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Abstract

The Maxwell equations in a weak gravitational field are
reduced to a single scalar equation for a single unknown func-
tion. The same result is obtained also for slowly varying gra-
vitational field of arbitrary strength up to the terms of the
second order in the photon wave length. The refractive index,
phase and group velocities of electromagnetic waves are calcu-
lated.



i. The Maxwell equations in a gravitational field can be
written in the form

jﬂAgﬁau_f_LAE#_f_if:’*ﬁ;A:& (1)

where agf“’* is the metric tensor, /C:“ ::.afq,a = i/ﬂ is the
.slactrom}ggnetic fiede Etrength,y% = Jﬁ,ﬂ ? i_:J =
=lf/—f/! é,}“(//;_j?}?’“) ,andé,, :j/“?ﬁ"g’”jﬂ >

In what follows light cone coordinates x°=7-2 and
z’= /Z‘-h?/%:? will be used. The coordinate axig =z~ is chosen
80 that it coincides with the null geodesics along which the
electromagnetic wave propagates in the limit of infinite fre-
quency &’ ., The coordinate frame is further specified by the
condition that along this geodesics the metric tensor coincides
with the metric tensor of the flat space-time: dcpr""": j’/“,
f"":fﬁz /, /""": hrtr = = Oy (77,17 = L2 mi all the
other components of #* vanigh, Moreover, the Christoffel
symbols along e in the chosen coordinate frame can be also
mede vanishing (see ref. | ) and so the deviation of fﬁ’”

¥
from its flat wvalue /ﬂ -——if#”—-fﬂy is of the second order
in 2 lec s 0 1.2 )

Starting from equations (1) we obtain in this locally
inertial frame a second order differential equation for a
single unknown functions We proceed along the same lines ag it
is done in the case of electrodynamics in flat space-time.
Differentiate eq. (1) for V=#= 1,2 with respect to IG, take
into account the second pair of the Maxwell equations

é};ﬁy*éjﬂﬁj'ﬁ'ﬁvﬁ = (2)

and then once more use eq. (1), but with v = O. In this way
we get

(=284 +8.0.)F0 =2 [({" 4 +L)F e+
+ z:fﬁ,?jﬂuaa[(/*“gy LN +1j"@¢]z 0

2 2
Here # and » equal 1,2 and 3,..&,:@4—% .



Assume the wave length Mﬁj to be small as compared with
the scale £ at which the gravitational field varies and alaso
in comparison with the size of the wave pecket r:?", and in its
turn d’-r:'{'ﬂ Going beyond the geometric optics approximati-
on, we shall take into account terms of the order of w‘?&/'? am'/

¥ Cr_i"?é?/i w d® and & i 34 (evidently fx /‘iﬂ/ o = 0,1,2)

This will allow us te calculate the dependence of the focusing
or defocusing of the wave on photon polerization and correcti-
ong to the phasge and group velocities.

We shall look for the solution of the form

na—ef*}a/ Pk g +£&J/+£;ﬂ+faj /Z;, (4}

It can be seen from eq. (3) that %ﬂ—'f’:“‘r} at "= (o¢ = Dy
1,2) whereas y and 4 are in general nonvanishing.

Egs. (2) with the account of expression (4) lead to the
following estimates

”C;m i Ff,é‘ M/J-"- w—‘{)/c:m,*
,L:r# et (a/"?.g_w-jjﬂa*

Hence with the taken accuracy we obtain two equations
for two large components. of the field:

[-233 +3.4, ~ 179, = (L°+3 (*)3, -
~(L"+24,/°)3, = 4L°]F,
(VIR Way /X Vi Yoy R
P(LF =873, + (LT =L~ 3 /)4 -
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where #7, A, K e 5,2

It is convenient to introduce new field variables
defined by

F..=F, ‘é,/”f (6)

The system of equations for f,; s obtained with our accu-

racy, has an antisymmetric nondiagonal part. It can be diago-
nalized in terms of helicity states

5:%/:,15 o T (1)

The final equation is

{ 29,0, + 3,0 ~ {79, - ~ 288, /"4, 4, +
+23&‘Z¢?¢ e Qijﬂ e m/,.,,; +£?_fla??jmm) g
"(fﬁ%ﬁm “Qtjfm —GZ,, .7 *#-‘2-/6},., f:/dym-f-'

‘ffﬂ ‘gfgmfmf o /?ﬂ?:’..? ""‘/‘J[("?f .as‘éﬁ;)ﬁz*f-m]
+/f?ajﬁ _‘2';}3& 7+ ,aff;e ‘ifgf}é —

= /é;j.é:i‘ _é‘jja "L"fgjf‘? “@gfﬁ)@ i
e iﬁﬂm(é‘f Cnt g&’ff’ﬂ}"LZ"?ﬂ.—?aj/ﬂ = &+

Here a: uauall:,r summation goes in all repeating indices, jf‘”‘ =

-F:?
— ?x‘u T ;uv‘; ;I ]/Jj‘ +£ ﬂ!/ﬂ'_f e _i'.é,é,{'v The curvature
tensor in our approximation is equal to

f
R/m«ae-,) :F/ﬁu‘ajwz “""iazdng _fgv‘;z vA "‘é’:éﬁ«;}

although the gravitational field is not assumed to be weak.



2« In the weak field approximation eq. (8) considerably
simplifies because the derivatives J,£, end L, are
proportional to the gravitational field. Thus we get

(243, +d.4.
where

V=28 0~ . grcs # 58 o+ A8 20 =3 10

.__a,??;;—d'a.?y-ﬁ W/é'_—:{_? (9)

W: /?;3;,_2 4"(?4?;3 "_é":a?#rfmj +‘}i’£‘?fjmm = 'l
+£'/lpﬁf£3a k= F‘;"" [é}fc’m = E?;]ﬁw)_/_

It is noteworthy that this equation is valid without the
assumption of smallness of the electromagnetic wave length.
Just for this purpose we retain the term fﬂ@j,,m in W which
was omitted in eq. (8).

We look for the solution of eg. (9) as (4) despite eq. (9)
being valid in the weak field approximation only and so the
exponentiation of small term ( w}é +§ﬂ+c-.? !;( ) is not absolu-
tely consistent. This form however is convenient for calcula-
tion of the phase and group velocities of the wave.

Substituting expression (4) into eq. (9), we obtain the
following coupled equations defining ?ﬁ 2 ;ﬂ and /( in the
lowest order in gravitational field:
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In particular it follows from (10)

A= (H/ JV+Jjﬂ/+
..._/a.{r S ZE/H/-.L (11)
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Then with the help of the identities

f; gmj;;**‘?l? giﬁmr +J<g¢?‘?w A g A
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expression (11) can be rewritten as

f?;/r.)/*- //Przf..é' # A Rizg ) +

: (12)

.:/’ / rd F i
4'2//—73@@3 /ﬁ’f)+ ﬂzﬁf e G K.
Note that cg./( doea not depend explicitely neither on

the metric tensor, nor on the Christoffel symbols and is deter-
mined by the curvature tensor only. In the source-free aspace
region where ,‘E‘,‘.y = 0, integrands in eq. (12) wvanish and the
result has the remarkably simple form

'52*/( 23—///‘;2*3,',2 +‘f‘/}/?f£3d) (13)

3. Now we derive the expression for the phase velocity of
a wave in a gravitational field relative to an observer at
rest. Three-velocity of a point which is displaced by four-
-vector o2* is < :

i L L az : (14)
» afz*z"-f-ﬁ- dz/

Here indices ¢ and run over space values 7 , ¥ and £
and ¥ is the time coordinate.



Let a surface of a consgtant wave phase be deseribed b:r
the equation ﬁf’ﬁ;%@i’f/:tﬂ The displacsment of a_:juint on this
surface cen be presented ih the form

.s/.ff”m/a/”q— ke (15)

i
where ,a.‘/u =?:L & and 7= {%f_j '{?(1,0,0,0] is the
four-velocity of an observer. The condition of a consgtant pha-
ge a/w= 0 means that /«?,, d/-?'/a= C. Hence

e /’fﬁr v/, (16)

Substituting expression (16) into {14), we find 3
!&-F
U /—Lﬁ*’# (17)
/%
2 £
where « = /”Z? +ﬁ‘j?/'5/£‘-’-‘/ﬁ «/ i the three-veloci-

ty squared.

The inverse three-velocity can be interpreted as the re-
fractive index # for light in a gravitational field. After
simple calenlations we get

v=n*= /—/ﬂ/fzﬁyaﬁ;ﬁ-é// (18)

One can see from eqs. (10) and (13) that on the axis =z~
the folleowimg result is valig

- 7
W= f:/_'c?ﬂf /?fff:e. {19}

It follews, however, from the same formulas (10) and (13) if
the explicit expression for V ig teken into account that in
arbitrary coordinates the refractive index depende not only

on whe curvature tensor, and it is not therefore g covariant
quantity. It is quite natural: e.g8., in a coordinate frame
‘whewe bhe axes ..z”’, = 4od rotate along the trajectory, # should
evidently depend on circular polarization J .

*

Using eq. (18) one can calculate group velocity of the
wave packet:

S o
v:/;%/wﬁg/ =/+-:§_;fﬁ'€21: +£F££f£.(2{j}

S50 the first corrections to the refractive index (in the
coordinates usedl) and to the group velocity are determined by
the scalar curvature of the two dimensional surface orthogonal
to the wave packet trajectory.

The sign of the correction is not definite so the group
velocity can be both larger and smaller than unity. This howe-
ver does not contradict the causality condition due to which
the wave front velocity should be bounded by unity. This velo-
city however is equal to * &r.f?'f(/aﬂ) and in accordance
with eq. (18) is of course mﬂgy. In this situation 2+ > 1
mesns only a corresponding defermation of wave packet.

The wave phage 45? has & nonzero imaginary part which
leads to nonzerc imaginary part of the refractive index:

Inn=In(549+540)=
:_;5 /éjﬁ +ﬁ;;;@;/+ e
*‘;,%5 ’e’.?.?d? "I'/&/-zﬂ/‘g’ﬁ.? iy ‘.’3 iffZ/

On the axis .27 z:?, 77 = 0 and if in addition the wave
propagates in an empty space (where /,l;.,,,a- 0), the expression
for J[s4r#1 simplifies considerably:

A

So if .r?,g_m # 0 then the wave amplitude rises for one
sign of the circular polarization and decresses for another.

4. In connection with the results obtained above we
would like to comment on the existing in the literature state—
ment about a superluminal light propagation in a gravitatio-



nal field when radiative corrections are taken into acecount. In
paper 2 it was noted that QED radiative corrections lead to a
change of the characteristics of the photon wave equations for
frequencies that are smasll in comparison with the electron ma«s
#e « The contribution to the refractive index which results
from this effeect proves to be negative for one of the photon
polarization states, and does not depend on the frequency in
the above mentioned limit « <k 4%, ., Assuming that Jwr# 1is
positively definite and using the dispersion relation for #(w)/
the authors of Ref. 7 conclude that #lw—soe )< ftlw=0)
and thus f?(ﬂ—.nm)_{ e Consequently for one of the polari-
zation states causality is explicitely violated. The same sta-
- tement is made in Ref. 6 for neutrino.

From the above results two shoricomings of this considera-
tion can be seen. Pirst, the value of #/Z/in s gravitational
field in fact was not calculated. In particular there exists
the correction (19) to the refractive index which is much lar-
ger than that found in paper 3 « Expression (19) however is
valid only for w.f/>> - (D ts the characteristic scale of
the gravitational field), and so it can-not be directly
used for & = 0. Second, the sign of Jwr# 1is not definite
_fnr wave propagation in nonhomogeneous media as is seen from
eqs. (21) and (22). The physical reason of it is evident. In a
homogeneous stable (i.e., without particle production) medium
the amplitude of a wave changes only because the particles g0
out of the beam. This corregponds to the condition Jwr o > & .
If the medium is not homogeneous, then the focusing (or bun-
ching) of the beam is possible. This leads to an increase of
the wave amplitude and thus corresponds to [m iz < (7 .

This statement can be illustrated by the following one-
dimensional quantum mechanical example. The quasiclagsic ex-
pression for the wave propagating along 7 axig in =a potenti-

al ﬁ?{fl’/} is

}é = /;zf ;/[/_f // %‘”?b/f/;f fl/“*’ AN/ (LY 7

Por -6 3o lf - it oan-be rewpiitén-as

10

}ﬂ =exp L2 —‘i/;:”éf/&y-f- : 4/({‘-?’//)/ (23)

G e’

Hence [m ﬁ(ﬂ,‘f):“éw; ;?1,'_ « Evidently the sign of

T #2 is not definite.

Thus the conclusion made in Refs. 3,6 about the caugality
violation does not seem justified. Unfortunately our early at-
tempt T to refute the conclusion of these papers alao wasg not
successful.

b+ Return to an arbitrary gravitational field in which
wave propagation is described by eg. (8). Making substitution
(4) one can easily get coupled nonlinear equations for the
functions 5} . and A . The size of the wave packet being
small in comparison with the characteristic scale of the gra-
vitational field, it is convenient to expand these functions
in powera of 2% ( & = 0y1,2)s In particular, the accuracy
with which we work, allows us to keep in )ﬁ terms up to the
fourth order:

5 o / E § o
§=Ldylz)z ju L e (2% :/:f -

—— a2 d
-+ 72 ,,/.3,; /.r/,:z*

From the equation for /&
A Y L e & T T Mt
the following equations for }47;. oan be obtatned
8 g + thun i = Ricss (26)

{hErE G{,‘ﬁ- 011’2 and = 1[2}1

The functions ?i? ' yag,,?éw satisfy an independent
subsystem of nonlinear equations

3“, Eare 'F'%tu %ﬁrﬂ et ® [ (27)
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After }é;# are found, the calculation of yi, ',Vig is reduced
to the solution of a system of linear equations

%%@M -+ }é?ﬂ %Jﬁ.ﬁ? o f?jaj;,.; = ':28)

And finally, at known f‘éw the function %{w is found in

quadratures: 4
x
%ﬂﬂ "‘//:? /ﬂaj’a “/41#/&&):-/. (29]

The equations for the functions ?é?gr and y%yﬁﬁf can be
also eagily obtained from eq. (25), We do not write them down
because they are rathcr cumbersome,

The equations for andidy rrove to be linear. In our
approximation ?ﬁ can be written as

;p:—..}/‘/ﬂ/zy +;ﬂa‘,(’2’ﬂ2’x+z{}/ﬁﬁ(’zf/fﬁﬁ (30)

and,)f should be cousidered for %= 0 only. The equation for
}ﬂfwﬁ?"f) is simple:

%jﬂ""”:z‘:— /dﬁ, +/_&,/ (31)

but other equations, their derivation being also astraightfor-
ward, take too much space and so we do not write them dovm.
Using eq. (17), one can find refractive index # at 2%= 0:

y :/-:L;%[/{’gé/{/ +§/&ﬁ/if(ﬁgﬁj"7 (32)

where ﬁa are defined by the expression (30), It follows in
particular from (32) that the refractive index, and phase and
group velocities as well, are independent of the photon polari-
zation in our locally inertial coordinate frame.

One can also easily find by iterations nonlinear correcti=-
ons to the real and imaginary parts of the refractive index.

For a further general investigation of the solution one
should know the explicit expression for the gravitational field.

We are grateful to L.P.Grishchuk, I.Yu.Kobzarev, V.V.Soko=
lov, O,P,Sushkov aud A.I,.,Vainshtein for useful remarks.
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