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Abstract

The general scalar Gelfand-Dikij-Zakharov-Shabat spectral
problem of arbitrary order is considered within the framework
of the AKNS method. The genersl form of the integrable eguati-
ong is found. Uncertainties which appear in the construction of
the recursion operator are discussed. Transformation properties
of the integrable equations under the gauge transformationa are
considered. The manifestly gsuge-invariant formulation of the
integrable equations is given. It is shown that the integrable
equations under consideration are Hamiltonien ones with respect
to the infinite family of Hamiltonian structures.



I. Introduction

The inverse scattering transform method is a powerful tool
for the investigation of nonlinear differential equations (see
Qoo [1-g Y+ A large number of various differential equations
has been integrated by the inverse scattering transform method
during the last ten years [1-3_]. One of the main problems of
the inverse scattering tranaform method is a problem of effec-
tive description of the equations to which this method is appli-
cable. There exist different approaches to this problem. A very
convenient and simple method has been proposed by Ablowitz,
Kaup, Newell and Segur (AKNS) in the paper [4] for the equati-
ons integrable by the second order matrix spectral problem
g:,;(;_:)?+(f3’)#.. The so called recursion operator plays a
central role in this method (AKNS method): the integrable equa-
tions can be represented in a compact form just with the use of
this recursion operator. The recursion operator plays also an
important role in the Hamiltonian treatment of integrable equa-
tions. The Hamiltonian structure of the equations integrable by
the second-order matrix spectral problem has been investigated
in [5]. Then after the papers [4-,5] the AKNS method has been
generalized to a number of different spectral problems [ﬁ-‘l#J .

In the present paper we congider the general Gelfand-Di-
kij-Zekharov-Shabat spectrsl problem, i.e. the general scalar
N=th order spectral problem

(3% e VortsI* + .+ U+ Uk t)¥ =AY (1.0

where 9-?‘—2 , A is a epectral parameter and V, (= f‘),
Vetzt)s - -y Visl®E) are scalar functions such that
Ve(#,2) =% o Vewo #0 (K = 0,1,.00, F-1). In the frames of the
inverse scattering transform method the spectral problem (1.1)
has been considered by Zakharov and Shabat [15] for the first
time. This problem and associated evolution equations were in-
vestigated by enother tecimique by Gelfand and Dikij [16]. Then
the problem (1.1), ite properties and the nonlinear equations
connected to this problem have been considered in [1?-23_] .

In the present paper we congider the spectral problem (1.1
within the framework of AKNS method. We find the general form



of the nonlinear evelution equations integrable by (1.1) and
also show that these equations are Hamiltonian ones with res-
pect to the infinite family of Hamiltonien structures.

It is shown that there exist a certain freedom in the
congtruction of the recursion operator. The principal equation
for the calculation of the recursion operator is of the form

Aex) =7 XA (1.2)

where 9 and ¥ are certain matrix differentiasl operators
and X(J) is a column with H components. The main feature of
equation (1.2) is that the matrix elements ofg’whiah belong to
the first line are equal to zero and therefore equation (1.2)
conteins a conetraint

A
Zgﬁ'xﬁﬂ'o (1.3}

ket
Alefe i n:\"

T _ k-x

where fk =£ Ciff-x(-a)twﬂf—i' and Cdk=m.
There are two ways to deal with the constraint (1.3). The first
way is to solve equation (1.3), for exemple, with respect to

X a and to introduce the quantity /1’ () =

A T I X,,,,,..,,mwhich containg only independent
variables. As 8 result, one obtains, from (1.2), the recursion
operaior which acts on the space of independent variables xfarjz

A”Xm(ﬁ) =l erw. For a given (X the recursion operator

La is unique but for different & the operators Lo are dif-
ferent. For such a type of taking into account the constraint
(1.3) the general form of the evolution equations connected to
the problem (1.1) is

w2 S0 ul ot (V-Vd=0 "t

¥t ke 1

r M* *
where V’(us V;'.-* rep VA"—:) ’ Ma » zkc‘w are certain matrix ope-
rators and (J, (L, 1) are arbitrary functions which ere mero-
morphic on L% .

The second way of dealing with the constraint (1.3) is not
to solve it at &1l and define an action of the recursion operator
on the whole N-dimengional space of all components x,,..., ,‘l’ﬁr :

/\NX(A) =/ X(A) . ome cen introduce such a recursion opera-
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tor but it is not defined uniquely. The uncertainty which appe-
ars in the calculation of such a recursion operator can be ef-
fectlvely described. The general form of the evolution equati-
ong integrable by (1.1) within this approach is

P :
gr/:,t) = i;_fQ*(L‘f, )Z{(V-V) - f(L1D)e'P=0 (1.5)

where Qk ( Li: f), F ﬂ-t z‘.) are arbitrary functions which are mero-
morphic on L f, J.*"(f:; ey gjr’r-)ﬁlwanu:l  TEA ﬁ) is an arbitrary
gcalar function. There exists a close relation between equati-
ons (1.4) and (1.5).

Let us snphasise that the nenunigueness oF the recursion
operator is a general feature of the AKNS method: it takes pla-

~ ¢e for the other spectral problems, to00.

In the paper the transformation properties of the integ-
rable equations under the gauge transformations which conserve
(1.1) are considered. It ie shown that equations (1.4) are gau-
ge invarient and, what is more, these équations can be repre-
gented in the manifestly gauge invariant form

N=-1 ;
BW(—*‘: z) © o
S = 2 QL) 2 W-Wo) =0 (1)
where W = (Wg, M, v .oy .Wﬂ'—.ﬁ, G)Tﬂﬂd Wﬂ: M‘ .uey Wﬂ-! are gauge
invariants, i.e. the functions on Ms, If;, ...,V;__f which are in-
vari;mt under the gauge transformations. Operators L; and

Z(HM depend only on the gauge invariants M, M AP M..z "

It is shown that the equations (1.5) with given functions
Q& and different functions f(f.’: £) end ¥ are gauge
equlvalent each to other. In particular, any equation of the
form (1.5) is gauge equivalent to the equation

Izt X!
ST~ AL YT (V) =0

f
where L’s is a some standart recursion operator.

So the whole uncertainty which eppears within the deserip-
tion of the integrable equations in the form (1.5) ie of the
pure gauge nature.

We algo discuss a Hamiltonian structure of the integrable
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equations (1.4) and (1.5). In order to treat these equations as
the Hamiltonian aystems, one has to exclude the pure gauge (non-
dymamical) degrees of freedom. One can achieve it either by im-
poging additional gauge conditions on Vd.ﬁr,r),..., %_‘,(3_',;?, (for
example, Vu"zﬂ] or by projecting the equations onto the N-1 -
- dimensional gauge-inveriant submanifold which is described by
equations (1+6). After the exclusion of the gauge degrees of
freedom the evolution equations integrable by (1.1) are Hamilto-
nian systems with respect to the infinite family of Hamiltonian
etructures.

The paper is orgenized as follows. In the second gection a
group of the gauge transformations which preserve (1.1) is con-
sidered. The gauge invariants are calculated. In the third gec-
tion we discuss a direct scattering problem for (1.1). In secti-
on 4 the general form (1.4) of the integrable aquaiiona ig fo-
und. Gauge invgriance of equations (1.4) and manifestly gauge
invariant formulation (1.6) are discuseed in section 5. The Ha-
miltonian structure of the integrable equations (1-4) end (1.6)
is considered in sections 6 and 7. In section 8 the integrable
equations in the form (1.5) and the corresponding recursion ope~
rators are congidered. The examples of equations (1:2)=(1.6) for
the cases N = 2,3 are given in mectionsg S and 10.

iIl. Gauge group

The spectral problem (1.1), as it is easy %o gsee, is inva-
rient under the transformations

Vixt,)) — Yxt,4) = g(x0) Y(x.t,4),

ok (2.1)
Vel,8) = (=, 2) = gr=, I CE Ve "G

where @(x,f) ig any differentiable function such that
958wz 1 and Cx = 5y . The transformations (2.1) do
not change the values of V,(z}t), K(:r,f}, ey Vﬁ;@f)at the in-
finities ( /X/~>©° ) ena form an infinite-dimensional abelian
group of gauge transformations for the problem {1.1)s This group
is the subgroup of the genmeral gauge transformations group which
was discussed in [24, 25].

The gauge invarisnce of the problem (1.1) allows us to
impose additional consirainte (gauge conditions) on the poten-
tials Va,‘ M', ce ey Valf-.i vt * Por example, one,gan tranaform any
linear superposition %a“#%(&-‘: Z) into ﬁ:ﬂ ol l«ﬁw and, in

‘particular, any (but only one) potential V% (X, Z) into Vkoo by

an appropriate gauge trmsfomtinn.- We will shortly refer to
the gauge condition as the gauge. The trengition from one gau-
ge to another one is performed by a certain gauge transforma-

tion.
Then, it is clear that there exist N-1 independent functi-

ons M(lf;!"'? VJ""I)! M(%I"'IV"I)I g i | Mf—j(%..-., Vl’-.t)
which are invariant under the gauge transformations (2.1), i.e.

!
the functions such that Wg (P::—- "> Mv-:) - W:tfya, s Vaerd
(k = Oy1g00ey N=2)e An explicit form of the invariants W, , H,/”

vesy Wy-2 can be found directly from (2.1) by excluding the
function g(x; Z). Por our purpoege the following set of the in-
variants is convenient

Mok
A £ n-1
Wj o Vk by {r_z CJ{']‘H ijﬂ( —FKF’-:) VJ"—! (2-2}
A=xd
(h=0,1,..., N-2).

To prove the invariance of Wj— s it is aufficie:at to congider
the infinitesimal gauge transformations ( Ke‘" Vi "M& + JK& )

§V, (x,2) ==&, &fx,2) (2.3)
where &(&, Z) is an arbitrary function and
* i S 3&'
g&f_f = EZ C&'r! Vf*d’ .
=1

In the simplest cases of N = 2,3, the invariants are

H=2: Wo =V, - £3V, - £ V7,
N = 3 W, =V, -2V - LWl + 51>

7 -
W: = V. "'aVi:‘ "jl(z -
The gauge *;,_: = 0418, in a certain sense, a preferable
one since in thie gauge W, =V, »

f F
Since for the gauge transformations M(ﬂ,, l’(f—z)=
« Wi (Vo,..., Vy-2) the invariants Wy take the same values
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in the different gauges. 830 the potentials Vk in the diffe-
rent gauges are comnected by the relations W, (I{,..., Vacs) =
= W, (l/a,..., Vi) (k = Oy1y00e, N=2).

Propogition (2.

6l « The Miura transformation is a
gauge transformation. :

Indeed, let N = 2 and Va-' Vfﬂ'—'o. Let us consider the
gauge iransformation (2.1) from the gauge Vo = 0 to the gauge
V-_- = 0. Since w., -V,-zta'lé --f- l{,’ y from the equality
Wo (Vo' Ve'=0) =W.(Vo=0, V;)  one has

o=-folk -1, (2.4)

that is the famous Miura transformation [27] + Gardner trensfor-
mation is a gauge transformation, too (mee section 9).

For the further purposes it is convenient to represent
the spectral problem (1.1) in the well-known matrix Frobenius

form
oF

a—}— = (A +P{:r,?f2f-_ (2.5)
where F = (¥, 0¥, .. .,3‘”?‘)? and
a:r__a...u\ /0 " e,
" G B ()
2 o o 0
del <= gl
R 0-0 (8 S AR
/‘Ha o O) l'%,‘%,. p .,"Vfﬂ: .

The gauge transformations (2.1) have now the form
F—=F'=GF,p—p' = GlA+P)G™* -A + 3G - & (2.6)
where @f‘. -C:f;:ai-tgf.f, ﬂj, L ,;Ik ; G:df =0, L< i(' .

Introducing N-component column V"(fé, vecy VM-:)’ s Onle
can represent the gauge transformations (2.6) in the form

V—=V'=zm)V + ¥(3) (2.7)

where Z(2/ -3@3 ¢ s and 7; )= cjﬁaﬁ'{’(’/f)
(k = 0,146+, N=1). Using the explicit form of T’(f} and 7@‘)
it 18 not difficult to show that

TTG) = Tlfede) » V0es) =) Vi2) * V) (2®
i.e. that the transformationa (2.7) indeed form a group.

The form (27) of the gauge transformations (2.1) is useful
for many purposes.

FPor example, the invariants M{- can be written in the
form

W=2(FV + 77 (2.9
where W"(h:?r Wa, .. i W’m—x, 0) ¥ and F/—T: t) «
= Mf(‘"}fdxxyp;@; f)) « Then the potentials V; can be
represented as the functions on invariants M and "gauge" va-
riables P{x, z)

V(x,2) =T(pIW + 7 (f) (2.10)

One can easily show that if under the gauge transformati-
onsg

W._..}W‘r-w’ f—hf’ﬂﬁf (2.11)

then V(.Z', i) is transformed according to (2.7).

III, Direct scattering problem

We will study the problem (1.1} in the form (2.5). We as-
sume that V* ('.:r,t) tend to their asymptotic values Vku so fast
that all integrals which will appear in our calculations will
exiet. Then, we assume t all eigenvalues _#i{ of the matrix

A=A +P, where Po ==¥mpP(x,L) are different.

fxf—» oo

We introduce, in a standard manner 1-3_;] sy the fundamental
matrices-solutions £ '(x,%,4), F"(:f, Z,A of the problem
(2.5) given by their asymptotic behaviour

F?{.T,f‘,ﬂ o= @(/‘)Wﬁ-ﬂ ’ F-ﬁ.}z!’l):__::’ MJ&:?JI (3.1)

where /4“. -.:_/t;cg,'k (E,f-i,‘..., /V) end g-ﬁ'ﬁ’;ﬁ‘- For
Vkﬂn =0 %L one has /ul: E/\ﬂtd‘ 7 Q.:‘j ’?:‘,"(Agr&’i) -—_f’
g -6@#(’”). A scattering matrix S(/L £) is elso introduced
by the standard formula




F*(zrt.!-’l)=f“(x;tﬂ‘) S(.JIJ I‘.) ; (3.2)

Let AP(x,t) and P2 L) be two different potentials and
F:.F’:.S,S’ be corresponding solutions and scattering .aatri-
ces for (2.5). One can show that

SO8) -SO) = - [d=(F Gt ) (Pls ) Alet)(F 1t ) (33

Formula (3.3) which relates a variation of the potential
P to those of the gscattering matrix plays a fundamental role
in the AEKNS method.

Putting Vi = Vioo (kmo4,..., N-1) and taking into
account that in this case 8 = 1 we obtain the following expres=-
sion for the scattering matrix through the potential (omitting
the prime)

SA,t)=1 - Td:r E(x,)) (Plz, t)~Poo) Efz, 1) =
(3.4)

*ﬁ’{'ﬂﬁﬂfd'x’f T, P~ ) e, 1)
where £ (x,A) = Qﬂ)ﬂffﬁ-‘l‘ and y{@fdﬂ'f@dmntaa the

well known I -ordered axpanmt.
PlewpfintZ)) =1 + [d='Z(x) » [du'2(e) Faez ...

If one introduces an operator

T (=t )) = Plexp ﬁz’E =Pzt - %) E(xA)f, (345)
then

S(A,t) = T(z=-e2,8,4)=
(3.6)

= Pleap(-[dx' £ NPl L)L) Efai 1))

The esimple formula (3.6) for the scattering matrix is con-

venient for an analysis of the apectral problem (1.1). Let us
note that a redefinition of the asymptotics £ : £z, A) »£/xA)=
= E(x 1)K leads to a trivial redefinition of the scattering mat-

rix: S—'S KHSK
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It follows from the definition (3.2) end formula (3.6)
that the scattering matrix is gauge invariant quantity.

IV. General form of the integrable equations

1. Pormula (3.6) establisheés a mapping of the manifold of
the potentials { P(=t), Pt)z5%, Pul}  onto the manifola
of the scattering matrices {S(A,Z)}. A main observetion of
the inverse scattering transform method is that there exist a
close relation between some special nonlinear evolution equa-
tions for the potentials and the linear evolution equations
for the scattering matrix. We use here this idea within the
framework of the AENS method.

Pirst of all, let us note that from (3.3) it follows

;fﬁ 12 jd‘r(ﬁ'(%ﬂ)"’ aﬂ/r,r)F (z,t,4) (4.1)

Then the following relation holds
[Y(A8), SO 1) =- i dz (F b, ) Vi 2) plet)-R] F G334+ 2)

where Y(/‘ t) is an erbitrary diagonal matrix and %‘ f)n
= D(A) V(A1) D (A) where D(A) 1is given by (3.1). Since
DAD*=A the matrix .Y ie an arbitrary matrix which com-

mutes with ,3' Since all eigenvalues of the matrix A are

different, any matrix which ¢ mmutaa with ,4 can be re-

presented in the form Y(),t)= 12 Q(A“’f},ﬁl where $J, are

certain functions end 4 =71 .
 Combining (4.1) with (4.2), one has

238 _ryoy, spg-
. -_fa’a:(F 1zt )" (‘)’%’f) ~[YO, 1), Pl t)-L.] F fzt)=(4.3)

oS00, e (e, 2252 [T, e T
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Fan
Let < >§’ Jdxtr(...) end one introduces the
quentity s

Lk N 4

PCANY) *ﬁ—y"?‘:)‘))u (Flet,\)im 48
(L elmudtd .. W) .
Since del S + 0 s from (4.3) it follows
Propogition (4.1). If

dS(At) = =
di "[V(A;f): Sﬂ,fy—-ﬂ (4.5)

where Y(ﬁ, f) ig an arbitrary disgonal matrix, then

<(%€ = ff@e v e[A, P-—-PJ) 55#0!)) =0 (4.6

The inverse statement is also valid: if equation (4.6) takes
place, then the scattering matrix satisfies (4.5).

Equation (4.6) contains the functions Qk (A“f. f) and
matrix ﬁ, which explicitly depend on the spectral parameter
A”. The next step (which is a standard one for AKNS techni-
que) consists in the converting of the relation (4.6) into
such a form which does not contain the explicit dependence on
Aﬂ. In order to do this, one must calculate the so-called
recursion operator.

2. Recursion operator. ©So it is necessary to be able to
exclude the explicit dependence on z\” in the expressions of

‘e forn A T(4,2). veing equation (2,5) end equation
57 --F"/A #/2) , one can show that d” satisfy the eque-

tion

a Q ﬂr? t}A) — [A f—P{."ﬂ,f), éfj”x’zl,)‘)-] (4-?}

o

Prom (4.7) we get

PP 5‘% +P)” (4.8)

where ﬁ:&fﬂ f—Pﬁ-‘:,f)-a and #” is sny positive integer.
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In virtue of the special forms of the matrices A and

.
Alx,t), all matrix elem }g of @mcan be expressed through
the A/' matrix elements fg v‘*ﬂ (E = 142,444,8) (for Vs = O
gee [14] s Let us introduce the operation A of projection
onto the last column of the matrix: (ﬂ);‘g J}y @g,;

(L, = 1325000y N). With the use of equations (4.7);(4.8) and
the explicit forme of A and P one gets

Mz
Z ﬁﬁ(?davjy) =A#¢d (449)
=0
where (PoVim)ik %/ D4 Vm . Then it is not difficult to show

that the operator P is linear onm A¥

P o ¢S . (4.10)
Substituting (4.10) into (4.9), we obtain

X'y B0 =F o) | (4.11)

where

?‘ g £ Foe (0 Vi) =1 s F-= ’iﬁm/-Vm) . (4.12)

med sran

Using the properties of the matrix A , one can show that

the matrix ig a lowertriangular one:
fo O © o o
- 0 o0 . .. 00
{?ﬂ * =M o g0 (4.13)
g o o=Nd 0
and s
&t kv 1-
C5i)ge = Ci (-9) Pt ke
('S.*).’E - d} !'_-. &1"’2 - s r 3 /V’,; (4.14}

@M)fﬂ - ,f}"(-&)‘*""’—l/e-:, b=1,...,N.

Therefore the operator is a degenerate one. As a re-
sult, the first equation (4.11) is a relation between Fiy
which does not contain )"‘{ , 1ses the constraint

13



N :
S 6Py =0 (415)

K=1
where
Nekvrd
“=Z C,,;,..,_i(&) Vit (4.16)

The degeneracy of the matrix (its rank is N-1) and
the existence of the constraint (4.15) are the fundamental
properties of equation (4.11) which serves for the calculation
of the recursion operator. Such e situation ig a typical one
for AKNS method. Generally used way to deal with the const-
reint (4.15) is to solve it expressing one of the elements ?fp/
through the N-1 others. These last elements of ¥ are now
independent ones. Usually (see e.g. [G—‘i#]}unly one standard
way of solving the constraint is used. In our case this way
corresponds to the choice of %,.r, vov, Pusy as the inde-
pendent variables [14] .

In the present paper we do not confine ourselves only to
this way. We will consider a wider clase of possibilities by
choosing as the independent any N-1 quantities from @,, 5
@y}..., ﬁyy « One can congider also, in a similar manner, the
case of the most general choice of independent variables.

So let us solve the constraint (4.15) with respect to @y
where (A is any from 1,2,+++, Ne Taking into account that in
our case the operators !.,g. have no nontrivial kernels, we get

Pt

@ M(.TA)= Lfé@ﬁ‘, /‘c.’h#) (4.17)

¥ o

Let us denote (E,r ik =0 —J:ggknr : ;D = £ P
= (T, Bw;, s Pt ar, 0, guwgy,?”)mdm’)ﬂ s J..Ek J:Hg:’gi ’

i.e.
fi - EEE R e e i 2 0\
¢ S (P 1 0 : 0
Mﬂ-: "!:*‘{l}*!.;;! 2y ;C‘Q'J}'OJ &fﬁf‘,--;; &ff‘(
¢ . saB .0 o (4.18)
e 6 % o c': '. S .' 7 .
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The operators ME have the following properties (a summa-
tion over repeated indices is absent):

Muba=Mas EaMa=Ea, MyMp = Mg (% =1, 1) (4.19)

The solution of the constraint in the form (4.17) means
that ﬂ; ig represented as follows.

g, =M. P

= in
Substituting this expression for into (4.11), we get
N *+ ++
Iam, @, = g'MﬂgDAﬂ_ (4.20)

Then the use of the equalities (4.19) gives,

EﬁM?yng = EMeleMe mCaM M= E M= £,

where ?9 £, « Multiplying the left- and right-hand sides of
(4.20) by Eg M, ? , we therefore obtain

A”é:(/{) =L, @du (A) (é=n) (4.21)

where %
L, =EMYTMo . (4.22)

The operator La is just the recursion operator which allows

to convert the expressions with the explicit dependence on the
spectral parameter )‘y into the expressions without such a de-

pendence. Indeed, for any entire function Q(/“"‘;’ one has

f"'l" LR

(A" 5;:(1: ful)—Q(’Lﬁ) (4.23)

The index O means that the recursion operator Lﬂ- is
calculated by the ¢ -th way of solving the constraint (4.15)
which corresponds to (4.17). This operator Aq has zero ele-
ments at & -th column and < -th line. Let us also note that
the recursion operator ﬁ,, can be represented as

aLMn' . (4.24)
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& s . e :
where L = M, 9&;"““,{;'*”("%«): _;z-m.agﬂ,gjm(,%,_n) (4.33)

1t follows from (4.21),(4.24) and (4.18) that the recursi- TR
on operators Lg with different & are connected by a simple where /% and S¢ are given by (4.10).
formula Y VI-et us denut;; the column with N components M:‘ VM,
= 5 B -1 = Vigoo V-V
= £, = E, - (425) il s Yod = I 98 ® , Using (4.31), (4.32)
s Lo =ExMlpbsMy = ExMplyEaM, (4:26) (4423) end tsking into account the equalities : ’
- EHMJ’ E"?’ g. | (A )Aﬂt=:f o a"'(p- W)ﬂa{k = lyeeey N=1), we get
It ie convenient to rewrite the relation (4.21) in the W & +
form ! Qﬁ (A 2 <[ﬁ’ P—-PJ&D“‘) 2 (4434)
; 34
' N
Lo Xw(A) =/ x,A) (4.26) =
o (T 0 ‘- = SOV Vr) Zrs e s ) Y
where I{a} (’¢ﬂr,-“, -t s> Qo Fatwath, .- -, ;DM” +« In our where

further constructions we will need also the operators L: ad-
‘joint to the operators [.‘ with respect to the bilinear form

N
Xirwy = GMala + M, —Eﬁk);,(ﬁﬂ_ﬂ/ﬂﬁgn * Tty M) (4435

a&f N oo
=== . }
<X 9 éﬁidx,l’,;(z)ﬂ(z) o YRR By virtue of (4.34) end :—;—-{}%) =‘{¥’”ﬂl{a{> o

equality (4.6) can be rewritten in the form

oV s
{ﬁ" Mq X(g;j s (V—- VM)-*Z;—; xﬂ(ﬁ)Q‘- (Lal, f) Xﬁ'ﬂ e . {4’.36)

The equality (4.36) is the form of the equality (4.6) in

r-
The operators Zm are

L MM ST GIMIE e MILTE, [ the2B)

- waa e —

Cne algo has which th lieit 4 /lnf
' : e explicit dependence on is eliminated. This el
Pyt ot U e Mt A = B it
M,ﬂ Mo‘. AR Hu £ Eou EuMur "'Mn: {a’,ﬁ =1:r:f',) (§529) | mingtion becomes possible due to the existence of the recursi-
anid on operators.
* : '
Lo =MiEsLsMiE. . (4430) | At last the relation (4.36) is equivalent to the following
)‘3. Purther we must also axilude the explicit dependence e SV :
on which is contained in ﬂ' . ' ' + @Y v 3 "
k : M <<me (Mu of —.ZS?,*(L“;)Z;W(V—V,)}=0 (4.3T7)
Firstly we see that /T ig the linear function on A > A=t
A% = \ay, + 8, " (4431) where L, is given by the formula (4.29) end
where (4 and gk are certain congtant matrices. Then one can = Pt rE + * i
] s : hat 1& -f' =
show that Py, z.t{'ﬂu Lﬂ' Mﬂ (éﬁf)&# ?{y-‘:} a){.) '-I"ﬁd @1(5*)5”.?('”‘5} g)(tl-?:ﬂ}
X
St N-k-m 5 k=n . il
@ﬂ* -HZ'E-? (QAGV.H-H)A — _ : , (Ef)*=Aﬂ"a* Z ﬁf'
. (#:32) | B O (4.39)

= () ”g}w-,e; *+ Fin-n) o AH

&
-~
= G ’é, Vo-m Film T * 2 Vsl
where. (Qﬂk )m_ == JM Qﬂk and '
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Since all components of Xpx)are independent, then the equa-
lity (4.37) takes place if

At
:aBtV ZQ&(L:,U 2 (V~V)=0 . (4:40)

Thus we heve obtained the nonlinear evolution equations
for the potential V in the form which corresponds to the & -th
way of calculation of the recursion operators

In the process of the eunatructien of equations (4.40) we
have assumed that Q* (A t) are the entire functions on /‘
in order to be able to use the relation (4.23). It is not dif-
ficult, navarthalesa, to generalize our constructions tc the
case when the functions Qf‘ (A”t} are meromorphic on ).

‘Indeed, together with the relation (4. 3] we have

Fo 1) Y [g’ O, A i, t)=

(4.41)
2P{x,t)

e fd:z (F (xt, () (FXt) 53

where J‘(/‘,t‘) and Q (A‘"’rf) (£=1, .., #-1) are any func-
tions entire on AY. Any meromdrphic function Q (:{"" t) can
be represented in the form $J, (A”i}ﬂgﬂ”ﬁ)/f//l”# where
Q;(,iﬂ; z) and F(A% £) are the entire functions.

Let dS()l t) -_/'F-Q&(/{“’t)ﬂ. S(A;f)]w

where Q(Aﬂ’ t.) are arbitrary functions meromorphic on /' "

As 8 result, the right-hand side of (4.41) is equal to zero,
too. Then repeating the calculation of this section, one ob-
tains the equations

ALY t)M*a—V - EJQ(L PO V-V )= 0 . (4.42)
( i "a‘“f( m) :
Equations (4.42) are equivalent to equations (4.40) with the
meromorphic functinnst.

So we have the following
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Theorem 4.1

If the scattering matrix evolves according to the linear

equation S
4508 — 137 Q) (1494 Sl )= 0

J’
where Qkﬂ f) are arhitrary functions meromorphic on /l
then the potential V/ﬂ':f evolves according to the nonlinear
equation

M’ 2V e
a: Bf }Z-Q (Lm t) au (V

and vice versa.

Matrices :Mf:md L are the degenerated ones (their rank
ig N~1) and the elements of Mrwhich belong to the O -th
line are equal to zero. Therefore, the gystem of equations
(4.40) contains only N-=1 nontrivial equations and the & -th
equation ig of the form 0 = 0.

The fact that within the framework of AKNS method we ob-
tain N=-1 equations for N potentials V:u-n, Vﬂr—; is a typlcal
gituation for this method. 1t is related to the fact that sol-
ving the conatraint (4.15) we proceed to a subspace of the in=-
dependent variables Xfa} which ig N=1=dimensional one.

The different ways of solving the congtraint (4.15) are
interrelated: X(g} =£='M,! xtjg) +« Therefore the systems of equa-
tions (4.40) which correspond to different & are not inde-
pendent. The relation between equations (4.40) with different
& cen be found either from (4.37) using the equaelity X(w='
= LaMs Xip) or directly from the equations (4.40) with
the use of the relations

ML) =(L2) M sy Euli= L, MIE T M 2443

We get
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+ 0 £t
M natv ZQ&(Lﬂlt)z“#}(V ﬂ)=

(4.44)

Y
=Mest ",EZ e (Los 1)y (V- Vo)

for anrd,ﬂ-.t_’,..., o

The formula (4.44) is very simple, but 1t establishes an
important fact: definite combinations of equations (4.40) with
e given recursion operator have the same form (4.40) but with
the other recursion operators.

Thus the nonlinear evolution equations, connected with
the spectral problem (1.1), can be represented in different
(but equivalent) forms with different recursion operators. Mo-
re general weys of solving the consiraint lead to the same si-
tuation. For the other spectiral problems there exlsts an ana-
logous phenomenon, too.

Equations (4.40) for a=4pN, L/E’w' O ena Vw-2=0
colincide with those constructed in [14] .

V. Gauge invariance and manifestly
gange-invariant formalation

1. Let us firstly consider the tranasformstion properties
of equations (4.40) under the gauge transformations (2.1). Let
us obtain the transformstion laws for the quantities which
have sppeared in the previous seciion.

iR
From the definition of ? {-’Lr,/\) and (2.6) it follows
that

?nx,t,ﬁ)—{r Pa Yz, 2, 1) =6l t) PlaLIGC L) (5:1)
For the column X{.r,:‘, A}ﬁ?ﬂ”, Sy @”ﬁ) the law (5.1) gives

XL X=aG X (5.2)
where f@)wf"’@/@} . Purther, for the quantity X{h‘»‘ the

transformation law is

20

Xy =+ Xy = Tal@) X ew (5.3)

where
T (V)= Ea (@M (5.4)

In particular, L74 =£yf( )is the function only on (-1': Z).
4

Using the explicit form of the operators é} and the trans-
formation properties of Vk and Ff{?), we get :

Lemma 5.1. Let 5; iﬂ,& (V;’. Then for gauge transformati-

&
ng;ﬂ:tm=!n : (5.5)

Amd
Using this Lemma, one can prove

Proposition 5.1. The constraint (4.15) is the gauge inva-

riant one:
Lol =30
f = g (5.6)
et M e T
1t followa from (5.6) that

@ﬁ;‘ +£;-iz 4;%:!" e !-IE {@d’f‘fu Zf “ﬁ‘) (5-7]
pol

In particular, {;" v =2

Therefore, not only the constraint (4.15) but also the
procedure of ite solving which has been considered in the pre-
vious section are both gauge invariant ones for any & .

Then the relations

X' =M. Xem = M;wfu Ky =T X =TI MaXery
give

M LM; = ZM, T L SEY
wherg T o ﬂﬁﬁ;

Propogition 5.2. The transformation law of the recursion
operator L: under the gauge transformations is the following

L=l L) -TiLIvrE 5.9
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Proof. One canderive the lew (5.9) either by the straight-
forward celculation or by using the gauge invariance of the re-
lation (4.26). Indeed, using (5.3) and L Xru,r *"/\ xr’«): one
obtaing La(V)=Tula Ba  end therefore (5.9). In particular,

Lnw=ExTQ Ly .

Lemmg 5.2. The following relationa

c2EP ) (5.10)
LR P-pJB D =< [A*P-p)E> G

hold for the gauge transformations.

and

This lemma is proved by direct calculation with the use of
(2¢6), (5+1) and combining certain terms into the total deriva-
tives over & ,

Prom the relation (5.10) we hava } > .

Therefnre,{jf:ﬁ’l;‘gg Xfm> (Mu‘;‘" (nd » AB 8 result. taking
into account (2.7), one gets

'V / W 27
‘f:M:__&t = +Mf aiV zaf af)s
aV 32' oV
MEEN(T 55 ) M T
Hence
R L A o
M:(T ‘ﬁ"yff IT&_— = : (5.12)

Analogously, from (5.11) we have

€ X Zifos (V-Ve)> = & Xits Lo (V- Vi)D

and therefore

,t-(ﬂg(y ”) ;Z;ﬁ}(v— ") ' (5.13)

Ueing (5.12), (5413) and (5.8), (5.9), we obtain

""W—f'{)(z. 2 (V' V)=

22

= Mf-fr(r_I AE s B;)Z/' 2 ;tl/) &

— A1
-'-‘»’I:ég%(ﬁ:,f)ff krm(y Ver) =

W-o
S TI(M A - S QL)L (V-Ve)

S0 we have proved the following

Theorem 5.1+ Equations (4.40) are invariant under the
gauge transformations (2.1) and

sV
:;T'ZIQ(L (NJ(V Vo) =

-z - Eoun vzt (v-1)

In the particular case of = N we have .ﬂ" —2’(’?).&} end
therefore

n* o e
Mo sE ;Q (L2, ) sy (V= Vo) =

(5.14)

=2'(§')(M:j—é/ ‘%‘Qﬁ(ﬁﬁ,f)zk“m(y_ Vm}) _ (5.15)

2. Manifegtly gauge invarisnt formulation. Equations
(4.40) are the equatione for the potentials Va, V:r, A V-2

which are transformed under the gauge transformations according
to the law (2.1). The left-hand side of these equations is
transformed, too (according to (5.14)). On the other hand, the
scattering matrix 3()4 ) and equation (4.5) ie not transfor-
med at all under the gauge transformations. So it is quite na-
tural to formulate the integrable equations in the magnifestly
gauge invariant form. It is possible due to the exiatence of
the gauge invariants M., Wx,.. e W#_.g .

Theorem 5.2. The equations (4.40) for any & and
Vves00=0 are equivalent to the equations
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Bh’:&,t) ; Q*(Lw, f)zmé(w wq) 0 f5.1a}

f-
where W= (an, W:,---: W;—;, f’) and operators LH and zf’ﬂ*
are given by formulas (4.29),(4.38) (witho=#) in which one

must make the substitution V. —=> Wi (i = 0,1ye0.,8-2),
Vf"..f - 0 &

The Proof is based on formulas (2.7) and (2.8). It follows !
from these formulas that the transition from the potentisls H
(Hn. Vitso. : L”u-: ) to the invariants ( Wa,kf:,.. Wy—g, O ) is
just a special gauge transformations with the gauge function :
F"-ad;a(’"f'.r’V £(Z’)). For such a gauge transfumation,
V- = Wi (Vo Vs s Viz) » (£=0,4,...; #-2)and Vwes=0. Then
from formula (5.15) for this gauge tranafamatian we have

oW
M

= é:Qk (L:: t)%; (V'W~)=

(5.1T)

W=t
- ';-(Jﬁ")éif: ;??V 5 ‘E:Q*(L:’ i)-?k;i(y— V""))'

N W
At last since M‘:at T a&ff{'ﬁ"y!"ﬂ, and equations

(4.40) with different of are equiva.lent, then equation (5.17)
regults in the statement of the theorem.

Equations (5.16) contain only the gauge invariants W
and represent the manifestly gauge invariant form of the evolu=
tion equations integreble by the problem (1.1). In different
gauges, equations (5.16) look like the completely different .:
equations but they are 211 gauge equivalent to each other [26] '

The manifestly gauge invariant description (5.16) is also im-
portant for the Hamiltonian treatment of the evolution equati-
ong integrable by (1.1)- 2 '

Vi Prehamiltonian form of the integrable

equations b

For the study of the Hamiltonisn structure of equations
(4.40) one must firstly exprese the nonlinear part of these
equations through the variational derivatives. The relation
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(3.3) is very useful for this purpose. It gives the relation
between the infinitesimal variation of the potential and those
for the scattering matrix:

8Sum(ME) == B8P NY = VXD .0

Where &-{l c*f(}‘-f(x;r I'i,p*” (f-ﬂr,t A))‘IE and
Pt (' iws Pansener Pow )" . e equality (6.1) means
=+ in J'Si# (’/Lt)
Ke (550)= FU )

(6.2)

where cr/(yfé denotes a variational derivative. However, since
_Z'!*,t: =0 , not all variational derivatives 45 are 1nde-
pendent.

Propogi tion 6.1. The variational derivatives of the scat-~
tering matrix satisfy the constraint

é: dS0t) _ (6+3)
Ve

where £, are given by (4.16).

The existence of the constraint (6.3) is essential for
the Hamiltonian treatment of equations (4.40). This constraint
is aleo closely connected to the gauge invariance. -

Proposition 5.2. The censtraint (6.3) is a consequence of
the gauge invariance of the scattering matrix.

Proof.. For the infinitesimal gauge transformations we
have - g

S Vet ) =—liss E(x, 1), (k=0,4,.

Then, by the d,efinition,

L, H-1) (6.4)
S T 5,
35{) i) = J‘{ -Z J %{me J!&_,(x,r) - (645)

This formula is also valid for the variations J V:g and JS
induced by the gauge transformations. Substituting (6.4) into

{6'5}| we gﬂt
N Cpéiﬂlpi)
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Since £(z,£) is en arbitrary function, the equality (6.8)
leads to (6.3).

The constraint (6.3) can be solved by differente ways. We
will confine ourselves to those which have been considered in
section 4.

-+ in
The quantity i
to section 4, one can get

Ao Xt -7 X7 (647)

plays sn important role. Analogously

where ? and F are given by formulas (4.12)- Equa.tion (6aT)
contains a constraint

e

z B S (6.8)
- i =tin =t in
Let ue choogse the -‘i 1;11: X_, 4 e ,I/{ o=x 'raw: peeny Xx
—tin . 2
i.es the column X e ) Kania s O ;:”_ o ns)'.?'

as the independent variablea. I'rom {6 8) we have

“rin ~ i i -
X (@ t,8) =dun Xy — s P (6.9)
=tin

where Xﬂ,@, is a kernel of the operator fy +« Therefore

0
0
T =MHXFJ;' * Jow (6410).
Ln
where ,
(Mu);k nE Jia&: fk . (6.11)

Subgtitution of (6.10) into (E.‘T} glves
- =i
A”gt(fﬂu xm é;f#( n)} Y M(#JX(H) (6.12)

=
Maltiplying the relation (6.12) by £xMy & whera(f/ &=Ly ,
we obtain

Af _'an Xmu 5 ?« #”(':’:"”) (513
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where%"g E.M;ﬂ('% YRT , Rux = 4, iogk, (b k=1, . )
and
L, =E.A, g,’gﬁ _ (6414)

Note that in the operatﬂraﬁ,,% £;° the operator o~
means (9"F)(x)= f%f{y} .
- 0o

Let us now introduce the quantities

o

S##()
It follows from (6.13) that
k ~ k) = (A)
XN =L e VG, (6. 16)
A “ran
S r’ij'___- & ,f [T==
wnere /1" = 2> A ~ 571
Purther, by virtue of (6.2), we have
ks
”.{::( 8,A) = Eq dr(A” b So(4)) (6017)

dVix, z)

where (Sp)ix = . 4 S; . Note that right-hand side of
(6.17) doee not conteinc?/ff Vo-2+ The substitution of (6.17)
into (6.10) gives ue the equations with the variational deri-
vatives we are needed. The ahortcnming of these squetions 1is
that they contain the operator .rf.ﬂ. ingtead of the operatarl.
which defines the nonlinear part of equations (4.40).

However, one can prove, by straighforward calculations,
the following important

Theorem 6.1. The relation
ot +
‘-?HLH =Lﬁ. jﬂ (E-‘l'- 15]

holds where -7., are § x N matrix integro-differential opera-
tors of the form

To=MITM, ' (6+19)
where -



Tk = ; {C;::-.t £+£¢§-.r J o CJ::-" (;a)e( %‘5*‘*—‘)} z

FNE S ~NEGTS,,
: (6.20)
T =0, i+k>N+L-

The relation (6.18) a.llowa ug to express the terms
a.:)‘z,fﬂ, (V Vn) through /7(,”. Indeed, let us substitute
the agymptotic expansion

18 (x.t.2) = z Sl S

into (6.16). Solving the obtained system of recarrent relations
and taking into account the equality Tulalull
. R'*M(V"Vg) y We obtain

ELY 2L V-V =(LI P Tl e nigins (6.21)

where ¢ is any integar.

With the use of (6.21) and (6.17) one can show that valiad
ig the following

o Theorem 6.2, Equations (4.40) with CJ, (LY ¢)
=2 Wy r’f)(i.’*)" where (Ji, (%) are arbitrary functions
can ba represented in the form

raV iy I -
Ma — o =(L2) Jad, 7 (6.22)

where g. ig any integer and

= &
2= EF G 27 U (At Solh) et
-} Ami Awld (k*"‘f); a(A -y)#*"‘f - -2
Note that the right-hand side of (6.22) does not contain
J/ Vﬂf-.f and the set of the functionals Jﬁ; is the same for
the different o .

Since the operator M: is & nonconvertable one we will re-
fer to the form (6.22) of the equations (4.40) as the prehamil-
tonian forme.
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Equations (6.22) possess the same transformation proper-
ties under the gauge group as equations (4.40). The functio-
nals -.?l'.p-g. are the gauge invariant onsg. One can also show thsat
under the gauge transformations

Tu = T = T T . (6.24)

In particular, J'=27x% .

dS2
Note that, by virtue of (4.5), 7 =7  and therefore

the coefficients C £ of the asymptotic expansion
fr/,a-'f& 53(/!))-2 J'“C 4 ave integrals of motion for equa-
tione (4.40). So

H_y = J.'CZ “G.CL (6.25)

ket Fm=o

Emphaegize also that the gauga invariance of the C,: ?and the
condition (6.3) for CS¥mean that all integrals of motions
are the functionals only on the gauge invariants W), Wi,..., Wy-2«

Vil. Hamiltonian structure of the integrable

eguations

The ¢6nfiguratian space for the evolution equations (4.40)

has a functional dimension ” +» However, the gauge group of

gymmeiry with the funciional dimension 1 act on this space.
The space with ¥  varisbles Vo/®.2), Ve(x, 2),..., Vs (=, £)
therefore contains only N-1 dynamicsl (nongauge) degrees of
freedome

Further, the functionals :’?-g, which are candidates to
the Hamiltoniane are geuge-invariant onea and, therefore, the-
ir "functional® gradients satisfy the constraint

BT
f W—t_ = (7.1)
E £ g ket 2

All this leads to the conclusion that for Hamiltonian
treatment of equations (4.40) one must exclude the pure gauge
(nondynamical) degrees of freedom.

The first, more traditional, way is to fix a gauge. For
a fixed gauge, the gauge freedom is abgent and the equations
contain only N=1 independent dynamical variables.
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For equations (4.40) with given & , the ggm e 3V
Vg..;—-—' k:,_,m is convenient. In such a gauge M:&ﬁ -
and equations (6.22) become

a Vﬂr.f + $ J.‘-?'
=(L)*T. TV (7.2)

where i-‘—g(%,ﬂ,”.. 3'/*-1—2. a, V;; c e ey I'dfr-:) and in the

operators L: and ..7,, one must put P.(;..;"Vn.-;n .

Theorem Ts1le Equations (4.40) in the gauge ,.., l/a_;w
are Hamiltonian ones, i.e. they are representable in the form

3 V J(‘I}t = ™
af-m _2 _{'Vf’“-’(:."t)’ﬁ"}}(gjg, 7 3)

with rTespect to the infinite family of Hamiltonisns H-g
(6+23) and infinite family of Poisson brackets { Jerg WheTe

{ﬂ:f}f“’! IJIZ;JV (=, £) (é' f)$])£* J‘ Iv‘{i’-

(7.4)

JVM(LU‘EJ J‘Vm:} :

The fact that the brackets (7:4) are indeed the Poisson
brackets ie verified by direct calculations.

For different & (i.e. for different gauges) we have
different families of Poisson brackets. In the particular case
o =/ the brackets (T.4) coincide with thoge calculated
earlier in [14] The bracket f , },,,is the well-known Gelfend-
-Dikij bracket ftﬁ]

For the firgt time the existence of the infinite family of
Hamiltonian structures for the equations integrable by the in-
verpe scattering transform method has been pointed out in
IEE.,E'B]. Then the hierarchies of the Hamiltonian structures
have been discussed in [30 31,20,21,11,9, 13] « In particular,
A }(501 is the pecond Hemiltonian structures which has been
considered in [18,31]. '

Thus, the first way of exclusion of the gauge degrees of
freedom consists in the choice of only one representative from

30

@._____.,_._,.__.__.__.__

A |

L2

A R R S S e i e I

each class of the gauge equivelent potentials. This choice is
performed by crossing the classes of gauge equivalent potenti-
als by the surface [ = Vuoo

There exiats another way of the exclusion of the gauge de-
greeg of freedom. It consists in conversion of equationa (4.40)
into the manifestly gauge invariant form. Indeed, if one para-
metrize the potential V by the invariant W and “gauge® vari-
able p s+ V="(P)W + 7(p) (see (2.10)), then by the uge of
the theorem 5.2 one gets that equations (4.40) are equivalent
to equations (5.10)s The latter do not contain any gauge de-
greeg of freedom and they are Hamiltonian ones.

Theorem 7.2. Manifestly gauge invariant equations (5.16)
can be represented in the Hamiltonian form

2 & B
'%%(— = fVﬂf:"’))ﬁ'-g(My& (7+5)

with respect to the infinite family of the Hamiltonians F-g ,
which ere the functionals only on the gauge invariants W, ,
We,..., My, , and the infinite famlily of the manifestly gau-
ge invariant Poisgson brackets [, j-} where

A (7.6)
15y~ f ""’5: J w:z-, L) gj*')m 7] M& .

where Jw is given by formula (6.19) for & = N in which one
must make a change

VI'—’WE 3 ('E=a-f:-'-;#-£) ’ V%J_*a

The Proof of this theorem is analogous to that for the
theorem T.1 for A =N . The only difference is the substitu-
tion |, — W; .

Theorem 7.2 gives the manifestly gauge invariant descrip-
tion of the Hamiltonian structures which correspond to the evo-
lution equations integrable by (1.1). In different gauges the
brackets (7.6) give different Hamiltonian structures in terms
of the potentials Vi . But all of them are gauge equivalent
each to other {see [ESJ Je

In virtue of the manifest gauge invariance of the Poisson
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brackets (7.6), any gauge transformations V=V’ 1s a canoni-
cal transformation. Therefore, the gauge transformation from
one gauge Vd = |f oo to the other such geuge is the canonical
transformation, too. In particular, by virtue of the Propositi-
on 2.1, the Miura transformation is s cenonical gne.

=

In conclusion let ue emphasize that the Hamiltonian struc-

tures (T.4) and (7.6) are universal ones, i.e. they are the }

Poisson brackets for equations (4.40) and (5.16) with any func-
tions Qk .

VIII. Recursion operator and general form of the A
int ble

tions in the N x N mat form {
without golving the constraint

A starting point for calculation of the recursion opera-
tor is equation (4.11) which we rewrite here in the form

A#?x_fx > (8.1)
where X = (Xs. Xy, ... X)L, Bin, ..., B0), (¥,
Since the rank of the matrix ¥ is equal to N-1 (seg(4.13)),
then equation (B.1) contalns the constraint (4.15) é{e.ﬂk = Qe
This constraint plays a fundamental role for the calculation of
the recursion operator. In section 4, solving this constraint,
we introduced the N-1 dimensional spaces of the independent
variables AX(we. As a result, the nontrivial parts of the recur-
sion operators L, (L) which are N x N matrices have the
matrix dimension N-1 and the integrable equations (4.40) are
the systems of N-1 equations for N functions Va,V} Fiv g Vy—_f .
Such a situation is a typical one for the AKNS method.

Here we show that the recursion operaftor can be defined
in the N-dimensional space of all variables (Xs;, Xz, Xx)e
Uging such a recursion operator we present the equations inte-

grable by (1.1) as the system of N equations for N funciions o

NS Aw
Pirst of all, note that, in virtue of (4.13), equation

(8.1) ie equivalent to the equation e

A"’?X - E FX (8+2)
supplemented by the comstraint

f
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rd
24 Xi=0 . (8.3)
kwd
Prom (8.2) we have
v O (8.4)
NHX =M, 4¢FX =L X

where ?1‘(?- £, . The operator L_,='M”9‘.?_ is just the recur-
sion operator which acts in the whole N-dimensional space
(X X2,..., Xw)+ Equation (8.4) is compatible with (843).

However, L.g ig not the most general recursion operator
which can be defined on the whole N-dimensional space.

Proposition 8.1. The general form of She recursion ope-
rator which acts on the whole N-dimensionel space (Xgsoros Xp)

LX(A) =AY X(A) T

L=Ls+Qaet (8.6)
where 2 s'-'-"’(’f,, S ) g Qﬂ”(ﬁ?,, - Q,)"' where

'@..!}Q;[J"‘* @” are arbitrary operators and @ denotes a tensor
producte.

Proof. The difference L-Lg= A should satisfy the con-
dition 8 X = 0. Since X has N-1 independent components,
the rank of the matrix 4 is equal to 1. As a result, taking
into account (8.3) we have ‘dﬂ.-=0.+ ¢y where (; are arbitra-
ry operators.

is

S0 there exists a large freedom for the construction of
the recursion operator in the whole N-dimensional space. The
following calculation gives the examples of the operators 9,_- H

M X(x,A) = NEQ X + A(1-E)X =
N
CE M G TS Calu X +(1-EM G T duMX =L X

where Mo = 1 end &y, d'g are arbitrary constants which

satiasfy the condition ﬂ_aC,-ﬂ_ddg-.f. The operators L?; which
correspond to (8.7) are
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Q= = (Eﬁgﬁmd’“ﬂ*z:{ (/1});‘4,@“_?)”;" _ (8.8)

The genersl recursion operator Z. can also represented
in the form

= :
% =L_5 7 J*E: Q{g;ﬂ% (C}ﬂnr £ C#'j'}d)ﬁ’“ (8.9)

where ‘?ﬁﬂ are arbltrary matrix operators and, Crke, Aok
are arbitrary constants which obey EC‘r.e;nrm -Zdnbu"" £ -7,
One can show that the forms (8.6) and (B.9) crf the recursion
operator [ are equivalent.

P :
Taking into account that Ef&ﬂ«)“=a s We have

Corollary 8.1. Operator Z” has the structure analogous
to (E-b], i.e.

L' =L + Q@& (8. 10)
where () are certain operators.
Corollary 8.2. Por the adjoint operstors we have
L"=L{ +¢te Q*,
L) =(L2)"+ £'0 QL, , (n=2,s,...)

The analnguua freedom appears in the calculation of the
operators ZR s too. These are of the form

2;&)* 7{_31"&@‘ {3-13)
where @'-{f@;, G’u s .v) and @: @:---; é;f are arbitrary ope-

rators and

N
Kok = L3 (2, Yoy Gidin— QF) +
N
+ ; 3:';;:) (g,.t);,v o Akf

r
where 9”, and ._’,7}::, are given by formulas (4.33).

Further, ueing the recursion operators ﬁ.fand 2",@ s We
analogously to the section 3 obtain

| <x('3_¢" . %IQ;&(A:?-‘)-Z:(V"V,)}= 0. (8.14)

(8.11)

34

However, the relation (8.14) essentially differs from the
analogous relation (4.37). Indeed, the relation (4.37) contains
only independent variables ,x,;'aq and, as a result, the equality
(4.37) leads to (4.40). Now the variables Xi, X2,..., A, ave nn'l:'_
independent and obey the constraint (8.3). As & result, the
equality (8.14) is not equivalent to the equality to zero of
the expression in the round brackets.

Theorem 8.1. The general form of the evolution equations

connected to the problem (1.1) is the following

2 Vf/ » ) = + 7 - 2

2t = > QU)X (V-Vo) - fLE e p=0  (B.15)
where QA. ( ﬁ‘:f) P f C{-t t) are arbitrary functions meromor-
phic on L", and Lf, ;2",{ are any operators of the form (8.11),
(8.13) and ¥/x, Z) is an arbitrary scalar function. For equa-
tiona (8.15) the scattering matrix evolves according to the
equation (4.5).

Proof. It follows from (8.14) that

V o 4
2V _ EQuioiv-y- 2t @

where Zr is any column for which its adjoint zZ obeys the
condition ZX = 0. It is not difficult to see that the gene-
ral form of £ is Zi = f//l"' ), )by, (Kk=4,..., V)
where /x,t)and F() %)are arbitrary scalar functions. Using
A¥X =L X , we have ZiXe(A) = 5"(‘1‘,1')&{7"5@ t),f)k. There-
fore, Zji = (F(L,E)E) ¥

Theorem 8.2. Any equation of the form (8.15) with the
arbitrary functions Q‘., 7 ¥ and operators f.’: 2’: of the
form (8.11), (8. 13} is equivalent to the equation

el QUL YTV ) -trp=0 >

where V(ﬂ'; t) ie a scalar function.

Proof. Let us consgider any equation of the form (8.15)
and substitute the expressione (8.12),(8.13) into (8.15). Sin=-
ce ﬂ;)'ﬂfﬂ ¢ , we obtain equation (B«17)+ The function

¥ in (8.17) is calculated throughQ* y f and ¥ from
equation (8.15).
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By virtue of the theorem 8.2 , equations (8.17) give the
general form of the equaticms integrable by (1.1). Now the re-
curgion operator L and zfsm are defined uniquelly and all
uncertainties are containeci in the term £7¢¥ only.

Equations (8.15) and (8.17) are the equations integrable
by (1.1) in the form which is natural for the AKNS method. For
the entire functions QA. these equations can be represented,
of course, in the standard Lax fomrm gg—-=[ﬁ,ﬁ] where
[ =2d"+ V,.,J”"' Ve and A is the operator of the
form A = r‘-:.{{ké" . Tha uncertainty which is contained in equa-
tions (B.15),(8.17) corresponds to the freedom in the choice
of Us.

Let us now congider some properties of eguations (8.15)
and (8.17)s Pirstly we discuss their transformation properties
under the gauge transformastions.

!
Lemma 8.1. For the gauge transformations V=V (2.1)

& 2'.{".“‘.(.',f")= T(9)87°(V) (B.18)
and :
oV’ V
¥ r{qu) J TP (8.19)

where #f =g azs/y)

Formulas (8.18) and (8.19) follow directly from (5.5)
and (Ev?)

/
Lemma 8.2. For the gauge transformations V—"' ]/ we
have

L) = r(g)(,c*(y))"r-:(g; IR S T

ZEVIV=Vi) = TRQZI V)V Vi) + %@ &, (8.21)
where é};} - @wn - - 5}.-...,,,.;) are certain scalar operators

and ﬁ.; are scalar fu:ﬂ-:tlnns the form of which are defined by
the structure of L7 and 2‘;, .

For some operators LT4 may occur that Gl =0C. The
example of such an operator is L 7= MI?’?’”:.

Pruposit:l.oﬁ 8.2. Bquations (8.15) and (8.17) are nonin-
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variant under the gauge transformations. Gauge transformations
convert the eguations of the form (8.15) into the equatione of
the form (8.15)«

Proof. Using (8.18)-(8.21), one can show that for the
gau,ge tranaformations

- ZQ.WN )2 (V) - F L)'=

(8.22)

=’1'f’?"( 37 -é QLD (V- 1) —f/&‘:t)e’“sa)
where L#giL*(V?: 2‘*} ﬂﬁ/zf('y) + Functions f

are expressed through £ , ¥ andQ* and in the general cage
Frf P Ey

For equations (8.17) with Q (aﬁ;, f) _Z{,Ji”{f)(ﬁf)

we have under the gauge transformations

2 S QL Y2 (VW) -7
= 'z.'(y)('}—t—' ” éQAﬁ-; f)%; (V—VN)—Z"P)

where

o= ¥+ 95§ -5 i Gl () £75) 8020

A=l fr=d

(8.23)

Theorem 8.3. Equations (8.17) and, therefore, equations
(8+15) with given functions {/; and different functions ¥
are gauge equivalent esch to other, i.e. the gauge transforma-
tiong ect in a transitive manner on the whole class of equati-
ons (8.17)+ In particular, any equation of the form (8.17) is=s
gauge eqivalent to the equation

g?{&,t) ZQ(L r:#).é(V V)"“ . (8.25)

Proofs It follows from (8.24) that for a given ¥ it is
always possible to find such a gauge function g/, Z) to ob=
tain any function ¥’ given in advance. Therefore, if J
obeys equation (8.17) with gome function ¥ , then V obeys
equation (8. 'lT_}' with the function ?"'which is given by (8.24).
By appropriate gauge transformation one can transform a given
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¥ into an arbitrary fumction (/. In particular, one can al-
ways convert any ¢ 1o @’= 0.

Thus, the whole freedom which appears in the description
of the integrable equations in the form (8.15) or (8.17) is of
the pure gauge nature. Equation (8.25) is in a certain sence
the standard representative of the whole class of the gauge
equivalent equations (8.15) or (8.17). Note that the different
recursion operators of the form (8.6) are not, in genersl, ga-
uge equivalent to each other.

Let us now consider the relation between equations (8.15)
and [4040)-

From the definitions (4.29),(8.11) and properties of the
operators M,, it follows

L: = MIL?E, = MfL’LE (8.26)

Using (4.28) and (8.13), one can also show that for any opera-
tor L7 of the form (B.11)

MILY = LIML, MIZE =20, MIFLLYEP=0 (8.27)

Propogition 8.3. The system of ¥ equationg (8.15), for
any recursion operators [ 7 and Zk containg a subsystem of

H-1 equations which coincides with the system (4.40).

Proof. Multiplying the left-hand side of (8.15) by H:
and ueing (8.27), we obtain (4.40)

0
M é’g (L DIV V) 13 E? 9) =

= dV o + " (8.28)
B M"' at 3 *Z_;QR (A": t)xﬁfw (V_VM)'_' o
Enphagize that in the projection of the system of N equa-
tions (8.15) onto the gystem of N-1 equations (4.40) the whole
uncertainty in the definition of the recursion operator and
the other freedom disappear.

~ The gystem of equations (4.40) contains F-1 nontrivial
equations. This system can be supplemented to the system of W
equations, for example, by the equation for Vg-; .

~ Proposition 8.4, The system of the equations (8.15) is
equivalent to the gystem of N-1 equations:
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12V O a9z (-0 (6.

plus the equation

St - S (Q, (L1 OZI(V-e). ~ (A0ETLp=0 (2.0

where o 1is a sny integer from 1,2,++; HN.

It is easy to see that one can always choose the function
& such that the equation (8. BU) is satiafied identically in

the gauge Vg;_. - Vm‘-jﬂ "

For o= N , the gystem (8.29), in vicw of the theorem
5.2, is8 equivalent to the system (5.16) for the gauge invari-
ants and equatiun (8.30) for Vy.,

BVy— = Z(Q (L1 OZIV-L), (fﬁ;ft)g)gu.o{a .31)

is equivalent to the equation for the "gauge™ variable
which waa introduced in (2.10): 3f/f’= —;5- ’/;L;i

So we have the following.

Propogition 8.5. The system of N equationsg (8.15) is
equivalan}‘; to the gystem of N-1 manifestly gauge invariant
equations (5.16) supplemented by the equation for the "gauge"
variable /%, t).

Therefore, the whole N (functionally) - dimensional con-
figuration space ( Vo, Vs,..., Vs ) for equations (8.15) (or
(Be1T)) contains the N-1 - dimensional invariant subspace on
which the gauge group asctaly the identical transformations,
i.e. does not act at all.

This circumstence is important for the Hamiltonian tre-
atment of equaticns (8.15). Indeed, for the interpretation of
equations (8.15) as the Hamiltonian systems, one must exclu-
de pure gauge (nondynamical) degrees of freedom. One can do
it by the two ways. The first way is to fix a gauge, for
example, Mr—: "K_,.. In this gauge, equations (B.29) are Ha-
miltonian ones due to the theorem (T.1). Another way is to
project the N-dimensional system (8.15) onto the N=1 = dimen-
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aslonal gystem (5.16). In view of the theorem (7.2), the latter
is a Hamiltonian aystem.

Thus we have

Theorem B.3. Let we have any equation of the form (8.15).
In our N-Aimensional space of the variables V#, V_f, ey V =
let us separate out the N-1 dimensional space of the indepen-
dent dynamical variebles either by fixing a gauge or by pro-
Jecting onto the invariant subspace described by equations
(5.16). In both cases the corresponding nonlinear §N-1 - dimen-
sional systems are Hamiltonian systems with respect to the in-
finite family of Hamiltonian structures.

Por the Hamiltonian treatment of equations (B.15) we ex-
clude the pure gauge degrees of freedom. Let us now consgider
an opposite case when the system (8.15) contains only pure
gauge variables, i.e. when gll gauge invariants W,}; are equal
to thelir ssymptotic values M&”.

Corollary B.}. In the case Me "Mpn the system (8.15)
is equivalent to the only equation (8.31) for V,.r-_.g in which

Vo,Vs,+.., Vy-2 Bre expressed through Vy-1 , asccording to
(2.2)s

Indeed, in view of the proposition 8.5, the system (8.15)
is equivelent to the system (5.16) plus equation (8.31). For
W,e = Wioo + equations (5.16) are satisfied identically and
equation (B.31) is an equation for the "gauge" variable P
The examples of equations (8.31) for N = 2,3 will be given in
the next sections. Note also that for M& = 0 we have
c}”:‘*V a”‘ +|/—(3-r-99)”where ;t?s# i

iX. The examples: N = 2,

In this and the next sections we consider the examples

of equations (4.40), (8.15), (8.17) for the simplest cases
R =2,3.

Por N = 2, O = 2, and Vbee# 0, Vses 0 2rvom the general
formulas (4.16) end (4.18), we have

et e e

4C

—

el

The recursion operator is

L, 0) _ (FONKYIT+ L@)07-01)07 0 )
é / ) = 0 0

>

£l =-elef"=-£(0+V,) . .1

(9+2)
>+ VyVoww, ~Vort Vom£9* ;;:p;)
i ( ; 0 ;
For § = 2, equations (4.40) contain one nontrivial equa-
tion ‘}V ‘}V
5 S - |
L ( ) (9.3)
QUL (I(VeVom) - $3% -F30)= 0

11'..
function meromorphic on [c_.-_.r

where Q(Ln: ‘t) is an arbitr .-
= 4o —-#[,H s equation

and L], is given by (9.2). For
{943) 13 JV :
2
W _ £004)5F - (G 72 Vo= 4=)(3Vs- £~ ;;yay),: ]
9s4
H(FY, #6VadVs - ViIV,) — £ (2+U)(FY - 3 Vi,

2Vl #) Ve —3QV)RV:) — Vo'V, - V, Ve ol - F U IU=0.

Equations (9.3) are gaunge invariant and coincide with the
manifegtly gauge invariant equations

= CLL EdW-W,) =0 (9.5)

whera W, = V. - IJV ‘_sz V: is the gauge invariant end

L) = é’+—£—(&k"+h"3) ", Lo » The gimplest equation (9.5)
c-orreﬂpﬁnda to QF &yo ""?L,,- and it is the Eorteweg -~ de
Vries (KdV) equation in the manifestly gsuge invarient form

W L Uy + WM = (D 2Won) We= O .

In the gauge Ve =0 equatione (9.3) and {9 5) coincide

with the KdV-family of equations (see e.g. }M _thr Z)x
d

x 3(’%' ﬂq) =0 where .&,r.(y" z‘w/lﬁ-o"' fa;i" Vot the fami-

‘ly of Poisson brackete (7.6) (Jpy=20) gives the well known
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famiiy of Polisson brackets for the Kd?-family equations.

In the gauge Vo = Vouw , (We = - £V - 1&*) equations
(9.5}, aB it is eaﬁzr to see, are equivalent to tha mKd?—famil:,r
equations [5] a r Q{‘mew f)&k} = ¢ where

L] ¢ AN £ -4y,
ety =0 1)~L A ho(07Ve) = 70 ,,,3(#;3 b)? Voo
For the gauga tranaformation from the gauge l'fi %n

to the gauge Vi =0 we nave M-(/P;: V/) We(Ve, l'/.;) i.e.
Vo' = Voo "—'al'/;- —f' V_f y that ig the generﬂlization of
the Miura transfnrmatian {2‘]’]

Let us conslder also the general linear gauge

oo Vo " Oy IZ:= O where oy and &, are constants. For simplici—_

ty we here assume that Vew = [sw= 0 . One can introduce the
function (&, Z) such that [, =8 U, Iéﬂﬁ_,z.f where £, and
JS; are some constants (0,8, # &, B,=0 ). In this case,

=ﬁaf‘ fﬁ;&ﬂ -*;:*ﬁ.- 2 and equations (9.5) are equiva-
lent to the following

= (La, U =0 (946)

where

o“Pu @'ﬂ
W’F:

where D We is Prechet Jacobian of W, with respect to &
=0 We

ou — fe-FpA-Fpiu .

Equations (9.6) are the equations of the combined
KdV-mKdV .type. For B7 = O they reduce to the KdV-family and
for Bo =0 -~ to the mKdV-family. The Hamiltonian structure
of equations (9.6) is given by (7.6) at K.-)B.Zf V,.=)ﬂ, 7

The transformation from one general gauga ( =f.
V,=ps%) to asnother one ( I-:L==Je i P}—Jﬂ;&’ )is a gauge
tranaformation and

2!~ 7 ;a‘ﬂ( fJ”J‘J 2/ = ,aﬂ-—'—' .-
Hui=ah e 5
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In particular, for the gauge transformation into the gauge
with ﬁ; = 0 we have

Le >,
Lrou | #Jfﬂ—zc*

that is just a Gardner transformation [27].

Since Miura and Gardner transformationes are gauge trans-
formatione they obviously are the canonical transformations.

Now let us consider equations (B.15)s The operators s
& s M) and 4] are given by formula (9.1) and

o (J;V& ol + J) :
(&") = Ao )

‘1_‘113 standard recursion operator f'.s end zﬁ)f are of the
form

(Vs +12)37, =4 (W, + LY (3 +,)
(-0 4 1), £ (-3%ed31,) ¥ (3¢ 1))

i = (9.8)
zr.s}.f = ( ; 5 7
a = o .

4 .
_ ‘The examples of the operator L with the operators Qt
of the form {B.E):

m = TG M M -"T*@'* TG =
((a Vet d)O™= £ Or Y )3+ 3Y)d™ —£(V, + 1,333+,
a __L(_ai+ay)a- (& m) {9'9}

o
LJHF

and

Loy = MIFTGM + TG - M TG

@V—r ya-f ..-—(.:31'/ fV&)J (’avﬁV)-ﬁ_ﬂl/d,.W_d*ay% (9.10)
3 +*3l) a"f o

2
The operator J = é? a) __
Equations (8.17) are
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(9.11)

:"( ) Tl t)a(v:. léa-) -(§§£)=0

.f.
where ¥ 1g an arbitrary gcalar function. Fch=&Jm"‘?L_g
the system is

% = (Wro * 2V 5 V,2) IV + 6V ~RU)RV.) -

2
KW, —2UsVidVs = FVPOW, =9%-Ve0¥ =0, (9.12)
PIA
afj _(wfﬂ +2 %u "fféi}&lﬂ,’;
For ¢ = O the system (9.12) exemplifies the standard
system (8.25). For some concrete ¥ , the system (9.12) redu-
ces to a certain well-known equation. For ]4'=l/§u and
@ ==V + Voo Vi the second equation (9.12) is satisfied
jdentically snd the first equation is the KdV equation. If one
chooses the gauge Vo =l,eo and @ =-2V00 V2 then the first
equation is O = O and the second is the mKdV equation.

For the system of equations (9.12) it is easy diractl:,' to
check that if one mult{iplies the second equation by é_, and
sums the obtained equation with the first equation (9.12), one
obtain squation (9.3) with Qﬂ&&a 4175

Note that in the Lax :E‘ormT =-[L A] for equations
(9.12) the operator

A= -50° - 6V,0% =(30V,) + 22 # 6Vi- =2 Voo FU2)0-

—oVo =2Vl - ¢

Let us also give the examylea of equations (8.15) with

F£= 0 and the apera‘bnr L7 of the form (9.9) and (9.10)s For
4 g r +

the operator L, =naSHLh,t)=th,~4L/, the system (8.15)

3 UE)OVs + Vo PVl # Vi Y, OVl # Wy #

#6VodVo =3(0Ve)(0Ve +£VS) - 3Va (O Ve+; 0)= 0, (9.13)
QU — (- 2UZ)IV, + O, - VROV = 0.

135 /W:a #2 Voo -Et
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+ O°V, - 2V oU-20°+20(,\)-20p=0.

b_-'-'-"—-—-—-. IS

— S ——

The system (9.13) is interest because if one substitutes
the solutions of the second equation (mKdV equation) into the
firet equation, we obtain

g_f.’- + 3 +6 Vool * Vo £, (x> t) f'(f;%)f':(r’f) +[-_;(:r,t)=-0

where F;(%,t),Fs

.*
Equation (8.15) with the operator !-'-"IJ andQ=Mm-4'L.;J
is ' the sgystem

(x,t), F3(x, t) are some concrete functions.

20%, + fV&leola+
O, —6Vodly —(OW ) VL) -2Vo 'V —ft&’a%—zumz+

U Ve - VAV, —3U@VE)? - VPVe=
Ve _ (01 #2 Vo) OVe 2%V +20(VaVo)= O

(9.14)

Emphagize that, according to the theorem (8.3), equations
(9.12), (9.13) and (9.14) are gauge equivalent to each other.

At last, equations (8.31), for Vs , are the lineer equa-
tions :f -f-_QaV- in case W = Woco *

X. The examples: N = 3.

The general formulas (4.16), (4.18) give

le=—0°+* Ve +Ufo, =30 20U, 4, =30,
- =
+ £
M3= e 9 (1041)
e e
where 25 =-F(0'+Yd+lL), &= -0-% U . We conai-

der only the case O = 3. The operators .Q;m and 25),, are
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) +Va-Viw , 0, Vo #Vou-F"- £43*-F1d
i.
Ly =

o 2 a*ﬂ‘%ﬂ:“ﬂ'*l“;n"az_f[éa
o ’ v e o
S oo -l - $00- - U ),

o (10.2)
L™ 23 + Vo= Voo , =0 # (Vs ~Vou)O -Jiyla-.l;_,(lé—v;..),(ﬁ?;ﬁ,)ﬂ

o ’ o o

¥

whera

(@), =20 +(Blh+ Vi) + £V #(30s) # Vi + Vi) O
r 4@ » 2UOV) + FVale + FUlw)D - F01) +

+ FO) * FVO W) + FUOV) # Vie (VoVom)

(2:.!: 23 =jia" + (J"{V;fﬂu)ai * f(-zg +2{3L§) +
bR 2Uaelh)d - £OV) »E0) # 2O -
- Vo * Voo +VE(K:“V§¢¢)

The matrix elements of the recursion operator L_: are
(L3), = £[2V,0 + 3V, # £ (3'+Vid#1,)(30°-21)] 072,
(L3),y =-F[2V00 #3Ve +£(0"+ Vi 15)(30™-215) ] O™

 x(80=23Vs # 150) 7 + L[V # OVe0 # V60"~ OUs -1 ol #
#VodVo #F (' 140 + Ue)(0*- 201 =Y, -OVid + DIS)[ 0%
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r

(L= S1-0° 1D 2V, .0+ (9+ FH)OI-2)] 57,
(L g =40 # Vid # 0=V + @+ ZUNa3= )]0
v (30 -20Vi +Ved)d™ # L[20V, +Ved + *V, +Ved #

# Voot -V s - Vadle # Vo0l + (9+ 21, )(9°-29) -
- 0%, - oo +3V23)]c)—:’
d‘-;)f.i -a'; 28 =@:).5! '—i‘-!f a:ﬂé‘:)ssno .

The simplest equation (4.40) for o = 3 and qu &, =
= const, (J = W= Comsl 1is of the form

o - £ 110 1) GE = thof s =5V 0= FY U

b lho {OVe =20, =5 VOV, +F Y, + (Vi)W 21407

# (Gl +EVow) 0% +E (U + V) + F 16" + Ve Voo 2%V +

+ £ (@) + 200K) + F Vb + FVilin)2Vs +

+(~ FOK) + FOW) + Z- VD) + FVUOV) # Voo (Vo Vi) (4~}
e _ (30 21) 2 — Lo f O ~ 0V, - B U0 Y 4 (100
*Uof20V = O%Ve + F s + (LU + Vo) VY #(Vo—Vou) OV -

- YW, +F (C2U 2OV) + -V + 2 Vilhom) OV

~(~50OY) + £OVo) + Va(Vi-Vaw) + 2 UOY )N ~Vi)-

= Voo (V- Voo ) (Ve —Vieo) } .
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+
The operators J M B8re

a+VTZ lﬂ) 0 ?-I’G-"Lk;'ﬂ
Lo ™=
(5)4 a ,af'llé %ﬂ;*wff%w 4
) » ) ’ a

b:"'(yz ;-)a+v anﬂr K’.ﬂ(v.! vz‘; V"+VMJ (dv")"m IQ
2™ | 0041y Vo) V) Vi V-V - 20 240" i@Vk

# Vsoo (Vi) =2V Iyt o
e 20 , =0-%lo- L(,,,a--(bi/)

The matrix elements of the operator L.s are

(D) =T (Da=E" T,

00), = G T + T TN

(D= G > (D= G e

Ll =G0+ TG B

L) = Ts ) LD =T N,

U2 ) =Gl + F T e
where

GG e = Vo + 5(00)07,
TG = - 505 Ud 7 FU# £ 1),
FG e =-2 + 5V +:—§—@I«§)¢3_‘,

GG =50
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(10.6)

20i)+ 20°,) 0"+ 2OV Y+ Z- )T (),

S e

2,0% £ Vid - (V) - F 150+

@hf@vvzz ¥ %‘;3

#Vo + BOV) = F0°V) -G UV - 5V(OV:) +
+(§_ﬁ%’)+3—i@2uf)—g—(3’ﬂ) “gil’}@%)“f%@’fé)) Sedy
# £oW)o Y +E1)07 ()0
(TG = 20+ 5 Ve -F0U) - FU + ($0%)-
- 2(0°h) - 2VOU) I # F (1) Vi + Z01)37(01)0,
FG )y = (FG es = (TG ha= 0

Equetions (8.17) with ¥=0, (J = wyo==Consl
Q = lhg =cotsl are of the form

$E = (o= §lhmth)Ol, oo (4%~ §160V4)

R el A A

;—pﬁ;——— (o= 5 ’./zn-&a’zaﬂ
(10.7)

F20Vo + 2ole —SWols -5 U NL),

BV

= (Weo=FVsu tho) OV # oo (~0%% +20Y, - % 15V) .

Among equations (B.15) with
L P Ff’@’rﬂ;‘ _,.M;_sz-f@‘:"_ Ff@"‘f’

Xi={L"M; G_Z: Gy B)in = Q%) + My é Foiybe)iw=87)}E,+
LB GE b —8L) # [ 2 T80} 1-Ex)

the equations with ¢ = 0, $2, = W, = comst, $D, =), = consl
are of interest. These equations are
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A (an*gnga)‘?% # wza(dzz _32_33% f%éi% =

f

*5VedVo = 2V, 0V~ 2Y 0%, * V0V » Ve o'Vs -
- £ 04)IV; — F VPV, - ¥ W) - £, f/(éV)

%-E = (Wio= Voo W20) OV + Wr0(2dV, + L% - (10.8)

- $ 0k - 40y - 1N - h),

g_;‘—_- = (Wep— Hzm Wro)o Ve + M’-"(d B(Vf))

For arbitr N and an analngnua choice of L" &'ﬁ end
Q,— cdﬂ,—mwif =4ho= c.'anrh’:' Q =Q”_,—0 y the Nth equa-

tion in the system (8.15) is the Burgers equation, foo:

;?—: = (o — 2o Wa ez # 4, @"&;Wy)_(m.gj

Let us congider also aquaticns (4.40) for & = 3 in the
gauge V2 = 0. In this gauge the expressions Im}ﬂf— Voo )» 88
it follows from (10.2), do not contain lowe and Vzee » The re-
cursion operator L_; for V =0 is

6{';.)!.5 =L 23 = (L3 as L:).u éﬂ'z)az =,

L3)re =40°+5Vd +Vo +£@1)I™,

25 S By 2 L O)E

( ) 3 +_?=]. K’*.ﬁ(a-f) 2 (104 10)

(L3)g, =- 23" -2 ' -5 1) +£0V)- 21+

“:

+£(0%1)0 - £ YY) - £ (P ),

(L3)y=-F2-Fo%) + LV -Fo(OK)) * 5 JU0)
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In this case, equation {(4.40) for Q‘fu é),,a,a @:L; ’
C,=thyrthy L] ig the following system:

M’ = {"Jﬂ? = %%ﬂvﬁ fﬂgjym)ayf*/w:a_f@: Fo g'%w

(Vo2 VoV, -3 0°) + Dyyf-F 0%V, + £V + £ oW o15)+

* FAV) - 510~ F (VNP W)~ 5 VU] + taaf- £0°V, -
5—537% %) - d{Vﬂ"V)* £V, 04,) - .é:,}ﬂ/ W) F, 10.11)
2 = (e~ £ Vo # f W Vi) OV # (0 =t Vo= Bty V)

X (200, =0%V) + Ueaf-£9'Ve # 2 W, * FA(Ul) - F Vi o)} |

# e~ F0%, - £ IV, 0,) - £ Vo) - $123v, + £ X))

The system of equations (10.11) contains some well kmown .
equations as the particular cases. For @&y, = &y = by = O
the eystem (10.11) is

-ﬂ—/‘i = b (Vo - 5PV -5V, 0VL) s

Pz

ST = o (2000 -2*Vz)

: This system, aes it easy to see, is equivalent, for %,:i-’-g ’

to the Boussinesg equation
Pl 7 £ 3¢ 2,1,2 10.12)
Here V,,. # 0« If one introducea the variable Q/&; t)by

Va(x:t) = §(x,£) + Vo 4 then for g%, t) we obtain the equati-
on of nonlinear siring

oL i 3% (104 13)
32t M=z =2 a.:r*"a.xf :

The applicability of the inverse scattering trensform method
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to eguation (10.13) was demonstrated in [32]. The other inte-

resting special case of equations (10.11) is &), =0, &, = F-gj Wy,

o = ‘z'afz:% s 1.e. the system
gﬁ_ = Ui~ 2% - £ OYVillo) - £ (Ve 0V,) + £ Mion,)-£ YW ),
(10.14)
W sy - 0%, - $0(140%) — £ 9(Vod8) ~ F Vi 5 90D

For @W,;~-9, Voes=0 an@ under the reduction
gyetem (10.14) ie reduced to the equation

e _ 351, + 51 0%, + ZEOUNEV,) 5K

which was congider earlier in [B,33] . Por &hy = -9 and V;. =0
the second equation (10.14) is

SV U #5U 0, +SON) W) 2512V

v =jff;% the

(104 15)

(10 16)

This equation has been congidered in [34 35] Let us note that,
for equations (10.14)=(10.16)}, Vi ¥ O

At 1aﬂ-t' for Q = D' LT‘.:L‘S ’Qz:m’r End ..Q: == D,
equation (8.31) is the Burgers equation.
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