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Abasgtract

A quasiclassical approach intended for description of the
quantum electrodynamics processes in the Coulomb field at high
energies is developed. An expression for the high-energy Del-
bruck scatiering emplitude 1e derived in a simple form, there-
by allowing to define the dependence of the total croge gecti-
on on the charge of the Coulomb centre.



The elastic scattering of a photon in the Coulomb field
via virtual electron-positron pairs (Delbrick scattering,
Ref. /1/) is one among a few nonlinear processes in guantum
electrodynamics directly observable in the experiments (see
Refs. /2/ end /3/). The situation when wW>m ( @ is the
photon frequency, w1 1is the masgs of an electron; we set
h=c=1 ) is most favourable.

A variety of attempts to theoretically describe this PIro=-
cess are surveyed in Ref. /2/, but only Cheng snd Wu (see
Refs. /4-6/) have solved this problem summing in & definite
epproximation the Feynman diasgrams with arbltrary number of the
photon exchange with the Coulomb centre. It appears (Refe. /47
and_/5/) that the Coulomb corrections at Zo~1 (Z|p| 18 the
charge of the nucleus, J = e* = 1/137 is the fine structure
conpgtant, e 1s an electron charge) drastically change the re-
sult as compared to the Born approximation.

In the present paper, the Delbruck scattering smplitude
at W>M jig found by the method substantially different
from that developed by Cheng and Wu. The approach is based on
the use of the integral representation for the electron
Green's function Q(ﬂﬁiia} in the Coulomb field obtained by
the authors in Ref. /7/ snd also on taking into eccount, expli-
citly, the quasiclassical nature of the motion of high-energy
charged particles. The suggested method mey be applied to the
solution of the other problems in the Coulomb field. In the
case under consideration, this approach leads $o a substantisgle
ly simpler expresesion for the amplitude of the process, that
mekes it possible to calculate its total cross section.,

Let the initial photon with momentum R:: w-ﬁ produce a
pair of virtual particles at the point ?;i + Thig pair con-
verts to the photon with momentum K,=wV, (IWi={i(=0 ) at
the peint ..{2 « The mein contribution to the amplitude comes
from the energy of the charged particles £, ~ £,~W . Let
A= ?1-?1 » Then; one obftains, from the uncertainty relation,
That the lifetime of a virtual pair (i.e. the loop length) is
‘j:wm{vrt?'+ ﬂ?}“‘l and the characteristic impact parametear
J)-w i/p « It followe from this that within the domain of mo-
mentum transfers
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the ratio P/ T« L, 1.0. the a:nglea between vectora K;,)K,, T
and (-7, ) ere small. The relation (1) determines all the phy-
sically interesting domain of momentum transfers. In particu-
lar, the contribution to the totsl cross section of momentum
transfers not satisfying the condition (1) is suppressed as
mi/st . It should besr in mind thet upon scattering on atoms
the point-charge approximation holds if "L'i AL RY  whers
R 1is the radius of the nucleus, 7. is the nucleus screening
radius (in the Thomas-Fermi model T, ~ (ma.)“ ;5""3 + The latter
reatriction ensures, for W= 100 MeV, the satiafiability of
condition (1), and in what follows we shall therefore consider
only this domain of momentum tramsfers. The domain of momentum
transfers A £ mi/w has been exsmined in Ref. /6/.

In the Purry representation the amplitude of Delbruci
geattering is

M=2ia (d%, d%, (T ?ﬂﬂﬂdekdﬁS(thﬁEL}- (2)
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here E'H-_ are the vectors of photon polerization. The integrel
over g£,, goes under the resl axis in the left half-plane and
above it in the right one. Let us represent the § - functi-
on in eq. (2) as follows:
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Using the firet term in eq. (3) and taking into account the
analytical properties of the fumction G(T.T,[€) (see e.g. [T/},
the contour of integration over £, £; 1n eg. (2) can be de-
formed go0 that it will go around the right and the left cute
over £, end £, respactively. Moreover, in integrating over
£, there appears the contribution of the discrete spectrum,
which can be neglected at W>» M . With the second term in egq.
{B}Jthg'ccntour of integration over £, £; in eq. (2) goes
after deformation around the left (over ¢ ) and the right
(over £, ) cuts. The quantity w-£,+&; turns out te be large
Ent_il the contribution of fthies term cen be neglected. After this
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transformations end the substitution .E,‘,?_.-p—_ E, , we have

= & i, SE5 T sedes

mm 7 e E"d.‘\

{ AR &)eISG(wLIEJ]m

Here E Q— ig the discontinulity of the Green's function on the
cut: §G{)= )~ €7'(€) » where @W(g) determines the elec-
tron Green's funciion in & Coulomb field, correspondingly, in
the upper -and lower hslf-plane of the complex variable £ ,
Expreession ( 4 ) corresponds to the diasgram of non-covariant
perturbation theory, which gives the main contribution at
W>>m , It's convenient to perform the celculations in terms
of helical amplituﬂea. Let us choose the polarization vectors
in the form 'éﬂ_m(ixﬁgii.f) , where A ﬁx‘ﬂ;/]‘u{xﬁf .
There are iwo independent amplitudes, nemely, M,= M., = M__
and My=M,_=M_, » In terms of linear polarizations, by vir-
tue of parity conservation, the smplitude differs from zero
only if the pelarizatione of the initial and final photona lie
both in the scattering plene (M, ) or are perpendicular to it
(M.)e The following relations hold: M= (M, +M.)/2 ,
M,=(My=M.)/2 « By virtue of the momentum conservation
M({Z=0):0for the case under study A # 0. It is convenient to
subtract, from the integrand for M in formula (4), the value
of thie integrand at Z=0., It is this difference for which the
above statement on the smallness of the angles (between vec-
tors K., K, T, end (-7 )), giving the mein contribution to
the integral, 1e valid. In the following such a subtraction ie
assumed to be made and we take it into account in the explicit

- form in the final resnlt.

It is worth noting that, according to eq. (1), the charac-
terietic value of the sngular momentum { ~ pw~ w/A proves
to be large and it is possible to employ the quasiclassical
epproximation. Thig means that large values of ¢ contribute
to the sum over { in eqs (19) (see Ref. /T/) for {'? Ef‘&)
and one can neglect ( Z4)° in the quantity = Jg}__@,g_t’ :
After the substitutiony— { one takes the sum over £ by
means of formula (24) in Ref. /7/ and we get an expression for
the guasiclassical electron Green's fumction in the Coulomb
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shete .2 = \ E2- m.i, g: 5&%\[_21{12(1+ﬁ4-ﬁg} ﬁi,z: 1-||-‘*-2/ Tz . ']u
and o, are Bessel functions, E!"‘ are Dirac matrices. The
quantities %,1 in the expression (2) are real and vary from O
to co . The discontinuity §G(E) is determined by expression
(5) if one takes the upper sign in it and the integration over
1 is carried out from -eo tooe . It is appropriate to come
to the variable »t in the integral over T , to make the
subatitution '-f{_-- -_"E',, in eqs. (4), and to proceed from the
integration over £i2 to the integration over %47 . We change
over to the variables K= (Tq’h}"fﬁ V= (’W-;z] P,2=R2,- Then, the
integral over R takes, within the nacensary accuracy, the
form

dm exp |- R (T &Y ﬁa,/lrﬂ
o GR-(RrR)[4+ 3 (At Taio
h.‘.l Ftﬁ:,

Here the integration over & c¢an be extended from - ©° to
e and the integral is therefore trivial. Then, one tekes
the trace and expand the integrand in formula (4) in terms of
small angles. It is convenient to direct the axias of the sphe-
rical coordinate system along 'ﬁ:+{fz +» One has in the small-
-~angles approximation: dSliz = 8., dBdVe = dl@:a : {-'9-1.1 ;{Fﬁ 1): 0.
The Bessel functions depend on §,, in the combination |§ -G,
01‘11:,!‘. Let us make the substitution of the variables 3 E E’
’1' LFE +EL/U' After that it is easy to take the integral over
&% . An analysis of the expression (4) shows that the main
contribution to the integral is given by large positive ftig¢ «
Let us introduce the variables ¥ = -"Eeh, Yy = %e,t’- and per-
form the expansion, bearing in mind the fact that X, » 4 . It
is convenient fto perform the integration by parts over X X,
in the expreesion for M, so that only the Bessel function Ty
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remaine in the preexponent. One cbtains
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Let us change over %o the variebles Piz = Pin (“J‘+ %’)/Bi
Yoo - Yoz (7+ {Tr)ffg and make the inversion of vector § (0= 1./9).
As a result, the Bessel functions become B - independent and
it is easy to take the integral over d?0 . In further calcu-
lations of the smplitude My we change over the variables
E=(nr)" ,t=Cvn), Y= (xx)®/E , T=la(*/x,)

and then the integral is taken over g and then over X »
uging the relatiuna (/8/, pp. T32 and T44]
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and also those obtained by differentiating the expression (7)

with respect to the parameter. In calculation of the amplitude
M, we introduce the variables £ = (pp)%2, t= (P/p)'R,
Kﬂ{g{xt)""ﬂ y T= n(%/y;)and take the integral over X end

then over £ , using (7). Finally, one obitains, for the ampli-
tudes

o
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g= (-8t -2dcke , D= [dbge-9]"

R= D+d- (1-8)chT

At A»M and A< the ssymptotic values of amplitudes
derived from expression (8) coincide with the results of
Refs. /4-6/. The dif:t‘arential cross section for the unpolarized
initiel photon 1s d6/, = o (\H.l‘+it‘*lal‘) , X=8/mt . It
is independent on the photon fraquemy. The contribution of

J«\ - mesons to the amplitudes is obtained from Eq. {E] by
means of the substitution M- My , The quantity 5— G/sl:x
(6, =)' E/ter , te=%m , "e/ign= 1.58mB. ) as a function
of the momentum transfer A at Z = 1 (curve 1), Z = 47 (cur-
ve 2 ), and Z = 92 (curve 3) is plotted in Pig. 1. The coniri-
bution of the J - mesons is not taken into sccount in Pig. 1.
Thie contribution becomes noticeable at large A go that at

8

Z= 92 it increases the differential oross section at

A = 10, 20, 30 MeV by 24 6.5 and 12.4%, respectively. The
dependence of the total cross section § (the ratio 6/6, ) on
the charge of the Coulomb centre is plotted in Fig. 2. It fol-
lows from Pigs. 1 and 2 that the Coulomb corrections substan-
tielly decressmes the cross sectlon. Fig. 3 demonsirates the

A -~ dependence of the Stokes paramefer 5, , which corresponds

‘40 the linear polarizetion in the scattering plane;

Sam oot 4, §,=%,=0 o Tt 1s seen that the degree of po-
J.ariﬂm’{;i*un grows with increasing A and is /A - independent

in the asymptotics. At & fixed value of A , §, increases
with increasing £

The guthors are thenkful to V.H.Baler and V.S5.Fadin for
helpful discussions.
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rig. 1.

Pig. 2.

Mg. 3.

Figure captions

The differential cross section as a function of A
at 2 = 1 (eurve 1), £ =» 47 (curve 2), and Z = 92
(curve 3). :

The dependences of the total cross section on the char-
ge of the Coulcmb cemtrs.

The A =~ dependence of the degree of linear polariza-
tiom at 2 = 1 (cuwrve 1), Z = 4T (curve 2), and
Z = 92 (curve 3).
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