "'14—.: . el

=y

The degeneracy of the matrix operator @ (its rank is
N-1) and the existence of the constraint (4.8) are the funda-
mental properties of equation (4.4) which serves for the calcu-
lation of the recursion operator. Such a situation is a typical
one for AKNS method [5-15]..

There are two ways to deal with the constraint (4.8):
1) the first way is to_golve equation (4.8) with respect to the
one of the components kN » (1‘-.{,.,., .Af) and to calculate the

11



recursion operator which acts on the space of (N-1)-indepen-
dent variables; 2) the second way is do not solve the const-
raint (4.8) and to define an action of the recursion erator
on the whole N-dimensional space of all components %y.

(kmd,...., N)

Usually only the first (standard) way of solving the
constraint was used in the framework of AKNS-method for diffe=-
rent spectral problems [5-—15:! and also for the problem (1.1)
[15] » In the present paper we will follow to the second way of
dealing with constraint. Let us calculate the recursion opera=
tor which acts on the N-dimensional space of all components

é;‘ﬂ*: Kf(-f‘,..., //) =

Let us denote

de
@'ﬁ £k=fdl£g "'gfnrfgkcr ’ @Aﬁﬁ £u gaﬂ’ (4.10)

e a&f ¥ 24 . ﬂ@_f
Xl )T (U, B) K/ E X
and introduce the operator M with the following matrix elements
_j" »
M; et i fS’.—_‘,ﬂgy ff " (z.,,{ﬁ-.f,..., N’) . (4.11)

In virtue of (4.6), equation (4.4) is equivalent to the
equation

,\"'g(,{’ — £, X (4.12)

supplemented by the constraint, which can be represented as
follows

X=MAX=MXw - (4.13)
The equivalence of two forms (4.8) and (4.13) of constraint

follows from the fact that the operator ﬁg has in this case
trivial kernel.

Then we introduce the operator @v such that ?"v?"fﬁ’ .
From(4.12) and (4.13) we have

£ogrin argiony .
A X:‘Mﬂff}f Ne ks (4.%)
The operator /l_,- M?[?’ is just the recursion operator which
acts in the whole N-dimensional space (‘r,..., Xy). Equation
(4.14) is compatible with (4.13). However, s 18 not the most
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general recursion operator which can be defined on the whole
N-dimensional space.

The general form of the recursion operator which acts on
the whole N-dimensional space X = (X,,..., Xy)7, AMX()) =

= AX(A) s
A=+ Ql@éf (4415)

ole >
where £ -f(t’_nn-, f,.,«) o . /Q-‘f: cery Qﬂ) where ;,
iy G w are arbitrary operators and & denotes a tensor
product.

Indeed the difference A "-As— A should satisfy the
condition A4 X =0 . Since X has N=1 independent components,
the rank of the matrix 4 is equal to 1. As a result, taking
into account (4.8), we have Ay =@ ¢ where @; are ar-
bitrary operators. (4.15) is proved.

Taking into account that £+M = O, we see that the opera-
tor A™ has the structure analogous to (4.15), i.e.

A” =A; * pr ®L (4.16)

where Q(a; are certain operators.

So there exist a certain freedom in the construction of
the recursion coperator which acts on the whole N-dimensional
gpace.

In our further calculations we will also need the operator
A adjoint to the operator A with respect to the bilinear
form

KALD =S [dz il Ble). o

iwd
' *
The operator A is
TR it Tt
A=Ns +£72 Q" where /1; =.9”’§/ M~ (4.18)
OCne also has '
.f.

A")" ’=m;)’ + 20 Qu . (4.19)

The operator Mt adjoint to the cperator M (4.11) has the
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following properties:
ExM'=M*, M*E,=E, , @1*)‘=—M"', (4420)
¥, ra

The operators 9* . and S; are calculated

by formulas

& N
= o =2, T =5 |, 5P Ut e85, 2D
(m=04,..,N).

With the use of (4.12) and (4.13) it ie not difficult to
obtain the operator _Ay =‘g/?ﬁ1 which acte on the suhspace
of (N-1)-independent variables /'t},,,.j,==/;(;.:‘r i ST 0) :

/\#XMJ ='.A,v XM . The operator A‘, adjoint to the opera-
tor AH has the form

Ay =M TG, (4.22)

lote that the recursion operator A# is defined uniquelly.

V. Backlund-Calogerc group

Here we obtain the nonlinear transformations V — V’
which corresponds to the transformations (3.3) of the scatte-
ring matrix. For this we must exclude the explicit dependence
on ,»\“’wh:l.ch is contained in (3.7). .

k ie the linear function on )L”:

Ai{/AM) =AM{£?)M—£ */?k, k -0,1,...,
where Aik = ihe 5 (bpkowidy s s iy N « For the quantities
<A*PI$E-A*&'P) 5 ﬂ{f=9,_f,_,_, NM-12) 1in (3.7) we have:

AU T -9 B> - AP, -AIE D 52

Then one can show from (4.1) that fl4]=

Firstly we see that A

N (5.1)

Ly & # -
‘#-ﬁ=£ﬂ&-”(é"%w)/4-* =(A”%I:} +ﬂ;‘i) aﬁ;A'f (5.3)
(4=0,1, ..., ¥-1)

where

14
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{k} J‘?!Z Sk-m Mb’-m ’ (5.4)
(Kk=0,1,.,N-1).
Let ua introduce the column with N=-components
Vix, ) = (l.;%(x,f), iy '.‘,.__f(_-,;-;,,a.’:))5‘“Ir and proceed according to
(4.10) from to X =b v ¥ ....fw)T « By using the rela-

tions A*’x —=AX, Be(AW )X = BN B)X
(k= 0,..., ¥-1) and also (4.17), (4.18), (5.1-5.3) we ob-

tain for {3 ?):
N=Z

_<Z B&(A#t)(,q /,ppp pAk(A ))@m’ -

el X
Yur = HZ-_G,*"*-M Vv-m,

(545)
Nt
= KXV BB XLV -2 V) > =0 .

”
The freedom analogous to that of /1 (4.18) and (.A‘b)
(4. 12} appears in the calculation of the operators .2’,& and
..-ﬂ,e too. These are of the form:

roed atipt * gt AT fﬂﬁ/
X =N Yy + Ty + 708G, , M =N R4 07) 70 T, (5.6)
At . (=0 .., N-1).
ole
it Qs =(Cpers-- - Tuwy) , Trar = (¢ (o S 5;(1}) where
Geews, - - - Gras 5 5_;{,&),.. i mfm - are arbitrary opera-
tore aml <

£ ;
? - + ¢ o
?l‘rj} ;,,.Z._‘, V#—u Fk-m 5 j}*} - 'Z.ﬂ J/;._” e~ (5.7)

The variables ,l',r, R /'(_,p' in (5._5} are not independent
and obey the conatraint (4.8). As a result, from the equality

(5¢5) it follows
-1

2 Be(ASt)(HV'-MLY) - HNst)etg—p (58

where B4 /N%L), (k=0,1,. .4’-.1,9 and f/A* Z) are arbitrary

functione entire on A and ._T:e, ,_,-ﬂ'& are any ope-
rators of the form (4.18), (5. 5} a.nd @rx,2) 1is an arbitra-
ry scalar function.
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Indeed, 1t follows from (5.5) that Z’ By (AL .
(Q'Z""V”-—,,ﬁf}") =27 where Z' is my ‘cotum for which,
its adjoint 2 obeys the condition :’_7,1/=‘ « It is not
difficult to see that the gemersl form of £ is £, =
= fAN L) @(x,t) by, ( - /V) where @/, .t) and
J (A", t) are arbitrary scalar functions. Using /i”/fﬁﬂ/ﬁ
we have Zr X (A) = @(x, t) by ( FIN: Z2)X)4 -« Therefore,
Z -=(f/_/j“f)g9k¢ end hence (5.8) is proved.

The relation (5.8) is equivalent to the following

-1
ﬁ:B*{ & (V' — My V) - 78 = 0 (5.9)
where Al =F7G'M"

lar function and

N A a’c.i
Heu = “%,, I JZ{W-*A*,Q”' J?’) (5.10)
(k=0 1,..., N-1).
Indeed substituting the expression (4.18) for A. into (5.8),
using (4.19) and the fact thet M €7=0 , we obtain (5.9).

and ﬁ-’/-:t‘, B arbitrary sca-

So (5+9) gives the general form of nonlinear transforma-
tions V"-" [/‘r which corresponde to the transformations (3.3)
of the scattering matrix. Now the operators ./l_: y %;k ’ "'&.:";;ﬁ
in (5.9) are defined uniquelly and all uncertainties connecting
with the existence of the constraint (4.8) are contained in
the term 5*5-’.5 only.

Multiplying the left-hand side of (5.9) by M' a.nd using

the relations u"t’ = 0, MT(A})" /A")”M* o Mt

- ‘:!:t"{#) s M /Zéyk — ﬁ;ﬂ we obtain
N-1
ZB&M;, L)Y Ko, = ~AlV) =0 (5.11)

where nﬁj{.:ﬂ,} i//l:%; -f- /'f"'ﬂrij, _,(/,.;;,; gﬂ;ﬁﬁi +.M1Z‘??yé i

Emphasize that the whole uncertainty disappear after pro-
ceeding from (5.9) to (5.11). The relation (5.11) is just the
same relation between V and V which can be nbta.ined from
(3.7) by excluding the explicit dependence on /‘ with the use
of recursion operator Aﬁr (4.22) which acts in the space of
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(N=1)=independent variables ,l’mj, ﬁ'{//f_f,._ /ZA”-J. o) 7 .

The system nf equatiuna {5.11} due to the speeial forms
of operators /]_ ‘%ﬁfﬂ and v—ﬂ,&{w contains N-1 nontrivial
equations. The E:,rstem (5.9), in contrast, containe N nontrivi-
al equations.

It ie easy to see that the transformations (3.3), (4.31)
or (3.3), (5.11) form an abelian infinitedimensional group. We
will refer this group as Backlund-Calogero group (BC-group).
BC-group acts on the manifold of the scattering matrices
{5@,1‘)} by the formula (3.3) and on the manifold of the po-
tentials / [/z, ;‘f)j by the formulas (5.9) or (5.11).

- Backlund wee the first who considered concrete transforma-
tion of the type (5.11) (see e.g. [22] ). Calogero constructed
the general transformations of the form (5.11) (for the case
N = 2 in the gauge 'y‘; = 0) for the first time [23,4].

VI. Gauge invariance and manife gtly

gauge-invariant formulation

Let us consider the transformation properties of nonline-
ar transformations V'*"'" V’ (5.9) and (5.11) under the gau-
ge transgformations (2.1). Let the guantities /‘r I/ and Ff

V are transformed independently with the different gauge fun-

ctions gr/x,Z) and G/xZ):
-t F=6.F, FlefF'= (6.1

VLT =2V = 138), V'Em = epp )y e 7)
where (Gs = 6.&-‘): (s é‘/ﬁ‘) and G‘/f) ’ Z'{?), 7’/?)

are defined in sectinn ) 1

Let us obtain the transformation lawa of the quantities
which have appeared in the previous section. Prom the definiti-
on @/Z,7,4) end (6.1) it follows that

T y o '—?"& At =
y Yx,z.A)M i /ot ) =G, t) D Vot VGt (6. 2)
For the colunma;t’ﬂ/é;,.. - é:,)r and
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,%,; ﬂ/éih: éﬁ-iﬂ, U)?' the law (6.2) gives
z I‘?&Fﬁl f" ?i"g/ﬂ?)/r :'ﬁ/f/?ﬁf;)/f; #J%gjzgyfﬁ’yﬁwfb,j}

Using the explicit form of the operators &£, (4.9), trans-

formation properties [ V/ ana f@,},)iﬁg/ﬁ,} we get
N
2 O Toum (30 0) = Bl (mtyecs H) (6.0)

where Z; =r£¢{/lz ?9; f.i'-,f,..., "'“'f) « In particular, for
M=  from (6.4) we have ﬁy?% _5;—’2'*- .

It follows from (6.3) and (6.4) that the congtraint (4.8)
is the gauge invariant one:

A '
2 L% - %gf’mﬁ : (6.5)

Then the relations ,‘?’=ﬁf -"ﬁ?‘}:’mg “ﬁ“f-fﬁﬂ/fy)
give the transformetion law of the operator M (see (4.11)
and (4.13):

/4% ﬁ=:f/}7.r,,ﬁ}/»f ﬁ'/ff,f;} (6.6)
where /qf"/MﬂZ p’j .

The transformation law of the recursion operator _/1_: un-
der the gauge transformastions ig the following

A:Mﬁsf ﬂ(ﬁ‘*/@ﬁﬁ))_id:ﬂ-*!?:,f:) + ZH‘-@ & : (6.7)
where Jﬂfﬂﬂ;/y, p'f) , Q?‘=/@t"-: Q;) ; @,:

e R are certain operators uniquelly defined by the
gauge transformation.

A # ¥
Recursion operator ~ on the contrary t’-"-/l-.s has homo-
geneous transformation law

L =gy A} 7, 9:) (6.8)

o~ f def
where -A.u’ g :{P: 177 - The relation (6.8) can be pro-
ved by using the transformation law (6.3) and the fact that
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- ./'1: actg on the_gubspace of N-1 independent variables
> ”
Kot ™ f W55 Pt 0]

Prom (6.8) and relation Mflffﬂﬁ? it follows that
()" = G laa) ) t12,) + %0 QF (6.9)

* * * # *
where Q’#J =/ prrw e Gﬂﬁv) and Ofm: i Gﬂﬁ.l are
certain operators which are uniquelly defined by the gauge

transformation.

Using the gauge invariance of the relation

3 * ~
~SQP-PAY) D ) = K X (Hu V- V) > it is ea-
8y to obtain the transformation laws for the quantities

Hen V' —MiV  wmd KV MV _
%iyf"ﬁﬁ;‘*V:f%:fd/ﬁ;;Vi ,&W "ff}f—, (6.10)

%’zg’-myw@i Heir V-lllyey V) =8, 4-2)
where x:L"‘JéL/IZ V), n@f’siji ":&ﬂ:/ﬂ V) and so on;

ﬁefg} t), (4=20..., V-1) are certain scalar functions uni quelly
defined by the gauge transformation (6.1).

From (6.9) and (6.10) we obtain the transformation laws
of the nonlinear transformations J/—> Vf (5.9) and (5.11)
under the gauge transformations (6.1):

Téfﬁéﬁf N KV ~Miyi V) —27 P =

=2l ) 2 Bel B TV L) -27), ™

& SN AL gy = =15
=Z72.9) g By, ) Hefer V=Hlir V).

where the function 53- can be expressed through ﬁ ' l?f, ﬁ,{.
and & (k = 0,1,044,0=1). In the case N = 2s ﬁ,_., = const and
B, = const, this expression is given in section 8.

From the form of the relation connecting ;5' with @ ,C{:'r. 8By
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Bieand Y (k=0,..., ¥=1) it follows that for a given

@ it ie always possible to find such a gauge functions

G (T, T/, Gz (%, z) to obtain any function ,@' given in ad-
vance., In particular, one can always convert any 2 into

& = 0. Therefore the transformestions V— |/’ of the
form (5.9) with the same functions By , /é—ﬂ,.f,...,fV—.f_)
and different functions ;5" are gauge-equivalent to each other.
Thus, the whole freedom which appears in transformations

I/ —> |// (5.9) is of the pure gauge nature.

Gauge-invariant formulation of the nonlinear transforma-
tions V' —> V' , which correspond to the transformation law
(3.5) of the scattering matrix, one can obtain from (5.11) by
using the special gauge transformation from the potentials V,
V‘r to the invariants W , W’. Or equivalently, one can to
pick out from (5.9) its gauge-invariant part, this can be done
by multiplying (5.9) by M'.

Indeed, multiplying (5.9) by M+, we get (5¢11). Then we
make the special gauge transformations (6.1) from the potenti-
als V, V* to the invariants W , W’ s

W=2/8)/ + P15, W=z/gHy » V78 (6+13)

o
whare 9,y t) = Fi= cap (B S5 Vialei2) s glt)= i -
= W/Lf#fgéauﬁiﬂg {/2::13) we have 7 Jaz
Nt

2 Bu N, N AW M W) = P
=7 ..1

N-1
~T5.2.)7( > Belha, NV Mo V)

where

| NS E ), Aty Z T i), My 22, W) (6215

Ur

S0 the nonlinear transformatione of the BC-group (5.11)
can be represented in the manifestly gauge-invariant form: : :
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g 8, //1;; ﬁ}/-f,{-;w W;--f%;; W) == 0. (6.16)

Now let us pay attention to the fact that the general
Backlund-Calogeroc group, which was constructed in the previous
section, contains as the subgroup the group of gauge transfor=-
mations.

Indeed, let us consider, for example, the transformation
(5.9) with B, =1, B¢ =0, (£=2,..,/=f), It has the form
V’-—- V + Z"ﬁ or, in components,

. & i
l/é = Kf"‘/@/-‘z}fy jg Gt Vi’v‘f C}%’—Fsﬁ#/ -

This is the gauge transformation (2.1) with a gauge function
oz t) = (1- 2m2) ™"

Emphasize that the potentials V . V'{ in general trans-
formations (5.9) and (5.11) of Backlund-calogero group are
transformed under the gauge transformations independently with
the different gauge functions gr/%,Z) and Q= )

VII. General form of nonlinear equastions

BC-group constructed in the section V contains the trans-
formations of various types. Let us consider its one-parameter
subgroup glven by the matrices

-1 z’
B/)t) =T/ t) = 2 ezp -'fd’SQt,[/!fs) A% o
£=0 Z

It is easy to show that the transformation (3.5) with the mat-
rices B and O of the form (7.1) is a displacement in time t:
S"F/,Lf} = S/A. i") « The corresponding transformations
(5.9) and (5.11) give, in the explicit form, the time evolution
of the potential V: V{r,z‘.) e Vér, ﬂ'v . Different evolu-
tion lawe correspond to different functione Qﬁ //i"'; ?.':) - An
identity trensformation is given by the functions A, = 1,
Be= ... = By—y = 0.
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Here we obtain from the transformations (5.9) the corres-
Ponding nonlinear equations. Let us consider the infinitesimal
displacement in time: 2‘."—4-2‘.'3-:-?..*;5 where £ —¢ . In this

Vi@, 2) = Vjz,t ve) = ffz,2) + € ff'/’——"? ’

BelMt)=4o € (Mt), kmt 1,..., -y (1D
P(z,t) = cpfer)

where ?/.:r,t) is arbitrary scalar function. Substituting
(7.2) into (5.9) we obtain

£ o W=t
e e R v

where /_/'; ng:/y':.V' ) z:;é o (%E -'._/Z{g;ﬁ)/y_y’ and
the operators _A;, %ﬂ, : c/f{sjk are given by the formu-
las (4.18), (5.,10).

The system of N equations (7.3) is Just the general form
of the evolution equations integrable by the problem (1e¢1) via
the inverse scattering transform method. The transformations
(5.9) are the general Backlund-Calogero transformations for
the equations (7.3). In the cage 28 /0t w0, lk=p . .y V1)
the transformations (5.9) are the general auto-Backlund trans-
Tormations for the equations (7.3). Infinite-dimensional group
of auto-Backlund transformations also containg as = subgroup an
abelian infinite-dimensional symmetry group of the equations
(7.3).

In more details, the properties of evolutiaon egquationsg
(7.3) have been congidered in [20] .

22

VIII. The exampleg: §N = 2

The general formulas (4.9), (4.11) give
bi== -V + Y Y, gfm-2dei -l
(8.1)

r_qg - ah o0 ax T 3
O @ pemig oy Syt i

M =

;D

From the formulas (4.18) and (4.21) we have for the operator

Al
. | WRWIE)”, @ _%7 -G )er) e ) (8.2)
- ) “-elet)s, (‘_{f. V) - Ve ety e )

For KV =MV ( k=0, 1) from (5.7), (5.10) and
(8.2) one can obtain the following expressions

e e
Vot (m?“'?’(*f_f(ﬂ-ﬂ?) (8.3)
' My V = e = .
= J b eap(-5 J(h-1;) +(Vi)eap (-4 F J012)

Let us write out the basic quantities and relationas for
the gauge transformations, The formulas (2:1) and (6.3) give

I Z-Mﬂ."y.i'?a(f'/f?al(f).

ZNgeg) =9 "9 |, £ (8.4)
0, T::‘- V, =l +293[i-i)_

In the case N = 2 there exists only one invariant M,whiuh
has the form .

M-u—f&u—%m‘ + {815)
It was ehown in the paper [24] that the Miurs and the
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Gardner transformations IEE] are the gauge transformations.
Indeed, the Miura transformation

V:=—§—c)1z§—fff§2 (8.6

as it follows from (8.5) is the gauge transformation from the
gauge (Vf'ﬂ Va) to the gauge (ﬁ, Y, = 0) . Let us consi-
der the general lineer gauge o.‘,% * o V; - ) where &Xp and
o4 are constants. One can introduce the function ¥(=x, t)

such that Vo =g U V, =B, U where B, and f: are so-
me constants (daﬁo + Oy By=0) . Prom (8.5) we obtain the
Gardner transformation y
2
e g i -Ei-b _i.& 272
H == —r&' H I 7 34’ r (E-T}
Be 2 B 7 Po

ag the gauge transfomation from one general linear gauge
( = .U , = B, U ) to another one ( H, - _,6 ’
Tf: — ja;z?sa ) with g/ = O,

With the use of (8.3) and (8.4) by the direct calculations
one can for the relations (6.12) the following expressions:

KoV ~HihV =T (90:9) (Koo V-ALV) + ¥, (k=0,1) (8.8

where ¥, =7-2:/9:+ ¥,= fzt/‘)ﬁ/ﬁp"@(”f_-ﬁ(p; _‘W/p '

Prom (6.4), (8.4) and (8.6) one can show that (6.7) has
the form

Ay =5 3)" N, % (90.3) + ?*) e (62, 0}) (8.9)
where Q. =g, (3@/a)E)", 0F = p(A/aNE)E ). 5

In the case B. {A:, t)= B, = const s B ALEY T .
= B, =const  the relation (6.13) is

2 BTV - Mi )= = 715 B2 BAAGTHou V)- 7'§) (8.10)
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where ;3\"(';25 — Bolo = 8B:1%) (9:/92)
in {8.8).

end §, , ¥, are given

/
The nonlinear transformations Vy —V of the form
(5.9) with the constant 5, and 3, are given by the relations

BL-H) + BOV)eso £V + 9 +VedP~(KVDP =0, (8110
Bo(Vi=Ve) * BV ~Vo + F(Ai1) * =YD}

(Be11b)

(4Jun) » 209 -@i-wp =0

Let us also present some nonlinear equations integrable
by the problem (1.1). From the invariant part of the system of
equations (7.3) we have

o \ Pt WOWe =0, Wom y=FO,-FV" . (812

In the gauges (V;, A =0) ! (K.-g} V) and
(Vo=pel , V.=p8,2) from (8.12) one can obtain the
KdV, mKdV and Gardner equations respectively:

M r OV, +6Vdlo=0, (8.13)
3_1/:. » O = 2V, = (8.14)

U 3 i
-}f- + XU+ pUIU - z—ﬁfaz’c}zz 0. (8.15)

Let us return to the transformations (8.11). Putting
V,= V=0 end excluding then the function @ one can ob-

tain the well known Backlund traneformation (BT) [22] for the
EdV equation
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28,(V'~Vo) + 8,0(Vs' o) + B,(V'~V.) [ (V- Vy)=o0

or
O (V+Ve) + (VW) + |/(3§J§)’_2(ur_m) =0  (8.15)
&
By performing an analogous calculations in the gauge
Vo = VJ- o one can obtain from (8.11) the relation

{0+ F V)M L4 ork/+y) + B.(v/-1) -
- SHO0) JO-1)) = o

From this relation we have the well known BT for the mKdV equa-
tion

280 (V= V) » BV * V) -54(vi-) S0~ 1) = o .

Integral term in the last equation can be easlily mludad. and
the BT for the mKdV takes the form

d(W'+V,) + %(K’-Pﬁ)//(%)’f (W) =0, (8.17)

The function @ can be exeluded from (8.11) before the
fixing a gauge. Excluding ﬁ after some calculations one can

28, (WS~ W,) + B,0(W,*W,) + B,(W W) [~ w)=0 (8.18)

e.g. the invariant part (6.15) of the tramsformations (5.9) of
the BC-group.
Let us fix the gauge in (8.18) by the following way:

(Vo=poll, Vi=ptt) end (Y'=g o', }/=p,tf). Then trom
(B.18) we have

B, (W, - W) + %B{hﬁ’ﬂvﬂ) > %(M’—w;)j(m*’-% s
[ 25 - F L B ) ¢ B o) ¢ o
F 2
> %[/yf_ﬂ{‘i‘[ﬁ#/y;_ﬂ) s ’%r_ (ﬂrz_ Mx)]j i

From (B.19) we obtain the Backlund transformatinn for the
Gardner equation (8.15)

28, (u"-u) + B, o(u'+u) +
x 2
e 8o [t ] = 0

The integral term in this equation can be excluded and, as a
result, we get

() + 01 (2] g (o) + B farwg® = 0. (520

In the mixed gauge ( U, ¥, =0), (W' =o, J.’) from
(8+18) we obtain the following relation after exeluding the
integral term:

A-FN - FU Vo) # (-FOK)-F4/* V) -

(8.21)

'V%‘f'—')i-z(—faz’-fgﬁ%) =0 .

The transformation (8.21), asfit is easy to see, is the pro-
duect of the BT from |, to Vo (BT (8.16) for the KdV) and Mi-
ura transformation |, =-Ef-3.|'4’- f- V;’; "

Analogously one can prove that the transformation (8.18)
in the gauges (Vo=0, V, ) and (/H:‘ W = 0) 1ie the
Product of the two transformations: BT (8.17) for the mKav

V*’ = g RS 7, .2
from V; to Vi and Miure transformetion %  frad i Ve —Tk’,
from L;- to %t
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