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ABSTRACT

The mean value of the quark transverse momentum for the
meson leading twist wave function is found:
CEEY = SCPPIGAT I < B = Ton (46 cery) = (asomet/*

Qualitative description of the properties of various leading
and nonleading twist hadronic wave functions is presented.

The propertiea of the wave functions 6f the vector mesons
with the helicity /4/<{ are concidered in detail and used for

the calculstion of the decay width: X, (3559 >FF



‘I. Imtroductiom.

The method for calculation of the asymptotic behaviour of
-exclusive processes in QCD with the help of the corresponding
operator expansions has been proposed ir /17 (farther develop-
ment see into /2=5/). The main idea of the method is the fol-
lowing. Since in the observed processes the hadrons are always
on the mass shell,then even in the exclusive processes with
the large momentum transfer the interactions both at small and
at large distances are of importance, The interaction af smell
distances is responsible for the "hard" part of the proceas
which ensures the large momentum transfer. The interaction et
large distances is reapnnsihlé for the formation of the bound
states of quarks. In QCD the interactions at small and at lar-
ge distances are governed by essentially different physica. It
is possible to describe the interaction at small distances
with a good accuracy by the perturbation theory. At the same
time the nonperturbative effects play the main role at the lar-
ge distance interactiqn.

It is natural therefore to use the method which allows %o
separate the contributions into the amplitude which are caused
by the small and large distance interactions. The moat suitable
for this purpose is the method of operator expansions. In this
approach the hard kernel of the process is computed in an ex-
plicit form with the help of the.perturhation theory,while the
nonperturbative interaction responsible for the hadron forme-—
tion is described with the help of the hadron wave functions.
For instance,the two-guark meson wave function can be intro=-

duced and is described by the matrix element of the bilocal

operator: <£?/E/f/€-§"/é&-{%v ?ﬂ‘fﬂ'yﬁ'{}f//ﬁ{@>



The hadron wave function is of fundamental importance for
the description of any process in which this hadron participate,.
Therefore,the imvestigation of th-.é. hadron wave funciion proper-
ties iz of great importance.

In our previous papers 76,7/ the properties of the leading
twiat wave functions of the mesons with zero helicity have been
investigated. In /6/ the properties of the 7 -meson wave func-
tion ﬁ’f(}) were described '

o/ ;@V & erp /é;. j/mﬁ@/ﬁ?@//’!@ﬂ%ﬁ " (1)

=L /r ’/y 2% 0
@ﬁ/=/ﬁﬂ&3//h¢/e “p ot Y by, [,

The wave function ¥ f;?/?y describes the distribution of
‘quarks inside the 7 -meson (at %> << ) in the longitudinal
momentum fractions &« ./ ;= K- 5 /J‘!' -is the normalisa-
tion point of the operators in (1). The value of /ﬂ" for the
given process is determined by the characteristic virituality
of the conatituents in this process.

The dependence of @(}'/&/ on /q"* is caused by the
higher order perturbation theory logarithmic corrections. This
dependence is determined by the renormalization group and is
yery weak, The asymptotic form of the wave function ﬁ-?}: /“'7
I-.t/"z"‘ o= is known: i‘;-#&/“z*?“)f%= gﬁ._}y However,for
the description of the experimentally observable exclusive pro-
cesges we need to know the wave function with the virtuality
'/'J ~ L EeV? The form of this wave function f"/}iﬂ{'-{’:“"r’/ can

differ greatly from those of Yaos (52 In this case at any ex=

perimentally possible momentum transfer QE we m’fnevar rgﬂ.m
3 r?) by ¥as(}) with e good accuracy,because the depen-
dence of W{})g_‘"j) on f‘i is wery weak.
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The form of the wave funection P{j‘/«‘-fﬁfi’y is determined
mainly by the nonperturbative interaciions. Therefore,for the
inveetigation of its properties the nonperturbative methods
are needed, In .pa.pera 76,77 the QCD sum rules B/ have been
applied for the approximate calculation of the wave function
momenta: {’}"},;5 /é }"ﬁ? /,7 The knowledge of the values of few
first moments < ;"> supplemented with some general physical
considerations allows one to elucidate the main characteristiec
properties of the wave function 5”(3;/“’7 In particular,

using this method the model wave function of the 7 -meson was

proposed in /6/:

» g?z/quﬁﬂﬂfF ~ qf*‘{}"/(- ;7 : (2)

and the K-meson wave function and the wave functions of the
vector mesons with the Nelicity /= ¢ were obtained in /Tfe-
It hae been shown in /6,77 that using these wave functions
which satisfy the QCD sum rutes one obtains the predictions for
& number of exclusive processes in agreement with the experiment.
Jﬁe goal of this paper is to investigate farther the prc{yﬁ-
ties of the pseudoscalar and vector meson wave functions. -II‘J.\E \
gect,II the calculation of the mean quark transvers momentum
ingide the # -mesnn,‘izc"-*,iu described. This quantity is of the
great interest in many rupect'ﬂ and,besides,it charaoterizes the
scale of the power corrections in the exclusive proce_sses. The
general gqualitative consideration of the properties of various
hadronic wave functions is presented in sect.IIl. The properti=
es of the leading twist wave functions of the vector mesons
with the helicity /4/=f are investigated in detail in sect.IV,

Our main results are mized in sect.V,



II. The mean value of the transverse quark momentum,
Let us conaider at first the # -meson wave function ?

- co) &) w2y >
ru/é@éh%;.&;:Hé:a?%¢ﬂrﬁ-=4{2§?§;wqi2%}ﬁ:figéiww%/?

the momentum q is directed along the z-axis,the index £ below

(3)

denotes the components in the transverse plane, If one takes
{3)/””’=-E‘ % *® == then it is evident that the coefficiemt

A is (’fr 5 -i,e, the mean value of the Xsr y2where A, is the

longitudinal momentum fraction carried by the u-quark inside

the 7 -meson, If one introduces the wave function K%’ﬂQEJ

which describes the distribution of quarks inside the 7 -me-

gon in the longitudinal momentum frections and in the transverse

momentum, then

(4)

A = (xf,& /&//Sﬂdrwkﬂﬂ;,rﬂfﬁ"% !{f/

JAE /d.’r Ay d(1-te-¥g) Y ﬁ' th, & )1
Sie AN Matinttion of the quantity <22 > s

T (L) Why> = i B> o 2, (48) (5
g = JE & vt 8 (- vo-tt) ¥ Vs, 14, &) (6)

Therefore,we want to find the wvalue of the constant B. Using

the equations of motion and PCAC we have from (3) in the chiral
limit ( 2w =M/ =2 =0/ *

{Jfﬁ?’fﬁ-’/f%ﬂ/f@f} 7;#@ %6 _gfﬂfl’,?ff /‘/!{ ff‘/’h}m

* ‘f"/;érff"’é/r"“.é"%’%' %[ﬂ@ﬁw'* " “;”"/” o

* Do simplify the notations,here and in what follows we don't

write explicitly the gluonie exponents.
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Therefore:
~ 1 a (8)
& P £ <0/ &9Cu)Cns Alwfos
g 8 A alo>
It is seen from (8) that in the chiral limit #%->¢ <&'>#0

igs entirely due to interaction (the presence oi‘jé}-? o It im
natural,pecause for the free quarks & »¢ at 7?0 The value
of the vacuum matrix elements ratio in (8) has been obtained,
for instance,in /97 from the investigation of the baryon mass
spectrum with the help of QCDgum rules. Using the result 97
one has from (B)* :

=4
g’y ~ E(iseev = (¢304¢¥/ (9)
This value Seems very reasonable,

A
Let us estimate now the value('.ti'} for the leading twist

wave function: ;«g‘: (gfﬁ%/%’é{yﬁé;w)‘.
(Fxﬂ;r‘?;%éﬂ_f/‘-:ﬂ;itﬂ: 413::'.3?2/5#{‘,}/&/%} rf:’;ﬁ;ﬁ% (’J’f) ~ (10)
G Gefi iy A G

Multiplying (10) by 6;7/-" and using the equations of motion
(in the chiral limit),one obtsins from (10):5A+B=0. Multiply-

ing now (10) by f.ﬂ; one has:

(11)

<o/ Gl () w/opigys ,w;/, £5-- <o p5a S >

Let us determine e >

oY (B afp> <A _-q,g;//, (12)

T i

* Here a.nd in what follows we neglect the effects due to

m:smalous dimensions.



| 2 / P
R [ B [y digbi-ra-st) B h, b ),

¥ 3
E [ty Sttty Bt i, &) =L
£ P

We have now from (11),(12):

Hpe <2t - Feotdfbynacis Fatrw>

In order to find the value of the matrix element in (13)

(12)

(13)

let us congider the correlator:

4 7 Gt T (14)
T =< fbeV o Ty 6 ettt Ty SN0 - i 779
At /77>== the leading contribution to ? (in the chiral
1limit) gives the fig.1 diegram:

=t gl 5t (15)
/7;@4- ﬁ’é’* <o/ %<f G Eup ji 2/0>
Using the dispersion relation for 7 (f*y one has from (15):
- & B B i (16)
ﬁfd{i‘fw.{/—"ij = -cof #ﬂfﬁyé’ijag a’/&’}
The spectral density has the form:
z
/ - SR - P o
FInd) < FeES g P (17)

" " S - .4
= - 38 /o s AL )¢
The 7 -meson contribution is shown explicitly in (17). Since

the spectral density falls down quickly at large S (the pertur-
bation theory contribution is zero in the chiral limit and we
neglect the logarithmic corrections due to anomalous dimensi=-
ons),it seems reasonable to retain only the 7 -meson contri-

bution in (17). In this approximation one has from (16),(17):

= g 7 47 (18)
[T I f’"’”fﬁﬁ*"?ﬁ"i /2> E _{(Eﬂ}“”
Ky T8y wufos g <=2 %
Therefore:
(19)

<Bf = (3z08¢8)%

It is natural to expect that the main velue of the quark
transverse momentum in the other mesons ( £, f, £, ) will be
approximately the same as in the # =meson.

b 4 g 5 Qualitative description and numerical estimaies,

Let us begin with the qualitative comparison of the proper-
ties of the # -meson wave function (1) and the ﬁ’#-f =meson

wave function determined by the bilocal matrix element:

) G U2 By () > = (CSs~Co g ) LW Tog Y, . (20)
<o A Goo 42 Gy > =5 Z/"T'/fﬁéf/;w:-f/ﬁfﬁj

-4 b
Here: t’fﬂ -is the polarization vector for /-7 , ; is the

dimensional constant (analogous to Z;!Jj: ) vhich determines

the value of the wave function at the origin, }‘fr%’j % is the
2

dimensionless wave function, /" is the normalization point of

the operators in (20). Such dimensionless wave functions

Gl ) =BV RfY, w5 L oA,
Blop=o) ~ JHp/ap <o, Fobeld | & o%p

describe the distribution of quarks in the longitudinal momen-

(21)

tum fractions (at % ><=<). ﬂt;ﬂ{n == the asymptotic form of
ﬁ"{r{?‘/‘/f and jfr(i/uy coinside: }f"/z/ﬁﬁw/zf}i/gaf/_fﬁ-ﬁ

The function fff-f%gmrreapnnﬁs to the contribution of the
free quark loop,fig.2a,in the method of QCD sum rules. The fun-
ction S%,sf(;} describes some characteristic distribution of
quarks in the longitudinal momentum: <'}'z}¢5r__ =44 ,80 that in
the state with this wave function the ftotal momentum is more or
less equally distributed between the quarks. However,in the
ncnpertu::;ha.ti?e interactions of quarks and glucns with the va-
cuum fluctuations,fig.2b,c,the distribution of the total momen-

tum between the quarks is essentially different. Let us discuss



qualitetively the influence of the nonperturbative contributi=
ons shown in fig.2c (the role of the fig.2b contributions is,
as & rule,small and qualitatively the same)., It is seen from
fig.2¢c that these contributions describe such momentum distri
bution that nearly all the initial momentum is cerried by
one quark while the other one is "wee", The wave function like
F’{’f/:j/fq?ﬁ/-}/% 3'((*?,{7 corresponds to such momentum distribu-
tion, Therefore,the nonperturbative interactions tend to
gstrengthen or weaken the role of such configurations in which
the total momentum is very unequally distributed between two
quarks, The sign of this effect is determined by the relative
sign of the fig.2a and the fig.2c contributions, If the lowest
regonance gives large contribution into the spectral density
then the characteristic momentum distribution between the
quarks in this state and in the total correlator will be the
same, If the fig.2a and fig.2c contributions are of the same
sign,then the true meson wave function is .+ wider than ﬁ,(i)
1.e.(C375) 3(<3%ey) Just this variant is realized in the case
of the 7 -meson wave function % (f/ /6] ,£ig.3. If the fig.2a
and fig.2c contributions have opposite signs,the true wave fun-
ction is.move narrow than ¥%¥ {f/,i.e. (< ?z>}<(< f?,},,_)ns will
be shown latter,just this variant is realized in the case of
the §yj.; -meson wave function ‘E:,T (}) ,£ig.3. The strength

of the effect depends on the relative values of the perturbe-
tion theory contribution and the nonperturbative contribution
and is different for different correlators. (The nonperturbe-
tive contributions werevery large for the 7 -meson wave fun-
ction 9‘,’4(}'/ ,see [6/).

Let us describe now the simple method which allows one to
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estimate the values of various dimensional constants # {L.u
the values of the wave functions at the origin) which determine
the scales of the wave functions, This constant 7 has the
dimensionality {/"fi’ for the two-quark (or two=gluon) leading
twist wave functions (:4 *—*-’ff’ﬂf‘f# ::.wﬁ#?ff._}. The lowest reso-
pance contribution into the sum rulé has the form (after "bo-
relization"): :f' i’!/a/ "{%y where ' =is the resonance mass
and A -is the scale parameter (see /8/). The perturbation
theory contribution,fig,2a,is: ”'%F" (one loop). The usual
scale of nonperturbstive contributions is such that at #3_.,4‘
they are :302{ of the perturbative contribution,fig,2a. The-
refore,one can estimate the value of /' from the releation:
Llopf- 4= % i

This gives for the ¥ -meson: £s #/’:-ﬁﬂﬂf’ f /_'f =
200MeV for the p -meson, For the constant f from (20) we
nave the same situation,so! ,;,/ o f =200 wel,

For the three-particle component of the f,, , ~meson wave

function (twist 3) determined by the matrix element:

O Tl G ey W 5 fi oip a5 054

the perturbation theory comtribution is (£ig.4,two loops):
”""V%.EFJ"! Thevefore,the rough estimate gives:

(L - M Ywor?, £¥ = avwteert=-f # o) %035
More precise treatment of the corresponding sum rule gives /[117:

34, £

=08./8 ‘ceV

e i

For the nucleon wave function (twist 3):

<of o N“’C'%: «bds /P> - }’(ém% %

(here A’ -ig the nucleon spinor, C is the charge conjugation

1



matrix) the perturbation theory contribution is (fig.6, two
loope): MVEEOFJF' Therefore,the rough estimate gives:
& Te <z v 4 Xﬁ'ﬂ"*-’f (% 4@ Yore precise treatment of
the sum rules gives: /fj: /?ﬂf-fa“z&tk'e

For the two-particle p -meson wave function (twist 3)
determined by the matrix element:

_" ; f’afﬂ’i W’/_p olP/> = /:;aﬂ? f Coo e % (24)
tﬁe perturbation theory contribution is (:Eig.aa., one loop):

7 Therefore,the rough estimate gives: (f / E"! "%/ .F"Z
,;'s;' ﬁ"ﬁd"'-fﬂffﬂhe strong inequality 4"/?// / ia due to
smallnegs of the three-particle phase space (fig.4) as compared
with the two=-particle one (fig.2a). This is,evidently,the gene-
ral rule for the analogous constants of the seme dimensionality:
the value of 75 falls off quickly as the number of constituents
encreases.

In connection with the above given estimates it is important
to note the following. The meson wave functions with the dimen-

(a/a’é/fﬁ’ YN f. o (S = //7,, ‘?g",% (25)

L
% X ~ <
/!%*ﬁd,/ o.Ls5eV
determine the values of the power corrections to the leading
twist contributions in the exclusive processes. It is seen from

(25) that the relative value of the power correction is:
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-xﬁ/r-'_g/- (’.5; ”%9)& :’g/"‘ﬁ’/@ and not 75"/@ as can be naive-
ly expected. Besides,it is seen from (25) that the values of
the power corrections will be approximately the same for the

# &and p -mesons, Therefore,it is natural to expect that for
other particles the scale of the power corrections will be the
same,

Since the values of the three-particle wave functions are
~ 10~ relative to the two=particle ones,one can suppose that
the power corrections in the exclusive processes are determined
mainly by the two=-particle contributions., We want to note that
this is not 80,in general. Let us consider for definitness the
# =meson form factor /}@7 The power corrections Q'4 are
determined by the two-particle contributions,fig.7,and by the
three-particle ones,fig.8 (there are also the four=-particle
contributions). The two-particle corrections are caused mainly
by the wave function (ﬂ?,a’ﬁ;rx;#/f‘} WJ{M/(cnmctinn ~
G ("M{’/g‘»‘/.b ,for more detail see /12/) and by the quark tran-
sverse momentum: ~ <zf£>: -5 6? ~4 r’lﬁyd‘gz} :'/{?“' ™ %;/fl
The value of the three-particle wave function is ~10 times smal=
ler than the two-particle one. However,the radiation of the ad=-
ditional gluon at the fig.8 diagram gives the additional propa-
gator and this usually increases the amplitude in 3=4 times.
Begides, there are 6 diagrams like that of fig.8 and this can
also give the factor 2=3, As a result,ln spite of the small=-
ness of the constant /ﬁ «~/f p,/ the three-particle contribu=-
tions can compete,in principle,with the iwo-particle ones.

IV, Wave functions of the helicity ome vector mesons.

Decomposing (20) in Z one can express the wave function mo-
ments (?“) = .rdF }-""q:('i) via the matrix elements of the lo-

13



cal operators:

o ; . ; rd 7 M
o) G (2 D) Uto) [4. sty o <FH26)
{ﬂ/c??'/f/r (- 3) /e (9)> f/;'.. y p//’d(i’f/ P i
f T [ L [l - ¢ - "
(D 2lowis, B St Fho, <pred
Purther we shall widely use the method of QCD sum rules /B
for l.pprox:l.mlta calculation of these matrix elements.
a) To find the value of the constant f in (20) let us use

first the same method as in the previnua section., Consider the

corralator:

;:'IJ = /,,{ep;" <o/ ?'/ d";ﬁ’/ﬁ Ux/ «fe)Gy p{/g//p 2N =

G ppS Y, T T

The perturbation theory contribution into ?«r}* equals zero in
the chiral symmetry limit ( Av =4r/>C_ ) and the whole answer
is nonzero omly due to apontameotis chiral symmeiry breaking

2
effects. At -/ = < the leading contribution give two dia-
grams,fig,9:

c Pe. f‘?”ﬂ/i‘
/}1/1/‘{,7'_]‘// (/; /} (.Z/

f Il [s) a5 :-(a/i'w*a’//@,}

As the spectral density falls off quickly at large S,we can
confine ourselves in (29) by the F -meson contribution only:

Fm i (Y {f"'ﬁ//f’%ﬁ- A/t (29)

(28)

V
cof 7/-‘-"/&/ > =€ ;’ 4, 4 wzoomet
One has in this u.ppror!mtian.
: ¥
A e <ol e s> « ggomeV =1 (30)

v A
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(27)

a.h!

The fact that j;rf ¢ is caused by the aspontanecus chirzl sym=-
metry breaking is evident beforehand,because in the matrix ele-
ment which determines Jgr.‘ cord 6pv w/p> the initial and
the final states are chiral invariants while the operator #&/¥
is not. Let us point alsc that using the nondiagonal correlator
determine not only the modulus of {,’T but its
sign as well (i.e., the sign relative to ;'J: yaee (30)).

(27) we can

b) Let us consider now in more detail the properties of the

wave function and use for this purpose the correlator

! b &P cor T /G 2 (23] B, W6) Sy “)ff31)
31
/A,

At -¢°s o the leading contribution gives the perturbation
theory diagram,fig.2a,., This contribution corresponds to the
asymptotic wave function: ¥y (3/° 3/4‘({*}'"7 ,2wWhich we use as

a zero approximation, The nonperturbative corrections give con-
tributions in addition to the msymptotic wave function and
change it in the direction which corresponds to the more res-
listic wave fumction.

The sun rules have the form;

%Z/;/E_r,’%‘__ 3 i o S {ﬂ/,rréiﬁ) s

T2 peg(rr3) | el /20"

- ifrﬁ:{/j;, rﬂ/@iyﬁ;‘g,cm I

The matrix elements emtering (32) are as follows /[8/:

* Strickly speaking,the sum rules give information not about
the wave functions itself ,but only about the values of their

moments..
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R 5 &
cof & Se o .«_,_,g,,f‘p'-‘;;ﬁf o)t wufos = 183 /07 cey

The spectral density is chosen in the standard form*:
3

;yﬁ-g({f) ":/‘#‘7&(?”}3(5"‘”‘:)# E(S'-Su)ﬁr;(”#)(ﬂ,-g) (33)

The standard treatment (see /6/ and the Appendix) gives:
/J‘.éf( ~ﬁd‘seﬂ/ (280 L20 /Aol
(34)
(;"%z:#_ﬁw.a :(ﬂf{*fﬂ,ﬁ/} Se :.*:Xd"é‘-ﬁ‘"i (gi} < Qes
It is seen that the value Jfrt.?ﬁf#f’y obtained with the help
of the correlator (31) agrees well with the result (30) obtai-
ned with the help of the different correlator (27). In the sum
rules (32) for the moments {?1> and (f") the correction
& Ve e S° plays the main role and it has here the oppo-
site sign with respect to the perturbation theory contributien.
As was expected beforehand (see sect.III) this diminishes the

values of the moments < 7 and <} > in comparison with their

values for the asymptotic wave function: {?4-)“= 0.2 end ﬂ’?"}ﬁ‘t

= 086. As a result,the wave function (2 1""'?/ ig owe
. &

than the asympiotic one.
Taking into account that at /}'/-:i/ the wave function

?ﬁrfi’/ has,in general,the same behaviour as %,f (f/ si.e.

A~ ff"fy (see Appendix),let us choose as in previous papers
/6,77 the simplest model form as the superposition of two lo=-
west Gegenbauer polinomiala:

G po <2 o dl] L (44 e o
Py Y e

*+ The account of 'I:h;- B(1235)=-meson contribution does not

change the results.
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¢

Qs

ching ratio: L2(3553/>FPF The X

The value (gi}:a/f‘ from (34) determines: ﬁ-{{/«iﬁraw”/&' 435
and therefore:

vz / “assert) = Z//-34°

{';*} rﬂf-ﬁ}} (;’?} >0098 (36)

c) It seems that one of the most accesible ways to check the
properties of the f;‘ﬁ T/j’ wave function is to measure the bran-
-meson can decay both
into Fj-g/fj:0 =-pair and inmto £ _, F,.., =pair. The leading
(at A% » = ) contribution to the decay U, >/, £, (£ ‘Eﬁf#/
give the wave function j@.r/;’/ The expression for the decay
amplitude in terms of Jfg?(f/‘ can be found,fur instance,in /137.

In our notations:

W (%> B E /zm;sﬁ/ # ”f/ “%)

;a/,?
_sz x Sl ‘5’{/;-'_%_4?5//.35( . (37)
75 2 (% -%/
/z-; !ﬁ////:’ @/é/x,;%//-f /’-*,’é/

/ﬁ/w /f" W =/
Using in (3?) the wave functions (2) and (36) one obtains :
W 28] i 5 57) L (38)

We want to streass the following. The coefficient in the ratio
iy
(37) is very large: ;E(F/;;,/kﬁ? Therefore,if the wave functi-

2 é—ince g?}/ is narrower than @’f/y, % in .«g-‘ will be

somewhat smaller then o in J
somewhat the value (38).

and thies can diminish
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ons -;ﬁr,/y and {f"(f/ were much alike to each other,then 5 SUNJICEpunstTY bReSkIRg $318070,

ot has*: % 'ﬂ’f)}’/f,& 9/}}/:5@ while the experiment gives Our guil in this paragraph is to investigate the properties
Lia]: (% ”J‘%ﬁé 9,;-,3/ €7 30, ihe o T A s of the ﬂt};;;; and ff.:,f:.[ -meson wave functions, Similer pro-

Fal i ¢
Uit fhat Sha save dundtion O 71} s sk a4 gram has been carried out in /7/ for the vector mesons with /

A
% Qg This esgrees with our results obtained with the help 2
*% ! For the case of the ﬁ;;,f:_{. -meson the term

We therefore give below mainly the results,

of the QCD sum rules,
The f, -meson (Jf; 3ff.p ) wave function has been deter-

777g (ﬂfi{/f} 22 /c’w'fgé;qa 5«3445‘/3.5 -Gl < 3-"5.5-{/ e

mined in /77 end,besides,there was obtained: /&-}_ﬁ’m;ﬂ‘j:ﬂf B - A% T st
Using this result and (38) one has: sould be added to the r.h.s. of (32)., This term leads both %o
. .
W% *ff%pv/_ﬁ i,,;,-f,;/" 4 (39) the shift of the mass value and to the change of the wave func-

Let us point out alsc that if the gluon were not a vector tion., For the ijg, -meson the additional term is fwo times lar-

ger than (40). The matrix element ¢ 5 '?;1.(..-’ @w‘:ﬁ*‘} in (40) i=

but & scalar particle,then the decay {z-:- P P would be
3 = - ry
equal /9]: < €cySus Eusd s> < se Pt eTss o i SetvY e 50T

power suppressed in comparison with the decay ks > B F o

As a whole,the experimental observation of the o g g Stendard treatment of the sum rules gives:

decay with the branching ratio: Ba (2 2P/ = Bs (Ze> 77 f‘g-f‘f:/ /f;%yi.// /j;,r/{::yl? /3

can be a good check of the above described f -meson wave fun-

: (41)
ction properties., Let us point also that the information about (F‘E?; g45 \/ ¥t>:, -
: ko ~ O
the f; -meson wave function canm,in principle,be obtained by \/?-E%’ , e Y|, e
; 3.‘,‘),.‘?5; ¥ = W
measuring the /{"' -E-’--P.L crosg-section at high energies 15,16/, = fu

- f={ ~vec=
e ik b Son: Suse B //#&5 cibdeme ot i In the qualitative respect the results (41) for the fAf=f =vec

=
Alie #Lig Sl Sl b el quark exchange,while for the tor mesons are analogous to those obtained in /7/ for the A

p - o
4'/.;__&7&" cross-section the main contribution comes from vector mesons. Namely,when the light u~ or d-quark is replaced

by the s-quark the value of the constant 7. (i.e. the wave
the two-gluon exchange diagrams (using the VD).

= ¢ function at the origin) increases and the distribution of quarks

* The term 2‘/’:'—{&/://‘5&/ in J; gives a small con-

in the longitudinal momentum becomes narrower. The wave functi-

o
s Al v s e e P ons gff—':;:: ( f/} are narrower than ﬁr( H / because the additional
% 7 F
For the caae ;f/f/ rﬁrf”';};? one has: term (40) has the opposite sign with respect to the perturbation
e 2P P ~ theory contribution,fig.2a (see sect.III).
< (% »7r/ |
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V. Summary,

Let us enumersate the main results.
1. Hadronic wave function has many components- two-particle
components with different spin structures,three-particles ones,
eta. The components with the minimal number of conatituentis are
of main interest for the investigation of the asymptotic beha-
viour of exclusive processes.
We have calculated the mean value of the quark transverse

momentum for the two-particle # -meson wave functions.defined
by the matrix elements: <« a/-vffa’zja‘(’oﬁiffr‘?/f*r?’/> ’*‘7’” 57027/,
o/ b w2y = < ’”’%zwﬂary #r 27/

It has been obtained:

L € &
o g D AT {?;,w;{“'z//;;?,} 5 J/;f&ﬁ"ye({;ﬁﬁ%‘w
b3 8 cda> =4

e &
<ts? ~ Y <L = (3ecmet/

The value of the mean quark momentum in the bound state ias
of great intereat. It is natural to expect that the mean quark
momentum in other hadrons is epproximately the same :/&/2(3‘7‘9 ;{’W
2, The numerical values of various hadronic wave functions at
the origin are estimated (the dimensional constants 7' ). The
moat characteriatic properties are the following.
a) The leading twist componenis of 'I;ha{hﬂparticle wave functiom

has the dimensiona.lity;?‘(#] and its characteristic value is: T

] 7
b 4/ (/50" (or emaller). Using the duality relations

it is easy to see that here the asmallness of the scale (f* o .

150MeV) is due to the amallness of the n-particle phase space.
For instance,the leading twist¥Compoments of the ¢ -megon and

of the nucleon wave functions have the valiue ~ ,.q_-:r-sfa:':‘wzI"'E

20

b) The nonleadins twist two-particle components of the meson
wave funciions have the dimensionality Z/"{] and their charac-

teristic values ere: v; ﬂ:,.‘l"r /0 Teer* (for baryons: é'if‘?? |
¢) For the two=partlzle wave functions F{z;@'ﬁ,/"ffv ; a.tfziiﬁ
the characteristic scale is: /r‘*? = ¢ P> (300 40/l
(and snalogously for the many~-particle wave functions).

3. The properties of the helicity one vector meson wave fun-

ctions are investigated. It is shown that unlike the case of

pseudoscalar and helicity zero vector meson wave functions,

the nonperturbative interaction of the quarks with the wvacuum

fields makes the distribution of quarks in the longitudinal

momentum more narrow, In particular,it is obtained for the

futg —meson: < (Ka-Ke)* > > 8 vinere <Ag«> is the mean longi-
tudinal momentum fraction carried by the quark (at 4~ SR
(For the » -meson: ("/X/w"w/d} >d% ,for the fj-p =-meson:
CHl-H/SS =d3 , < (hal-K)®> =1L/

4, It is emphasized that if the f)/.s -meson wave function
were much alike the 7 -meson wave funciion then we would have:
B (Zo> FRYBE(2y »7T) =60 (X(3555) 1 the °/3 -charmoni-
um level),while the experimental data show that this ratioc is
less or about of the unity. It is shown that for the realistic
Y7 -meson and Fy/s -meson wave functions satisfying the QCD
sum rules this ratio is .1

5. For the helicity one vector meson wave functions the same
regularity is observed as for the pseudoscalar and helicity
zero vector meson wave functions:the replacement of the light
u- or d=quark by the s-quark increases slightly the wave fun-
ction walue at the origin and narrows somewhat the distribution

of quarks in the longitudinal momentum fractions (at ¢,* o= ),
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APPENDIX

It is the purpose of this Appendix to describe in more deta-
11(as compared with/6/ )our method of treatment of the QCD
sum rules. Moreover, we presented arguments in favour that the
wave function Ffar’}:/‘ryhuve at f?/-hf the same behaviour -~ {'!’-}"7
as the asimptotic wave function = 'P({f(’:crﬁ}: %(4’—-}‘3)

The sum rules for the moments ('f“) = f{f}zh'ﬂrﬁ)’ n=029. .
nave the form /6/: = T,

z 46 F3dn) g
LT eyl ~ 2 i e A i cv it -
(A€ 2Bl gy ™5 <gadd

<. zn : < PR, 42)
LInd(s)= £ <32 86)+ £ <E5,86-15) +0(s8") S pny

The first term at r.h.s. (A1) represents the contribution of
the free quark loop and corresponds to the asimptotic wave
ﬁmcﬁian 535(; The sum rule(Al1)at N=0O has been derived first in
/87 and used for the determination of #.Heglecting in (a2) n=0
the Ay -meson contribution, we have from the fit in M (the sca=
le parametr #’sis varied in such limits that the power correc-
tions are (5,;35/% of the perturbation theory contribution): 142
Aomel, rs;é:‘?“ﬁ"it is clear thet the value .S}ofdfﬂygetamMEs in this
case the 77 -meson duality interval,not the beginning of the
"continuum" .

In order to determine ﬁf and to kill the # -meson contri-
bution, let us differentiate (A1),77°¢in ’7#%11; is evident,that
when the Ay -meson comtribution is taken into account, the
ncontinuum® sterts et $°2 7% . The fit in M givan dox
1 éj{#/.fz’sfﬁﬁt’lf Eﬂ*ﬁ#-’ﬂj&ﬁ(wﬂembarg'a sum rule gives
/{ﬂ/a/ﬁ—/'z /33M¢) gee also/8,1T/ ).

Returning now to (41),(A2), #»-¢ and substituting into (A2):

22

/44 /= (0 Farg/eeV, sPx(t¥ A }mf“we have from the fit o JLS-HGAPY
Therefore, the total duality interval atz-¢0 s SCxzger®
while the 7 -meson dumlity interval is .Sf:’:'g::.fﬁ‘—ﬂ"s

Let us take now (A1) with 7= and differentiate it in /¥
Let the 5% duality interval to be f)fﬁ-a*ﬂ)@‘ﬂand then we can-
obtain the upper bound {f‘l},,fﬂ!ﬁ*(fr};_ .Returning now to (A1),
(A2) 7+% and substituting imto (A2): <32, =a04:007, SL(5:3)eV}
we have from the fit <?x>rr 20,4 ~0%, Therefore, we see the essen-
tial redistribution of the contributions in the real spectral
density f ~fy while (3°) is comsiderebly smaller and <F3
is considerably larger than ('3-‘-',%'5,:(.22_ At the seme time, the
"continuum" starts at the values: § 2 §%. 9 sev?

In order to check the selfconsistence of the above deacribed
plcture, let us consider also the sum rules for the quantities
(f-}&ami <f '3}}.%& sum rules should be much more senaitive
to the 4/ -meson contribution and less sensitive(especially
<7~-2%%>) to the 7 -meson contribution in comparison with
those of {ﬁ.Indaed, the investipgation of these sum rules
gshowe that it is impossible to obtain the acceptable fit with-
out the .4_{ ~meson contribution. At {he tlre, these sum rulea
allow & good £it for ¥y, <40F and (Y<<3y <086, <@l ya), 9o

Ag a result ,The complex analysis of the sum mlea}lbwa one

(REp————— A e e

* Investigation of this sum rule shows that there is large co-

3
atthation Phos the vesctinge wiih ihe massiEels-tiey Teking the

contribution of this resonance into account , we have from
the it in A% <§% =G09 o5
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to show that (;’;} >0y:fand this value iz much larger than q‘;h‘.

The analogous analysis of the sum rules for <;"> leads to
C3'3>0.134033 for Yo (1.5 13) sev?

Let w8 discuss now the sum rules for N>»{ . It 4is not
difficult to see from (A1) that the power corrections can be
neglected omly at ﬁ"’-—"%zt"’”ftm shows that the spectral
denalty coinocides with the asymptotic onme at $>747 and deviates
considerably :trm it at Sf"f-@ -Therefore, the total duality :
interval is s’{,; =nny St 1 i feon the physical considera-
tions that such an enormous duality interval can not be filled
with a few resonances. Roughly speaking,there will be -~ /¥
regonance~like structures each of which fills its ows finite
duality interval. In particular, the ? -meson £1il11s its ows
finite duality interval at #»/ .’4(#*37"}3:‘4’6#41 In this cese the
duality relations lead to the following important result™”:

i uh g4

}. "3'4'3* (mpﬁ; %‘ y 6;3)

2% S

Therefore <;”:‘~%J at h»{ and such a behaviour shows that at
[}}>{ the T -meson wave function % (3) has the same behaviour as
Wag (3)= 3”’?7 !i-'-%)“{"'ﬁ“ 13-4
del wave function /6] Gg(/ }'ff}'/ <
ponds to the T -mesom duality interval S
This value of £
*We neglect~ the small corrections due to the anomalous dimen-

.For instance,for the mo-
at h»{ and this corres—
s 5,729 o0 = 356V

Seems reasonable.

8lons because these corrections do not exceed the uncertainty
in the value of <?5>’r

‘il'e neglect here the loga-rithmic effects due to the anomalous
dimensions.

<l

£4

S

-Let us represent now the ;l" -megon wave function in the form

() (f_?/f 4’6’& {/{_ry ,_1“!3"[;\1 5_///{- /Z'Af C:,Aé(?/ ("Hj

where Cjﬁ -are (egenbeauer pul:l.nmials. Two first polinomials
in (A4) are taken with such coefficlents which ensure the good
agreement with the above found values of the moments < ?”) <§}
and < §'>. Bppause % ) has the behaviour ~ ({-3%) at (?‘\-5
in (A4)
» 1031::5; cases), It is natural therefore to expect that ell other

coefficients are not large : «, *J,,(‘%g{/ c‘?(f/ P

The typicael integral has the form: T = /{/‘“’% ;/ V"(f,}

Substituting (A4) we have /7 =/ '5”‘:/]:‘-:"3 B E

constent £, will be small for ~o;:(/

ximation Bp @ introduces the error which is not larger than

the uncerteinty with wich the quentity (} fj_'y is known . As

a result ,we cen describe with & good enough accuracy the 7-

the seriea in W is convergent(barring the patho-

and s’ﬂ the appro-

meson wave function with the help of two lowest polinomials in

(a4).
The sum rulea for

(3

The analysis presented above can be used for the moments
corresponding to wave function _ﬁj‘l'r(?/* This procedure gives us
the next results:the wave function of B(1235)-mesons (just the
B-mesons gives the essential contribution to the corresponding
spectral density) becomes "wider" ({}g%h' < f’}uza.;a ) and the
wave function of
(f} %{{}"’,}itﬂ.ﬁ) than the asimptotic one (( ?") 0%)‘.’[‘1113 leads
to the fact that the parametr %, in the sum rules for (f}
is lese than perametr S, in sum rules determining .f

The estimate is as follows *

¢ -mesons (Spr(f)) becomes more narrow
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<§J)[§) gﬂ(/e - ;éﬁ; (*G-} 64"’ Jr(?’"mf}
G;) 7 {/- "ff?“y .-M(ﬂ(;.-’- E_jrc‘.‘;’;;m(,w é‘ﬁj

Note that for M:ﬂ;f i g e Yaws G <37 <016
The best fit is <;"'>;= 0. /%
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