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Abstract

The total radiation intensity of ultrarelativistic elec-
trons and positrons moving near crystalline axes in thin crys-
tals is considered. The approach avoids combersome analysis of
-the radiation from concrete trajectories. A ggneral expression
for the intensity which is valid for any axial symmetric poten-
tial is derived.



The radiation of relativietic particles which move near
the crystalline planes and axce in single crystals has widely
been discussed in recent vears (ces [1-3] and the references
there). At present a theoretical enalysis of the radiation of
the particles moving near the ~rystalline planes (one-dimenei~-
onal problem) permits one to obtein a quite satisfactory quan-
titative description of experiment. We have recently obtained
such & deescription [4,5], which is besed on the authore' ear-
lier papers [1,6]. The radiation of the particles moving near
the crystalline axes (iwo-dimensional problem) is studied
mainly on a qualitative level (see, e.gs [7,8]; in Ref.[ 8]
the rediation of the particles which move near the axes was
congidered using the Coulomb type potential; it will be shown
that this type of the potential is unadequate for this prob-
lem). The present paper is devoted to a general approach to
the total raediation intensity of electrons and positrons mo-
ving neer the crystalline axes in thin crystals and its orien-
tation dependence.

If one is interested in such characteristics of the radia-
tion, which only depend on the instant values of coordinates
and momenta of particles, then one must know only e distributi-
on of particles in phase spasce which is transverse to the di=-
rection of axes. The problem is substantially gimplified for
this cese, since it is posasible to avoid a very cumbersgome
analysis of the radiation from concrete trajectories. So, in
the present paper we will use a statistical description of the
motion of particles near the crystalline axes. The particle
distribution can be written in the form [9)]

dN(e, 8 Jf}: F’@,gjé’/dqd;:g (€, fa,s) Jeds O
where
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with normalization conditions
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Here &£, = E‘G-/é -+ B/(g) is the transverse particle energy,



e 'ff_;;,} is the transverse coordinate (velocity) of the partic-
le, U(R ) is the pgtﬂential of the transverse motion,
_ﬁ(}q:{é j((q a3 v S(g) is en availsble area of the
transverse motion at a fixed value of &, within one elementa-
ry cell; 1 is a penetration depth of the particle ingide the

crystall.

By definition, in a thin crystal (see Ref. ]__I_]'] a distri-
bution function 8{ £) ia determined by initial conditions for
incident particles, whan one can neglect the change of distri-
bution function % (*‘5.1 s1) with 1 due to multiple scattering.
There is also a limitation of the crystal thickness from below,
which is connected with an establishment of the equilibrium
distribution. This means that the crystel thickness L is much
larger than the free path length A [9]. Moreover, one can con-
gider the distribution over transverse coordinates as an uni-
form one, since the tranesverse dimensions of an incident beam
are much larger than the distances betwesn axes. Then the ini-
tial disgtribution function over transverse energy £, at a
fixed incident angle ‘9&: is

2 :
g (& jole, =n dg, (4)
where n, is a dengity of the chains of atome in the crystal.
For the axially symmetric potential one hag

g(¢ )dé = 25 n g, de, = 2TNn e (e, .9)}

where g, ( & .LQﬂj is a solution of equation
<5 (.?u) = 5‘9 ﬁf’f.ﬁ,):—" £o F g/(-?q/‘ (6)

At motion of ultrarolati‘r:l.atia particle in the potential
U(€) an instantaneous radiation intensity is determined by
tha'knm equation (see, e.g. [‘ltﬂ):

I(g}—-ew ﬁ_.-g%:ﬂ:(vy} ﬂ(‘?é’// i

where /" is an acceleration, ) = = is the Lorentz factor.
Using the distribution function (I}, one obtaine

Ue)=§ Sdagaa,d) £, §(vel) S -teyare

for the rediation intensity of particles moving near the crys-

2
talline axes in a single crystal. The integrals over o ¥ dn
{8) ere taken within one elementary cell. The contribution to
the radisetion of the partiules moving above the barrier (when

&, 2 U, 'E_IU = max U,U > 0) is given by

Lpe = S(VZ() o fj 3(&,5}0/& Se
.2 U
Since at £; > U, the whole transverse coordinate space is
accessible, then s(éi} = I/n;. In the case &£, > U, sll the par-
ticles are moving above the barrier, then using the normaliza-
tion condition for the function 3(.5_1_,1} one has for the radia-
tion intensity,

Tis HHLS(VZ{) 0”.? Sl ‘g/ (10)
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Thus, the rsdiation intensity at £,2 ('9.:, = 1;/
is the Lindhard angle) does not depenﬁ o:n the incident angle
eand a charge sign of the particle for any potential (let us
remark, that in Fig. 2 of Ref. [BJ the curves do not fellow
such a bshaviour). This situation differs from the case of
particle motion near the crystalline planes, where the diffe-
rence between radiation intensities of the partiele with nega-
tive and positive charge sign end their dependence on &, Va-
nish in the limit &, » %, only.

For the electrons moving in the axiasl chanmnel, the above
consideration is based on the fact that for initial trajectori-
@8 which give the main contribution to the radiation, an angu-
lar momentum faile to be a good integral of motion. Due to this,
an averaging over momenta has been carried out in the distri-
bution function 8(:&} « Generally speaking, this approach is
valid for electrons with not very high energles ( < 10 GeV).

Let us discuss some general properties of the radiation



intengity of the2 parti:les moving near the ciysialline axew.

One can restrict oneself to a consideration of one cell iu the
plane trensverse to the axes, which contains a projection of

one chain of atoms forming the axis. The main contribution Lo
integrals (8) - (10) is given by the region, where the gradi-
ent of the potential & (¢)is lerge. This region hes some che-
racteristic scale ag whi;h igs a screening radius. Inside this
region the potential is axially symmetric wiih a good accura-
ey. Let us represent the elementary cell as a circle with the
radiue r, /.'r"r‘r* For a resl crystal, 2.3 Qg . This means

that one can extend to oo the upper limit of the integration

over ¢ in Eq. (ID) Then,

"*’23’{}]1& S( Q/)ga’f Qjﬂﬂ W gﬂ'fg’)fdrf i

where :ﬂ-fg; W@)/ﬂ’/ﬂ) « If £ ie a function of Q/c.? ie€s

f = £ ($4,), then after the substitution ¢ >Qdgone cen see
that I ig independent omn a specific value of the gareening
radius ami depends on a shape of the potential only (for real
cr;.rstala one should consider more complicated cese, where ac-
tually there are two characteristic seales).. This result
differs essentially from the case of the particle moving near
the crystalline planes where the intensity of the radiation is

increasing when a_ > 0.

Let us consider now qualitative features of an orienta-
tion dependence of the radiation of the particles moving near
the crystalline axes in thin crystals. At -3, = 0 a portion of
the positrons AN T ., which epprosch the axis at a distance

Q& Qg » where the radiation mainly takes place,

DAL s ag"-/,:,_.z 1
_r(-qga Q) e Ic;s (12)

For elactrana there is a different situation. The pcrtmn of
electrons, which has an impect parsmeter ¢, inside oA%e ig

given by 0{2 ofa
g Po_/g, I
gt (8:-¢)

Averaging I (7) with thino distribuotion and taking into account
that in the integral over © the main coniribution comes from
the region © £ q;, we obtain up, to logarithmic accuracy,

1('9 O asSd‘Pﬂ = nsg"?o (13)

Thusg, at zero incident angle the radia.t_ian intenﬂity of elect-
rong exceeds congiderably the radiastion intemsity of positrons.

Por the axially gymmetric potentiasl, we obtain the radia-
tion intensity aubatituting (5) into Eg. (8):

T(9,)=45%n Sgb G0 — s(e_,g,) g )5@9@(& ,_gf@l 14)

where S(Ej_{gd‘n} Ef(fafprg'()%‘(gﬂ) W(g}) ; value &£,(®) is
given by Eq. (b}« Going over to the variables o = v §5% a2,

F = et /af » and after some manipulation, we have , for the
radiation intensity of poaitrons
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whers . =& . : ch- = Qrazf‘h'l—
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U, =80 > O, ¥ia)= A

the quantitics Yoo x, {'& area &aterm.ned by eguations
‘?’((:"-"4-{3}; = ’Zf{é)-*-éc, P c‘zl/t/é’-r} o —Eq 3 £i6)

and for the radistion intsnsit:r of electrons

X (9,) =456 n, {Q[i e 3:—9/@; "fi)] *
+u-e) § 2 T e 7

where

Ulx.(y)=Uly)-e, , U(y.)= s, (18)
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In some papers (see e.g. Ref. [ﬁ]} the potential was
used :

»@ng.ﬁ- ?9(?-—%}#* jfﬁ(ui#g) (19)

In this case, there is one characteristic scale (it is the
thermal vibration amplitude UT}' S0, in esccordance with above
results, the radistion intensity of the particles moving above
the berrier ( éi;}iﬂ}"'ﬂbih} does not depend on the smplitude
of thermal vibrations. :

Substituting (19} in Eq. 0 iy B we have
0?2
=25 An, U, jf?z)za/.? gj‘ﬂni@‘j ﬁhﬁ“‘?_ N, (20)

The main contribution to the intensity is given by the region
Q ~ Uy (at © > > Q> Uy this contribution is e»o ”’E/_gz_,?.}.
One can readily obtaln a simple snalytical expression for the
redlation intensity in the potential (19) using the developed
epproach. In particular, at -3 = O we have, from (15) - (18),

=i (ﬁ«i‘“ T,{)IQS I =G % “Z/qu (21)

where I__  is given by Edq. (20). This resulte agree naturally
with the performed qualitative anslysie (compare with (12)-(13))
However, one should besr in mind that in a realistic potential
of the chain of atoms the region of integral convergence is

© ~ 8, > ;. This means that Eq. (21), in particular, di-
minishes substantially the radiation intemnsity of positrons
gince a§!u§gu-10. Moreover, one can obtain errcnecus notion of
& radiation spectrum using the potential (19), because the main
contribution in this casge is given by the trajectories with

¢ ~ ur, while actually the whole interval from uy to a_ con-
tributee. For these reasons it geems unadequate an utilizstion
of the potential (19) for the description of the radiation of

the partieles moving near the crystalline axes.

We have used the Moliere potential for isolated atom, ta-
king into acecunt thermal (zero) vibrations. Then we have pum-
med over lattice to obtain "exact" potential. Ag it was stres-

sed, the main contribution to the radiation intensity is given
by the region where the gradient of the potential is large.
This takes place when the distance from the axis is rather
snmall and the potentisl is axially symmetric with a good eccu-
racy. In this region it is possible to use a simple approxima-
tion of exact potential (in some gense this is the so called
standard potential [SJ}

W(g) V[ﬁ‘({ jﬂaf 3 )+mﬁ£f JTJ:?E (22)

02+ 28U’

where d is an average disgtance between atoms in the chsin, Uy
is the thermal vibration amplitude, a, ie the Bohr radiue. Pa-
ramaterqu' anﬂuﬁE are fitted by comparing Eq. (22} with nume-
rical calculations of the exsct potential. The difference be-
tween these potentials does not exceed 10% in the main contri-
bution region. Substituting the potential (22) in to Egs.
(15)=(18) one can obtain explicit expressions for the radiati-
on intensities I* (5, ) and I17(8,). The results for axis <100>
in tungsten are shown in Fige. I (I* (0.) is curve I and I” (§)
is curve 2). Details of the calculations will be published
elgewhere.

So, for thin crystale, Eqass (15)-(18) give an opportunity
to obtain easily the radiation intensity for any axially sym-
metric potential. We would remind that this consideration was
carried out in the framees of claseical theory. This means that
the quasiclassical nature of the particle motion was assumed
(in real conditions this is valid starting from energy a few
tens MeV) and a recoil at the radiation was neglected (thie is
possible up to an energy of ~ TeV). The results obtained are
valid within this energy interval, which is most important
from the experimental point of view. '
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