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Abstract

The Metropolis method of Monte-Carlo computer simulation
of paths in imaginary time ie applied to several quantum-mecha-
nical problems such as nonlinear double-well oscillator, atoms
with one or two electrons and light nuclel up to Bh‘. A method
of calculation of path integrals with the absolute nopmaliza-
tion ie proposed and used for the cglchlatiﬂﬁ'of the Green
functions.

We have really found this method capable to evaluate in-
tegrals with about 103f4 variables. So, the properties of quan-
tum systems with a number of degrees of freedom up to 10-15
can be caleculated starting from the first principles.
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le Introduction

Feynmen formulation of quantum mechanics [1] differs

orucially  from more traditional Schrodinger and Heizenberg

ones. As in claessical mechanics, the main object is the parti-.
cle trajectory X(#) . The statistical nature of guantum mecha-
nics becomes in this langusge very transparent: the trajectory

X(#) is not governed by any equations of motion and can be
arbitrary, but with some.probability. The corresponding weight
is MP(ES(X (:‘)]) (where S is the action). Such approach
naturally explains the physicel meaning of Minimal Action Prin-
ciple of clamssical mechanics.

- From computational point of view, the striking feature of
this approach is the absence of any differentisl equations. In
some sence, the answer is written in quadraturs, but as a path
integrals. So, the problem is to develop effective methods of
their evaluation. '

The important case in which it can be done analytically
is the Gaussian one, when action depends quadratically on its
variables. We remind that a number of famous results were ob-
tained by such a method, in particular the Peynman rules for
perturbation series in quantum electrodynamics and, more re-
cently, for nonabelian gauge theories. Ome should also menti-
on here semiclassical methods, e.g. related with the famous
"ingtanton” solution [2] in QCD.

However, it is desirable to evaluate the path integrals
of arbltrary type, et least numerically. The most urgent is
the situation in yuentum chromodynamics, where no evident
small parameter is present and neither perturbation theory
nor semiclassical methods can describe the bulk properties of
the ground state. So, it is not surprizing that the possibi-
lity of numerical evaluation of functional integrals was firet
gtudied in this context. :

Historically, the work by K.Wilson [ 3 | was very important
because it has stressed the analogy between the gauge field
on the lattice and spin systems, discussed for long time in
statistical mechaniecs by various numerical methods. The ecruci-
al step was made by M.Creutz [ 4], who has shown correct beha-
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viour of the Wilson loop in the continuum limit. During laest
few years many calculations were done by this method, see e.g.
re?iewa[:5] .

However, ag it often happens at the discovery of & new
approach, the desire to obtain results as soon as posaible
goes ahead of reasl understanding of the accuracy obtained. It
ghould be stressed, that in QCD there exist no competing the-
oretical method to compare with. Experimental data are not di-
rectly relevant because of several reasons, in particular,
due to the (completely uncontrolled!) neglect of virtual quark
fields.

We think that it is reasonable to start with the most
diffioult problem of physics, and it is much more reasoneble
to consider firet several examples of inoreasing complexity
in which the results are mown. Thie is the main sim of the
present paper.

The firet step in this direction was made by Creutz and
Freedman | 6|, who has considered linear snd nonlinear oscilla-
tors. However, they do not consider methodical questions in
details, using these problems just for illustration of the
essence of the method to wide audience’.

In the present paper we discuse the following questions.
After the introduction and discussion of the method used (8 2
we consider nonlinear two-well oscillator in § 3. We discuse
methodical questionsg concerning the accuracy of the results
obtained. We have found, in particnlar, rather nontrivial de-
pendence on the discrete time step @ in the case when the
barrier penetration probability is low. We also present the
comparison of our results with semiclassical formulae for le-
vel eplitting and discuse their validity region and the me-
chanism of thelr breakdown.

However, the main interest of the method considered is
related with its potential applications to systems with lar-

5 By the way, it is written in short{ and clear manner, so

it %Bn really be recommended as &n introduction to the sub-
eCl.

gé number D of degrees of freedom, for which the siraighfor-
ward methods based on Schrodinger equation evidently fail. It
is eagy to understand that ueing standard finite difference
methods with about K steps over each varisble, one has to con-
gider Kb points, which is not practicel at D > 1. Usually,
people apply some simplifying assumptions like perturbation
expansion, starting from some solueble system; variational me-
thods; K-harmonic expansion etc. We think that if the method
congidered can be used, it provides the result in much simpler
and direct manner starting from first principles.

In section 4 we discuss atomic eystems. Starting from
hydrogen atom we proceed to helium one and other ions with
two electrons. The important methodical question discussed in
thig section ie the behaviour of the trajectory, simulated by
the computer algorithm, near the singulasr atitractive center.

The atomic systems are very useful becauge thelr action
is simple and well kmown, and the experimental values of the
ground state energy are kmown with high accuracy. However,
with more than 2 elecirons we come asross some difficulties
comnected with Pauli prineciple, or antisymmetrization of paths
for identical fermions.

Therefore, we take as more complicated systems the light
nuclel up to He*, in which nucleons can be to some approxima-
tion considered as distinguishable. Unfortunately, the so cal-
led nucleer potentials are poorly defined, they are rather
complicated (depend on spin and isospin; there are tensor and

spin=orbital interactions etc.). In principle, all this can
be included, but in the present paper we congider just some
slmple central potential, which ie similar to Reid soft core
one. After all, we are not so much interested in nuclei, but
in the method ability to treat'prublams of such complexity.

In section b we consider the gquestion of the calculation
of the functional integrals in sbaolute normalizetion. We re~
mind the reader, that the algorithms used generate only en-
semble of paths sulieble for calculation of average values,
but not the paritition functions themselves. However, average
values are, generally speaking, derivatives of the statisti-



cal sum, so the integration over the suitable parameter.solves
the problem. The "integration constant™ should, however, be
nown, which is the absolute value of path integral in some
cage. For example, considering Green functions, we kmow them
in some cases, e.g. for free propagation. We demonstrate that
such an approach really works, so that Green functions with
various potentials can indeed be calculated by MC asimulations.

Our conclusions and final comments are included in secti-
on T.

2« The method

Qur starting point is the famous Feynman formula, expres-
geing the probability amplitude for some particle to come from
point X; to point X; by the time t (the so called Green
function) as the path integral:

Gb:  Xe  t) = <xp [exp(-EHE) XD = (1)
= f px(t) exp{ ,;“;S[X( f)]]

The first expreesion given in traditional ferminology, using
states vectors [x> and Hamiltonian operator H . The second
one contains the action S[X(*)]  and the path integral
fﬁx{t) defined aes follows. Let us split the time inter-
val into ¥ pieces with length @ = t/N. The d -dimensional
path can be approximately represented by N-d numbers,
X.(ka) (#=1,N; &= 1,2) . The limit of the integral
over all of them et N—><°> 1ig the path integral. Evidently,
it should be defined with some N-dependent weight in order to
be finite. These questions, as well as the derivation of for-
mula (1), can be found in widely known ‘text book by Feynman
and Hibbs [ 1]

The firet nontrivial etep one mekes is the transfer to
imaginary time T = it, so that the oscillating weight
exp {# S} is changed to exponentially falling one,
exp ,{_ S/% } « Evidently, the latter is much eagier to hand-
le with. Moreover, such transformation reviels analogy between
quantum and statistical mechanics, for in the latter one also
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should calculate sums over all states of the system with the
weight oxp (—E /T), E being the energy and T the tempe-
rature. Note, that in imaginary time the sign of kynetic energy
is reversed and the action now is as follows

d
S =ﬁr[n§ %(%“E)z 4 V/X)] (2)

After gplitting of time into finite portions @ , one can ima-

gine some one-dimensional "eristal®™ with "epins™, having their
; d

values in d-dimensional space. Using a%‘:()g[(fﬂ}a]-xd[éa})/a

one cobserves that such spine are coupled to each other.

How, as it will become obvious below, in order to make
any useful calculation along such line one should consider
N ~ 102, and simetimes much more. All traditional methods fail
for evaluation of integrals with so many variables.

Explaining the methods actually used we first comment,
that we do not directly calculate the integral, but generate
an ensemble of paths {X(‘f’)f such that each one enters with

the probability exp(l_f, )e

The main idea of its generation is very simple and can be
demonstrated with an example of only one variable rf[ajﬁj,
distributed with weight W/(r)£[c,d]. Let us choose randomly so-
me ™ on fa,b] and calculate \{/(r) . Then, we choose random
¥ on [e,d] and compare it with W/(r) . 1 W(r)> ¥ the
value of I 1is taken into ensemble, otherwise it is rejected.
Repeating this many times we obtain the ensemble {r} we need.

What this ensemble can be used for? Note, that if the re-
Jected values of " are not recorded at all (as is really the
case in real calculations), we are not even able to say what
is [drW(r)

The anewer is that we can calculate average values of so=-
me funciions ’(\ {r) defined as
2 j.&r] W (r) dr
< I> w fw(r)dr (3)

by the direct ariphmetic average over {r’} « If the functions
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rﬁ‘]are much eimpler than W(rl, and we have many of them, such
way of calculaetions becomes reasonable.

The next point is the crucial one, for it is connected
with the main diffi'::nlty of the problem under consideration. In
(Ne.d)-dimensional space of paths nearly all volume is occupied
by some insignificant ones, for which the weight exp(- %) is
small. Therefore, random generation of paths is not effective:
nearly all of them will be rejected.

The main point is that only rather small variations of
pathe are randomly generated, so that the probability never de-
crease more than by factor of the order one.

For example, the Metropolis [T] algorithm used is formula-
ted as follows. For one time moment f,,;" K-a and one coordinate
}(i (f.t) we generate the random shift AX and calcu-
late the change of action AS. If AS<( , the shift is ac-
aepte&*}. 1f AS >0, we compare exp(— ﬁlﬁ) with rendom
S 6[0,1] and accept it only if exp(. ﬂSﬁi > « Repeating thig
for each « and esch K we have the g0 called iteration of
the syetem. Repeating such iteration, starting from some arbit-
rary path, we observe the relaxation phenomenon: average valu-
es of all path parameters tend to some definite limita.

Two more fteclnical cummtsLs-], which can help the rea-
ders to write down their own programs for path generation.
First, during the small time 4 +the motion is of diffusion ty-
pe s6 that (@X)2> is proportional to O . Therefore, it is
reasonable to make shifts to [d)(fé const . VE’ « Second, if
the ghift AX 4is not accepted, it is reesonable to try again
severel times [6] s Wwe have nsed N = 5#30.

Now, suppose the ensemble of paths 1{;( ({-)} ig ready.
What it can be used for?

Firat, let ue congider the limit of large imaginary time
T—<e , Prom the standard decomposition of the Green functi-
on (1) over stationary states one finde

*) Fote that it only cases with AS< 0 bve sccepted,
it will be the evident algorithm lcooking for the minimal acti-
O«

G(xaj Xp,T) ;m Y, (Xp) ‘z{,’?x;) exp (- E;‘—T) (4)

where l'K and E, the wave function and energy of the grownd
state. The correction to (4) is exp (—- AE 'T) y where
AE 18 the energy gap up to the firet excitation, end this
explaine how large T should really be.

This congideration shows, that at large enough T our en-
semble {X(T)} is equivalent to grownd stete wave function.
For example, the probability io find the particle between X
and X+dX in ensemble is H/ﬂ{zdx s etc. All correlations
fall as exp(- éLEi_E‘_) along the gystem, so for large T the
end values x;}}(lc. are rather ingignificant.

Attemp E to calculate the average energy over {x(r)} :
or Ec s met rather unexpected difficulty: the average value
= ‘A > 1 .
43()2)"—' £ Laef-) >~ 1/a .and 1t divérges at A+ 0 . In
[6] 1t is suggested to use another definition of kinetic emer~
&ys which 1s finite at A—- 0 , but, according to our experi-
ence, incorrect. The most useful way of measuring energy is
provided by the Virial theorem, so that

d
2 Ly 9V

The next point is thet ensemble {X(‘T“)} allows to obtain
information about lowest excited states as well. The method is
completely identical to the widely known sum rule method [BJ
uged in (CD. Let us conegider some operators 0,; and, for simp-
licity, sssume their average value over grownd state be zero.
Then their correlator st different time moments

Kij(t) = 0;(7) 05> (6)
(by zero we mean here any time moment, using the homogeneity
of time). It 1e easy to see that at large T

Ki; (T) = qo; 1n><tl 0f 10 exp(- 45°F) (1)

so by meesurements of correlators of different operators ( say,
with different anguler momentum) we may find the lowest atate

~energies and transition matrix elements.
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The final point is the following comment. Using periodic
boundary conditions X, = X: and integrating over X; one has

ﬁx G(X}Xjrj =2,;£NPG'§J‘EI-) (8)

which ig the statistical sum of the system at temperature T=

= h/ T . Therefore, we can also obtain characteristics at
finite T, and even simpler than at T = O because the correspon-
ding T interval is in such case reduced.

3. _The nonlinear oscillator

The simplest problem of gquantum mechanice is that of line-
ar oscillator and in this case the related path integrel is Ga-
usgian and can be computed analytically. The Monte~Carlo simu-
lations for this case are discussed in Ref. [SJ.

Another problem, being the subject of applications of qui-
te different theoretical methods, is that of nonlinear oscilla-
tor. Especially interesting ie the system with the action

S=fd*r[%ﬁ +C'(x2‘[z)2] e

Z
which for I > 0 have two wells, separated by some barrier.
Penetration through such barrier, being studied from the early
days of quantum mechanics, recently was often discussed
in connection with eimilar phenomene in quantum field theory,

Note, that the action (9) contains parameters m,c,f and,
together with the Flank constant h it becomes 4. The choice
of mass, length and time units remains only one dimensionaless
combination which is really relevant, let it be

Nz W'f?’ (10)
e v

m:

Numerical coefficient will be explained later, and now we on-
ly comment that large X corresponds to classicel limit. In
what follows we put h=C=2m =1 .

The first set of our calculations refers to ground state
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energy dependence on & , and the results are displayed at

Fig. 1« We have also shown results of other calculations, such
as numerical disgonalization of the Hamiltonian [13] and previ-
ous MC Bimulutions_l:ﬁ ]. All results are in reasonable agreement.

Using this set of calculations, for which the results were
known beforehand, let us consider the questions concerning the
accuracy of MC method. The main parameter in thig case is obvi-
ougly the number of points N needed. At one hand, @ = T/N
ghould be much emaller than the typical time of oscillation;

a &4 ;i on the other, T should be large compared to it:
¢ > 41 » Therefore, N should be about 102-10% or more.

The calculation consists of two different phases: relaxa-
tion and measurements. During the former phase all averages
tend to some limiting values, while during the latter one they
fluctuate around them. With a big enough statisgtical engemble
such fluctuations are averaged out.

Therefore, the question concerning sccuracy can be split
into three distinct ones:

1« How many iterations are needed in order to reach rea-
sonable equilibrium?

2, How long one should continue the measurements?

3. What 1s the remaining systematical error, introduced
by the discrete time approximation?

It is clear, that with the total computer time fixed the opti-

mel strategy is such that all three types of errors should be
comparable.

Using a varying from 0.05 to 1 with similar number of po-
ints we did not find significant variations of the relaxation
t:l.ne'].. In all cases 200 of iterations was sufficient to start
measurements,.

The second question concerning statistical accuracy is
eimple in principle: with K independent trajectories the rela-
tive statistical error is K‘yz. The question is then how many
iterations are needed in order to obtain independent trajecto-
ry. Note, that each coordinate moves randomly with .average
*} - tnless the initisl conditions are too bad, when esmall =

. oase 18 in obvious disadvantage: it cam not produce big alte-
reations from cne iteration to another one. -
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square shift <(ﬂx)">~a per step. Clear, that with about 1!5
steps  ((ox)?> will be ®(1) and therefore trajectories become
independent.

The last point, concerning the systematical error, is most
difficult, and it was studied "experimentally". Surprisingly,
we find the situation completely different for small and large
€ values (small and large barrier, respectively). The results,
shown at Pig. 2, represent the values of the ground state ener-
gy E.(%¢) versus the step length Q . It is seen, that the low
% = 1.3 case is connected with relatively small errors even
for 0 = 0.5=1, while for # = 5.4 the values obtained with so
large O are completely wrongi

The suggested explanetion is as follows. Large £ means
large barrier with very low penetration probability. However,
if O is a large enough the system can penetrate through the
barrier by one step, so that there are no points of the descre-
tized trajectory which are under the barrier. As a result, the
barrier is somehow lost and, instead of going through it, the
perticle just "jumps over" it. Respectively, the energy is
gtrongly reduced.

This unwanted phenomenon can well happen also in QCD cal-
culations on the lattice. As it is shown in the phenomenologi-
cal analyeis [ 9] of inetanton-type fluctuations, their typical
gize is about 0,3 fm which is just of the order of step valu~-
eg used in calculatioms. Therefore, the real accuracy of the-
se calculations should be gquestioned. Unfortunately, in this
cage it is not technically possible to reduce (I by an order
of magnitude, as it is done at Fig. 2.

One can check that such *jumps®™ over the barrier is lnde-
ed the main source of the errors, displayed in Pig. 2, proce-
eding in the following way. Let us make tha'path to be conti-~
nuous, approximated by straight lines between neighbouring X .
‘Evidently it makes the algorithm to be more complicated: in-
stead of a(Wx;J-V{x,)) one has pome integrals depending not on-
ly on old and new values, X, and X:E s but on XH,J Xy s
well. However, the continuous path exclude "jumping" over the
barrier discussed above.

s .

in Fig. 2 we demonstrate our results of such a calculati-

“on, shown by triangles. It turms out that no dependence on (I

is seen in this case up to A = 0.5. The ground state energy
agrees with the exact one up to several percent.

Now we proceed to more detailed discussion of the barrier
Penetration in nonlinear oscillator. As it was shown in Eiﬂl ’
it can be described in the semiclassical approximation by the
trajectory with minimal action, leading from the bottom of one
well to another. Such trajectory, the so called "instanton"
@r'kink™), i1s then the solution of (imaginary timel) equations
of motion and can easily be foumd

Xeg (T) = .rfﬁ[['.z,f('r—n)] {11)

as well as the corresponding action

S[xc!]=—§-f3 = (12)

Now, the numericel factor in.(10) becomes clear.

The qualitative picture of the trejectory at large ¥
looks as follows: it consists of long periods of osecillations
near the bottom of one of the wells, and rare instantons gepa-—
rated by distances proportional to MP(OE) - In order to find
the instanton density explicitly, one should integrate over
quantum fluctuations about the claseical solution (11). This
integration is nontrivial becsuse of zerc translational mode
érd the interested reader should consult to papers [10—12].
The result looks as follows

d Y2 raN%  _
a‘%=?(‘$‘J (%)’te A (13)

where we have included both instantons and "antiinstantona®
ie8e the backward transitions.

The main effect caused by the instantons is evidently the
eplitting of energy levels, otherwise being doubly degenerate:
The instructive way to look at thia problem, suggested by Poly-
akov [[10], is to connect it with coordinates correlator
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K(*r} = X (1) X)) (18)

Without the instantons it tends to _rz at T—=c , but in-
stantons destroy correletions and K{(r)behaves as exp(-4E-t)
where AE is the splitting between symmetric and antisymmet-
ric states.

Assuming the positions of the instantone to be random
(the so called dilute gas approximation, D6A) one can easily
calculate K (tr) and find that

K(r) = )PWF('- é%‘t‘) (15)

Therefore, the energy splitting is juet equal fto the in-
stanton density:

AE = %% (16)

Since in our calculstion below we discuss the accuracy of
(13,15), it is reasonable to compare these relations with tho-
se obtained from "gtandard" WEB solution of Schrodinger equa-

Xe

ton  AE= Rexp(- f G m|E=VEx)] Y2 dx

~Xa X e (17)

-4
i é‘r(%)ﬁj(;f-vm 2

It turns out that at Ef‘” this agrees with (13), but only
if quadratic interpolation formulae are used near the {urning
point. The ordinary linear ones, comnected with Airy function,
are wrong by the factor |E [{{]. At the same time, (17) con-
tains the nontrivial dependence on %® due to modification of

instantons by the nongaussian fluctuations around them, so
(17) werks up to much smaller & than (13,16).

Our MC calculations of the correlator Krrj allows to check
the relation (15). Some results, shown at Pig. 3, clearly de-
monstrate that exponential behaviour is in fact valid only at
large T >{ . The Pitted values of the slope at large T , iden-
tified with AE, is shown at Pig. 4 together with theoretical
expressions (13,16 and 17); snd also with the very accurafte
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nmnrinal_ualculatiun .[13]. We have used A = 0.1, N = 150 and
about 103 iterations”’. The accuracy is certainly not worst
than several percent over the whole region.

We have also measured directly the instanton density, cal-
culated from the number of times when X changes sign. The Tre-
sults are also shown at Fig. 4. They follow dosely the trend
of AE(®) , but are sbout 20-30% higher. The reason for it
can best be demonetrated by the distribution of the relative
instenton spacing D, shown at Fig. 5. For random instanton po-
sition such distribution should be

d
dn o exp (- V5%

While experimentally we observe significant enhancement over
the exponential tail. We have also observed other manifestati-
ons of such instenton attraction, in the form of clusters
containing several close instantons at the probability level
well above any statistical fluctuations. Note also similar be-
haviour of the correlator shown at Pig. 3.

The physical nature for such attraction is evident: 1f
the trajectory do not reach the bottem of the second well and
soon returns to the first one the action is gmaller than Zae._
We did not find any repulsive core for the instanton interac-
tions, on which there are speculations in the literature.

The closely bound instanton-antiinstanton pair is not ef-
fective in breaking of correlations, therefore AE is some-
how smaller than ﬂd% +« Such deviations from the DGA relation
(16) are present even at large enough ¥ , but they do not
epoil the whole approach based on instentons. As it is demon-
strated by Fig. 4, the gaussian relations (§3),(16) have accu-
racy of several percent only at ¥ > 5=6, while the picture
of modified instanteons (the WEB estimates 1T) holds up to

*) This is several times larger than needed for the measure-
ments of the %:Nn;md state energy. The reason is that at large
T the correlator is small and sensitive to small "ipglands"
on the trajectory where the instanion density is still below

the equilibrium value.

15 .
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F~ 7 . Presumably, proper accomnt of the instanton inter-
action discussed above can lead to reasonable rezulte up to
£~ T,

Better understanding of these questions is important, fcr
they are analogous to those in QCD. Although we do not have
any external parameter (like ¥ ) beforehand, phenomenoclogy
telle ua that due to some reason instantons with action equal
to several unites are reslly important, therefore, we have
to develop appropriate methods to treat them. Unfortunately,
the instanton interaction is mu.ch stronger in 4 dimensions
than in the one-dimeénsional example of nonlinear oseillator.

4, Atomic systems

As we have emphasized in the Introduction, the advantage
of the method considered is connected essentially with its
applicability {o multidimensional systems. Quite naturally
then to apply it to atomic systems, in which the interaction
low is simple and well known

Vﬂ"ZE‘,-}-Z-L {18)
L L :}J 'J

Here Z 1is the charge of nuclei, R andﬁ’. are distances of
the i=th electron from the nuclei and the j -th one, respecti-

vely. In this section we use atomic unites in which ﬁ = € =
=M = 5

In MC calculations of atomic systems we have found some
phenomena, looking rather puzzling from the start.

First, we have observed the falling of trajectory into
the Coulomb center. The reason can, however, be simply ex-
plained. Imagine some discrete trajectory (or sequence of
X (f.jm) ) going near the centre. The shift of one of the
pointa X > O results in greater probability: _the integral
f X g.xP@ , ) evidently diverges at X,~O . So, the
potential ahnuld be made smooth at small enough distances in
order to make the integral convergent. Note, that the error
due to such cut off vanishes together with a-0Q .
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Besides, we have. found that after the relaxation to cor-
rect values of energy, radii etc. seems to be reached, and we
start measurements, the system suddenly can got to arbitrary
large R, and such phenomenon persiste in all (long enough)
rumne.

The explanation is aes follows. Choosing the time interval
T to be finite, we work at some emall but finite temperature
T=1/r « A8 far ag the electron happen to be at R as large as
2R~ T s in the case of periodic trajectory boundary con-
ditions it has good chances to leave the syetem. In other terms,
the statistical sum (8) is divergent untill we put the system
in a box. In the particular case of Coulomb forces, this hap-
pens even with discrete spectrum, which contains infinite num-
ber of states. The obvious cure is to reduce T by large T
to make & box big enough in n:rdar,,\to digturb the ground state
wave function. It is also helpful is to get rid of periodicity,
fixing the initial and final points near the nuclei, so that
the ground state is mainly excited.

The first example, as usual, is the hydrogen atom. Of
courge, 1t is separable problem and angular variables can gene-
rally be singled out. However, we are interested in three~di=-
mensional simulations of path, and we did it accordingly. The
typical results are shown in Fig. 6 as the bound energy versus
iteration number. The convergence to the correct value (~1/2)
needs about 105uf iterations for a =02 , N= 50 N
The typical computer time at ES=1040 is about 10 min.

Similarly we have atudied atoms with two electrons, or
b=dimensional system. Again, in principle 3 Euler angles can
be gingled out, but we did not do it. The results are also
shown at Fig. & together with experimental values

E'H=*U'5J E'He: —'2.‘30‘1'} Eﬁg-b-;_fs‘ggﬁ (19)

For next atome we have to consider two identical fermions,
with proper antigymmetrization of paths. We did not attempt to
develop an algorithm for such calculations.
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2. Huclear systems

Being interested in the teest of the method for as many de-
grees of freedom as possible, we have also considered the nu-
clear systems. In such case spin and isospin of nucleons allows
one to go up to He4 nuclei without problems related with iden-
tical fermione. Note, that out of 12 variables deseribing the
motion of four nucleons only 6 are really relevant, the other
being the c.m. coordinates and angles of rotation of the gy 8~
tem as a whole. However, we did not make these simplifications.

The evident problem with nuclear systems is the ambligul ty
of the nuclear potentials, which also are known to depend on
total epin and isoepin of the nucleon pair, spin orientation
relative to position (tensor forces) and angular momentum (spin-
-orbit forces) etc. We did not included all such complications
in our calculations and have used one common central potential

V, (F) = 0-5[(32 +0.4)"-5 ]-[R4+01e]™ (20)

This expression was choosen rather randomly for its simplicity,
for it 1s similar to Reid soft core potential. Writing the to-

tal potential V = \,o+ V/ (where |/’ is spin dependent, etc.)
one can measure {ﬂp(—'-ﬁfﬂf)) over the ensemble obtai-

ned without significant increase of computer time. We hope to
return to this elsewhere.

The nuclear gystems have their own particular features as
far as MC calculations are concerned. This can best be explal-
ned by the introduction of some natural nuclear units, e.g.

Ko piip-ad -, £’. = 1 fermi. In this case the units of
time j.n Tor~ 17J0 2« and that of the energy is B, = h /T, |
= 41 MeV, s0 that potential at distances of the order of f, is
of the order of unity. However, nuclear mystems (especially h'2

,Hé) are very loosely bound, with only few MeV of the bin-
ding energy or several percent of B,.

Therefore, td:ing' the value of T about 10 units, as ma-
de in all calculations above, is not possible: this means tem-
Perature about 4 MeV which evidently is high emough to break
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the nuclei in question. This is what really was observed, when
we started the calculations: the nucleons were "Evaporated". Of
courge, the phenomenon have disappeared when T was essentially
increases up to T = 504100,

Because of this, the totel number of integrated variables
for ol particles (the values of X, (T« )) have reached several
thousends. Still the method was capable to handle them and,
with about 1 hour computer time (at ES-1040) we have obtained
reagonable relaxation. Some examples for He!4 are ghown at
Fig. Te

b. Green functions

In this chapter we discuss the possibility to calculate
the path integrals in absolute normalization, which is not di-
rectly given by the algorithm described in section 2 and appli-
ed above.

However, the average of some operators are the logarithmic

derivatives of the statistical sums, therefore one can try to
integrate them back. What is then needed is the integration
congtant, or the value of I in some particular case.

Let us consider such trick in the case of Green function,
defined by the path integral (1). The Green function of the
free motion is known.

—
(o (c; X;20, % = 0)= g (21)

and the problem is to calculate such quantity (> in some non=-
trivial potential. Let us introduce the new parameter {? in

the action i
S,fff%i + ?V(x)]d*r

(22)

It is to see that

a8
<U>?=_%"'ﬁ\f$xe ? (23)
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where <ﬂ~-}ﬁ ie the average with the action (22). Integra-
ting (24), one has :

G =G exp (- f’ﬂ’”% ) (24"

As far as <fvjh is caloulated as described above, the valus
of (: is found. In puch caleculation it is useful to change

slightly ? from one iteration fo another, so that new value
of ¥ practicelly does not need the relaxation process. So to
say, we prefer to switch the potential adiabatically.

Ag the example of such calculation let us mention the
Green function of the harmonic oseillstor, which is explicite-
1y known

o

W ~ b .
6 - (mmaor (25)

At the same time, it differs strongly from G, at sufficiently
large values of T . At Pig. 8 we have plotted (25) and {21)

together with our calculations. The value of N = 25 wag uged,
which is rather small, but even in thie case the agreement is
reagonable. Note, that the correction factor in (25) which is
really ealeulated reach the valuea of the order of 10-102. We
have also tryed to calculate three-dimensional Green function.
e.g. too Coulomb potentiasl, and the results are reasonable as
well.

1. Conclusiong and discussion

In the course of the present work we have found the me-
thod of Monte-~Carlo simulations with Metropolis algorithm to
be indeed simple and effective. It is rather general (no res—
trictione for the potential type), very transparent and use
nothing but first principles of the theory. We did not attemp~
ted to reach very high accuracy, but already with computer ti-
me 15-30 min at mediate power computer ES-1040 (about
5+10 °P/gec) we have estimated the energles of atomic and nuc-
lear systems with up to 12 degrees of freedom. It is quite
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clear that such calculations besed directly on Schrodinger equa-
tion are completely unrealistic.

Evidently, one can invent much wider applications of the
method. To give an example not mentioned above, one may calcu-
late probabilities of chemical reactions between complicated
molecules, involving penetration through multidimensional bar-
rier.

At the same time, we have found some unexpected features
of this approach, showing that its application needs great ca-
re-and should be well tested. Such situation is natural becau-
ge the method ies reletively new and not well understood so far.

Ap an exemple, let us mention those displayed in Pig. 2
and related with the simplest system coneidered, the nonline-
ar osclillator. 4t the values of @~ 0.5¢1 the relaxation ta-
kes place etc, but to completely wrong value of the energy!
(See our explanation of this phenomencn as being due to "jum-
Ping" over the barrier in B 3). We think that even this obser-
vation alone 1is sufficient to raise question on the real ame-
curacy of the results obtained by the lattice QCD. There are
many barriers in the field configuration space and it was ne-
ver demonstrated that their pemetration ig treated correctly,
even in the case when the semiclassical methods are applicab-
le.

And finally, there are alpo some limitations of the me-
thod, which are not so far overcomed. In particular, one should
try to include identical particles, fermions or bosons, in or-
der to start calculations for more complex systems. Another
problem is the motion of relativistic particle, which contains
the product of [ -matrices slong the path which is not positi-
vely defined. Effective algorithm for such a case is not so
far developed. We hope to return to these questions elsewhere.

In conclusion, we emphasize once more the simplicity and
the great power of the method, especially for multidimensio-
nal quantum systems. We are sure that its wider practical ap-
plications are possible.
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Figure captions

The dependence of ground state energy of nonlinear os-
cillator on the parameter # . The solid line ie the
exact result [—13}, the circles are our results, and
the c¢roases are taken from Ref. 6.

The dependence of ground state energy of nonlinear os-
cillator on the time step @ at & = 5.46 and 1.33.
Data 0, ® are obtained by discrete point approximati-
on of trajectory, while V¥ correspond to the continu-
cus approximation between the neighbouring points (see
text).

The normalized correlator (r(r)x:’a?,&{) versus
the time difference T . The points @ and O corres-
pond to values of & = 5.46 and 3.66, respectively,
the straight lines are the corresponding exponential
parametrization at T> 0.7.

The energy splitting AE between the ground and first
exited state versus parameter & . The upper curve cor-
regponds to dilute instanton gas approximation, see
eqa. (13, 16) and the lower one presents the exact re-
sults, obtained in fé, 13]. The dashed curve ies the
"modified" WKR [13], given by eq. (17)« The points e
and x show our Monte Carlc results for A E and the
instanton density, respectively.

The distribution of spacing D between the neighbou-
ring instantons. The upper and lower plots correspond
to 2 = 1.33 and 5.46, respectively. The straight li-
nes are the exponential parametrization at 2 > 1.

The average energy of atomic system versus the itera-
tion number.

The calculated properties of nucleus Ha"' versus the
iteration number; K and U are the kinetic and poten-
tial energy, respectively.

The linear osecillator Green function the lower curve
is exact analitical result (25), while the upper one
ig the Green function for free particle. The points
are our Monte Carlo results.
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