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Abstract

Some recent developments in classical Hamiltonian mecha-
nics related to the phenomenon of dynamical (deterministic)
| chaos are briefly discussed. Those include: the KAM integra-
bility; peculiarities of weakly nonlinear dynamics; the algo-
rithmic randomness; the chaos border and long-time correlations.
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1. Introduction

Until recently statistical properties of a physicel sys-
tem have been derived with the help of some special postulates,
or Angatze, such as Gibbs' microcanonical distribution in egui-
librium statistical mechanics or Boltzmann's molecular chaos,
Bogolyubov's correlation decay, Prigogine’s causality conditi-
on, van Hove's random phase approximation and the like in non-
equilibrium mechanics. Those assumptions are especially plau-
gible and natural in the so-called thermodynemic limit, that
ig in the limit of infinite number of degrees of freedom (DF)
for a given density. In a finite dimension, and the more so in
just a few DF those conjectures are generally false. Yet, such
g classical approach to the statistical mechanics can be, ne-
vertheless, saved by introducing an extrineic ™noise" with
glven statistical properties (correlations) - the method which
can be traced back to Langevin.

Nowadays, tremendous progress in the modern ergodic theo-
ry enables us, in principle, both tec find out the conditions
for as well as to derive the peculiarities of the statistical,
or chaotic (stochastic), behavior on a purely dynamical basis,
i.e. by the analysis of dynamical (deterministic) evolution
equations free of any random element or assumption. In other
words, in this new approach the chaotic behavior comeg out as
a particular regime of the dynamical evolution. To reveal pecu-
liarities of this regime one needs, of course, to make use of
some special statistical description and notions, such as dis-
tribution function, coarse graining, symbolic trajectories
etcs The latier ones, however, should not be confused with
statistical properties, or chaotic behavior, which do not de-
pend on the description.

As far as it concerns the classical mechanics that dynami-
cal chacs happens to be obgervationally undistinguishable from
the "true®™ rendom process, the latter being understood as un-
predictable, or, better to say, unreproducible (see Section 5).
The quantum dynamics appears to be less chaotic, if any, and
is certainly much less known thus far /7,8/.

In the present talk I am going to briefly discuss some of
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these more or less recent developments, refering to a couple of
gimple models of the Yang-Mills field as examples.

A mathematical review of the topiec in question can be
found in Refss. /1-5/, that by a physicist is in Refs. /6-9/,
and recent popular presentations are in Refs. /10-12/.

In what followe we ghall resgtrict ourselves to classical
Hamiltonian dynamice, that is to nondissipative but not necesg-
sarily conservative (in energy) dynamical systems. A typical
problem to be studied - the Poincaré fundsmental dynamical pro-
blem - is the influence of a weak perturbation on a completely
integrable unperturbed system which, for the time being, we as-
sume to be nonlinear, or nondegenerate. It means that determi-
nant
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with €J; , Ik a8 the frequencies and action variables, respec-
tively, and H, the unperturbed Hamiltonian. A more difficult
for analysis case of the linear (isochronous) unperturbed sys-
tem will be considered in Sec. 4. Particui.arly, Eq. (1.1) imp-
lies one-to-one correspondence between I- and & -subspaces

of the dynamical (phase) space.

!:;b 0 (1.1)

2o KAM integrability

The concept of integrability has little to share with ac-
tual evaluation of a motion trajectory, the latter can alwaye
be done numerically, if necessary. Insgtead, it is a basic cha-
racteristic of the motion (phase space) structure, namely, of
ite decomposition into elementar (irreducible) dynamical com-
ponents. In the natural at this Conference group-theoretical
language the problem of integrability is also the problem of
the maximal symmetry group of a dynamical system. For a closed
system the minimal one is the Poincaré group implying the ten
well known integrals of motion. For the sake of brevity cne
uses to say just about energy only, assuming the others to ha-
ve been eliminated beforehand. Thus, the integrability refers



to additional specific isolating integrals related to some
"hidden" symmetry of the system. If there is nothing to "hide",
the motion is sald to be transitive, or ergodic, on the energy
surface. In this case the whole phase space decomposes into
one-parameter family of ergodic components, each comprising
the entire energy surface. The opposite case corresponds to
the full set of N (the number of DF) commuting (in invelution)
~ integrals which reduce the elementar dynamical component to a
quagi-periodical motion on a torus. Por almost all tori the
motion is ergodic (on torus), or nonresonant. This is the
claseical view of the integrability problem coming back to Po-
incare.

A lucid presentation of our current understanding of thie
problem can be given via resonance analysis. The latter is ea-
pecially convenient to carry out in the @ -subsgpace where
each resonance
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is plainly a plane. Here M. s N, ere-integers, and the exter-
nal perturbation ig assumed to be quasi-periodic with M basic
frequencies -O—k « Note that generally m.. , n, are any inte-
gers, and, hence, the resonance get is everywhere dense in the
phase sgpace. Yet, its measure (volume) is zero, and this con-
stitutes a singularity whose dynamical implications had not
been prcparlj recognized until the KAM theory was created,
mainly, due to Kolmogorov, Arnold and lMoser /13, 1 - 3/ {(also
see Ref. /18/). In particular, the famous Poincare theorem
/14/ (Sections 81-83), that a generic Hamiltonian system is

- nonintegrable, being formally true has been actually miglea-
ding for a long time, at least, for physicists (see, e.g.,

Ref. /19/). The trick is that the theorem ensures the absence
of amalytical integrals of motion. This mathematical subtlety
1s not a merely technical requirement. Instead, it is esgential,
inﬁeed; since the actusl distruction of the motion integrals
does occur, as already Poincaré was aware of, just on the reso-
nance set due to the well known small denominators in the ner-
turbation series. Obviously, the function which does not exist

on an everywhere dense set cannot be analytical. But what abo-
ut that? Do we really need analytical integrals of motion? Or,
to put the question in other way, have we to follow Poincare
in his somewhat implicit but fairly "obvious" assumption theat
the motion integrals comprise, at least, some solid region in-
cluding resgonance surfaces? The KAM theory teaches us that we
have not. Yet, one can say also that there are (at least!) two
different notions of integrability:

i) the Poincare, or global, integrebility which refers to
the over-all through the phase space integrals; this notion

somewhat exaggerates the letter of Poincare's idea retaining,
however, its spirit, and is close to the modern notion of the
complete integrability;

ii) the KAM integrabilitx-;estrictad to a nowhere denge
nonresonant set in the phase space.

Let us dwell on the latter new notion somewhat longer.
First, what are the conditions for KAM integrability? They are
esgentlially three:

i) the unperturbed globally, or Pnincaré, integrable gys-
tem is nonlinear, or nondegenerate (1.1);

ii) the perturbation is sufficiently smooth, i.e. it be-
longs to a class G£ with some £ > Ec_,. ;

iii) the perturbation is sufficiently weak, i.e. the
perturbation parameter £ £ € ..

The critical perturbation emoothnese fﬂ. (the number of
continuous mixed partial derivatives with respect to both N
angles 9;; as well as M time variables ¢, =.ﬂk'ﬁ' + fﬁ: ) can
be estimated by the resonance overlap criterion as

L~ LW+M)-2 (2.2)

which is a generalization of the result in Ref. /6/ (Section
4.5) to an explicit quasiperiodic time dependence of the Ha-
miltonian. This may be campared to the rigorous upper estima-
te, for M = 0, due to Moser /15/:

gzr - IN+2 (2+3)

P mapping the quantity éLr (2.2) increases by 2.



In particular, &= 24if M = 0, and N = 1 /6/. The best rigo-
rous upper bound in the latter case, agasin dus to Moser /3/,

is fﬂ._-:-"-__ 4. For £ = f,_.._ the critical perturbation strength

( €¢¢ ) does not exist, i.e. the system is not even KAM inte=-
grable at any nonzero &€=+ @ . Takens /16/ has proved this
for a particular mapping with é =2 (M =03 X = 1) JYote
that our f characterizes the Hemiltonian (or generating func-
tion) and is bigger by one as compared to that in Refs. /3,16/.

Evaluation of the critical perturbation strength £ (for
Z > é’c_,.-} is a more tricky problem. We just mention here the
analytical cagse (for detail see Ref. /b/, Section 4.6). Let
the perturbation be analytic in both 6& and ?&, within the
strip of half-width ©° . A particular question is how does &
scale with 6" % an interesting point is that the powerful tech-
niquea, developed by Moser /3/ to deal with a smooth perturba-
tion, can be applied back to analyticael perturbation to get a
fairly efficient estimate /6/ ( B )
g ar
£ 0C & (2.4)
cr
where constant C = 3/2 from the overlap criterion, and C < 5/2
from the rigorous upper bound (2.3).

3. Separatrix stochastic layers and
the Arnold diffusion

What is the nonintegrable set like, under the conditions
of KAM integrability? The first estimate for its relative size
and the total measure was of the order of Edﬁg,_that ig of the
full width of & nonlinear rescnance édﬁlhp. However, further
studies /17,6,9/ revealed that the actual measure of the chao-
tic component, which forms very narrow stochastic layers about
resonance separatrices, is a great deal smaller:

= Aw:)
- ?sz A @) (3.1
20),

where (A‘t})s is the width of a stochastic lﬁyar, and factor
v
A (e5.) depends on dynamical variebles. In simple cases the
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evaluation of estimate (3.1), based upon the overlap eriterion,
is fairly accurate (see Ref. /6/, Section b.2, and Ref. /20/).
It is worth noting that estimate (3.1) and the like have been
obtained not by means of the powerful KAM techniquee for the
congtruction of convergent perturbation series but, instead,
using a routine asymptotic method of averaging /21/. However,
the crucial new feature of our approach is introducing a new
(resonant) perturbation parameter g (3.1) (instead of original
€ ) which has to be expliecitly calculated /6,20/.

What are dynamical implications of the nonintegrable com-
ponent of motion? They depend on topology of the phase space.
In case of N = 2 (for a closed system) stochastic layers are
geparated from each other by integrable components, and their
influence ie negligible /1,2/. Namely, the motion remains sta-
ble (in action variables) for all initial conditions, and the
averaged globably integrable system approaches the true motion
with only exponentially small {ﬂJg'} ineradicable error.

However, in many dimensions ( N/ > 2) the motion picture
changes drastically since all those layers do merge and form
united everywhere dense "web"™ over which trajectory can, and
generally does, approach arbitrarily close any point on the
energy surface /17/. Yet, it does not mean the ergodicity of
motion since the total measure of the web is still exponential-
ly small. For this latter reason the motion on the web, which
is called the Arnold diffusion, may appear to be nractically
unimportant. In many cases it is true, indeed, the more so
that the diffusion rate is also exponentially small /22,6,9/.
Nevertheless, Arnold diffusion certainly signifies a real
(and universal /b/1) motion instability contrary to the asser-
tion in Ref. /23/. The latter confusion is caused by an artifi-
cial notion of "allowable™ solution, introduced in Ref. /23/,
which just excludes the unstable initial conditions on the
web.

On the other hand, the whole problem is improper since
the stochastic web ie everywhere dense. There ars several me-
thods of so-called regularization of the problem, i.e. of its
unambiguous formulation which would not depend on infinitesi-
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mal chénges in initial conditions. One way is to bound the mo-
tion time interval from above by an arbitrary but finite value.
It converts the everywhere dense resonance web into a finite
mesh grid of "working" (sufficiently strong) resonances, and
the problem acquires the phyeical meaning.

Another regulerization method relates to introducing, or,
better to say, to taking account of some always present arblit-
rarily weak but finite external "noise" which results in an
additional diffueion /6/. It alsoc leaves a finite resonance
set where Arnold diffusion exceeds (in rate) the effect of no-
ise. Besides, the latter brings all the trajectories fo one of
the "working" stochastic layers and provides Arnold diffusion
for all initial conditions.

Thus, Poincaré, or local, nonintegrability does not gene-
rally imply any significant change in the motion structure.
Instead, the KAM integrability takes generally vnlace with, at
worst, an exponentially slow Arnold diffusion.

Note that separatrix splitting, and, hence, formation of
a stochastic layer, which sometimes ig used as a criterion for
nonintegrability (see, e.g., Refs. /24,25/), relates just to a
local nonintegrability and does not contradict with the KAM
integrability as was explained above.

A large-scale, or global, chaos sets in as a result of
breaking down the KAM integrsbility as nerturbation exceeds
the eritical level (€ ?'qf.:m}. Let us mention that generally,
apart from some special cases as, or instance, the standard
mapping (see Refs. /6,20/), any definite critical value of the
perturbation strength does not exist for a Himiltonian gygtem.
Inatead, the measure of chaotic component i«g continuously in-
creasing as £ grows. In other words, the parameter £__. has
meaning in order of magnitude only. Howevaer, the chaos border
in phase space has the definite meﬁning and important implica-
tions for chaotic dynamics (sgee Section 5 and Ref. /20/).

4« Weak nonlinearity

If unperturbed oscillations are linear (isochronous), and,
hence, iBW; /31“?—-’_ @ (1.1), the nonlinearity comes out
from perturbation terms only. Thig situation is rather typical
in applications. Consider, for example, one of Matinyan's mo-
del for classical spacially homogeneous Yang-Mills (YM) field
in a Higgs vacuum /26/:

H(Zy,6c) = Ho(Tk)+ V(Lk, k)
H,= _;‘-<5f+ Er+ wld + cafﬁf): w, I+ wy Iy

214 s ~S
Praifade 23 TRy

I < (4.1)

V= deds = dd2 im0 - 96

V Qm‘wﬂj K qmdwz' ( + .Z_)

V= Jalz [[’.:95 28,4 Cos 88 -—(a.sé&?,ﬁz&,j
Zw,Wg : e i

L e
HerewEk‘:ﬁk; ij é?é are the action-angle variables; V ’ V;.
and ¥ are mean, low frequency (resonant), and high frequency
(nonresonant) parts of perturbation, resnectively, while the
small perturbation parameter is the Hamiltonian itself:
e=HaH, NI; V~eH (GJ‘; ~{/). This model describes
the simplest ( =2 PF ) nontrivial case of the internal dy-
namicg of a YM field.

In spite of degeneracy the KAM integrability still holds
in this model under additional condition: &7, /'5‘-]1 = P/‘;"..

for integers p , 4§ satisfying :"Ff'f' ,“}} £ 4 (see Ref. /2/).
Yet, an interesting for the theory of YM fields case is just

&_)_‘ — f:Ji when the exact resonance occurs at H—r ¢ . The
crucial point is that there exists only one, gingle, regonance

related to the low frequency perturbation term V,..- (4¢1). In
this case the averaged system (&,=4&lg = 1)

H> = H,+ F—f—‘V; =I+I,+ %[j-&- %éﬁﬂé’;f&i (4.2)
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is always globally integrable due to the specific resonant
symmetry {only one of N linearly independent phase combinati-

ons is present in the Hamiltonian) which implies (W=1) reso-

nant integrals (see, e.g., Ref. /6/). One of these integrals

is always the unperturbed Hamiltonian, H I "‘I& for sye—

tem (4.2), Since dH) is also an integral the averaged per-

turbation < V> = V+ Vr" = ¢const gg well. Two independent in- )
tegrals determine phase curves of the averaged system (4.2)

F27/:

j.a__ B w
i J,{+ stp ; (4.3)

where j=CI.,—-I.z)/H¢; P=%8,~- 28y . ema 1= !(Vb/ﬁf"
Thus, the motion structure is independent of fﬂ, in the limit
Hu_"" O , the H, value determining the motion time scale
only. For example, the frequency of small oscillation around
the stable periodic orbit J=@ =0 (Vv=34)is w, = /3/8 H, .
There exists also a separatrix corresponding to the unstable
periodic orbit J= CJJ i;ﬁ: (zz;: 1"/,2,) , and it is split by
the high frequency perfurbation )/, the resonsnt small para-

meter being
g ~ exp 6_ Y il (4.4)

where £ 22 H._., ~ L, ,ﬂﬂd O~ 4 y & numerical factor. Due to
weak nonlinearity this latter parameter, and, hence, the sto-
chastic layer width, is much smaller as compared to Eg. (3. 1)a
while the resonance width is much bigger, and moreover is

independent of £ (j,h = J2/3 ) (4:3).

Thus, the model (4.1) is KAil integrable for {‘/((
C ~ 41 (4.4). In Ref. /26/ Hcrm 6.7 was accepted from
numerical simulation of this model. At H >» H‘-_,- the motion
is globally chaotic /2b,27/, with small regular components in- .
corporated though /27/.

At larger II the KAM integrability is generally destroyed
as well, even in the limit Hg—* 5 Congider /27/ the model |
of the type (4.1) with L = 3:

12

Hf.}: M_’I4 + f&j!..’z:g‘f' -’-:d:;Ig
V= C‘ﬁ?d 143)2"?' (tq_,ﬁa)i‘a" (ﬁ_g ﬁ;)i : (4.5)

If W,= &g = &3z there are three resonances, and even the
averaged system ¢{H> is no longer integrable as the numerical
gimulation in Ref. /27/ confirms. Such a confirmation is al-
weys desirable o rule out any hidden symmetry in the system.
The motion structure does again depend on the ratio <¥> /H'ﬁ
only, but not on H.p as H-*ﬁ (comp. Eq. (4.3)). According
to numerical data in Ref. /27/ this structure includes both
chaotic as well as regular (quasiperiodic) components of com-
parable measure.

5¢ The nature of dynamical chaos

A typical and the most important peculiarity of the chao-
tic motion is a faet (exponential, which is the fastest in a
sense /11/) local instability that is divergence of a beam
of close trajectories. This local dynamicel behavior 1s des-
cribed by the equations of motion linearized asbout one of cha-
otic trajectories. For a closed, time reversible sgystem the
ingtability is characterized by the M Lyapunov exponents
A, > 0, the dimensionality of the chaotic component being
(2n + 1) (see, e.g., /28/)s Particularly, if the latter comp-
rises the whole energy surface or a part of it, n = A/'~1 ,

Lyapunov exponents d.eterminé_the metric entropy of a cha=
otic component /28/:

.
h = Z/l::'?'f/lm L
=4

which is also called sometimes the KS-entropy (Krylov-Kolmogo-
rov-5inai entropy). The maximal Lyapunov exponent
termined by

m 18 de-

4y, 18l
|Ple)]

—
where @ (£) is vector of the linearized solution. For almost

A fm (5.2)
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any initial vector ?(o} the solution ?(ﬁ'j is rapidly appro-
aching the eigenvector related to ;1”‘. This greatly egimplifies
the numerical procedure for calculating,jlhf Cn the other hand,
it is also gufficient to calculate jihtonly gince all we need
to know is whether }l >@ . If so, almost all trajectories of
the chaotic component are random according to the algorithmic
theory of dynamical systems /5/.

In thie theory the random means unpredictsble, or uncompu-
table. It may be elucidated as follows. Consider a coarse-grai-
ned, or symbolie, trajectory which is & sequence of some inte-
gers Q* (6’..*5 gf_, <& _M_') where Z is the integer time (of
gtep T), and M is the number of finite elements of the phase
space partition. Each gﬁ degcribes an instant pogition of the
gyestem to a finite accuracy. The latter is crucial, at least,
for two reasong. Firet, it takes account of an unavoidagble
uncertainty of any observation or measurement in physica. Se-
cond, and the mogt important, it enables ug to rigorously dis-
cern "simple" (regular) and "complicated" (chaotic) trajectori-
8. Hémely, the important cancept'of complexity, introduced by
Kolmogorov for sequences, can be extended, in this way, on dy-
namical trajectories /5/. Loosely speaking, the complexity of a
finite pequence is the amount of information necessary to re-
produce this sequence. If the complexity is maximal, that is
sroportional to the seguence length, it is natural to define
that seguence asg random. For to reproduce such a seguence one
actually needs to know it beforehand, either explicitly as gi-
ven, or implicitly, as encoded somehow, in parficular, in ini-
tial conditions of the motion. In the former case the reproduc-
tion is merely copying, and in the latter it is deciphering,
in particular, by using the equations of motion. The crucial
point of the algorithmic philosophy is impossibility to separa-
te the two above cases in view of a continuous transition be-
tween them. For example, an intermediate step could be a chan=-
ge, Bay, from binary to decimal numbers or vice versa. Thus,

a given random trajectory is just given and cannot be reprodu-
ced in any simpler way-.-

The principal result, due to Brudno, in the algorithmic
theory of dynamical systems is /29,5/:

14
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K == A./ | (5.3)

where K stands for the mesn Kolmogorov complexity of trajecto-
rieg, per unit time. Hence, the origin of a chaotic trajectory
maximal complexity and of its randomness lies in the initial
conditions and, ultimately, in continuity of the phase space

in classgical mechanicse.

The role of equations of motion themselves in producing
rendom trajectories turns out to be secondary. It is to merely
nrovide the local instability of motlon and, hence, to grant
dynamical significance to arbitrarily diminutive details of
trojectory initial conditions. As such, the dynamical algorithm
con be, honce, very eimple that has appeared so puzzling until
recently. How we understand that simplieity of the system does
actually eclipse the true origin of dynamical chaos.

Apparently simplest model of chactic motion is described
by the following one-dimensional mapping (P-ar @ F34/

o=k mod 1, or z=2%; z=explrip) o)

where integer k > 1. The model represents dynamics of a
single phase variable, and its motion is locally unstable
(h =1n k) and, hence, random. Nevertheless, the motion trajec-

£4Sy
(&:(@-K’f wod f ;- iZ, =2, (5.5)

tory can be explicitly written down as

The randomness of sedquence {?%} ft =1325900)y for almost
any initial phase q%. s is due to teking the frastional part
(mod 1) or else due to transition from the turm angle (@— ¢ )
of the complex vector Z to the change in its direction ((¢-¢)
mod 1). One may also say that a regular seauence~{?%~é:f}
becomes random in respect to the period T of phase variable g:,
the randomnese depending on the arithmetic of number (@, /7" )

{ see below).

' Let the dynamical space of system (5.4) (the interval
Eh1]} be parted into M = k equal gegments. If, moreover, the
number @b is given to the base &: s that is . as a finite or in-

finite sequence of integers {3.1} ( g < - W f() , the

35



map {(5.4) acts as the shift of this sequence by one digit to
the left. As a result, successive elements of symbolic trajec-
tory f;_é . ?‘”__  while the whole trajectory can be represen-~
ted by some single (irrational, generally) number P (0<F<’$f)
which just coincides with the initial phase: P =@, .

This elementary example readily demonstrates that a ran-
dom trajectory cannot be glven in any a priori way esince it is
determined by the random (,00 (having a random sgeguence of di-
gits) which is uncomputable, and can be obtained & posteriori
Dnly,_ from observing the gymbolic trajectory « On the con-
trary, a regular, say, periodic symbolic trajectory can be gi-
ven (computed) a priori but it does not determine the exact
initial conditions.

A fundamental result in the zlgorithmic theory of random-
nege is in that almoet all (in the Lebegue measure) real num-
bers turn out to be just random. Exceptional (nonrandom) ones
are, of course, all the rational numbers as well as the compu-
table irrationals like 7~ , € etc. In other words, a random
number isg a sort of "the thing in itself"™, it does exist, yet
it cammot be produced in any waye.

The following instructive example is described in Ref.
/35/. Congider the uniformly rotating vector Z = EIF@FE}’L‘).
Let us construct the mapping which fixes =z direction not in
equal time steps, as usual, but at the instants zf;,_ s Such
that

}}éﬂ 2 g‘%.'éﬂ- (5.6)

where integer f( > 1« This mapping is equivalent to mapping

(5.4), and, hence, for almost any @, » the sequence {Z,,}

proves to be random even though the original continuous motion
is regular, of course. The latter point led the asuthors of

Ref. /35/ to the conclusion that such a randomness is juset an
"illusion". However, one hardly may accept that view. Instead,
this example demonstrates again that a random sequence {fn:.} N
which converts the regular rotation into a random mapping, can
be described by a deterministic algorithm (5.6). Note that for
a given random (£, the sequence {'ﬁ',.j depends on the rotation
frequency ) . In other words, while the number ¢ 1is random
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absolutely, the sequence {fh} doesg #0 in respect to a given
regular motion only. A true illusion, in this example, is ap-
parent posgibility of producing random {2,‘,,} which, in fact,
cannot be done in any way as was explained above. Hence, that
"induced" randomness will not occur for any a priori selection
of the mapping instants zf'&_ .

Another interesting question relates to the Poincareé map-
ping. Here the instants Z‘,b- of trajectory crossings the surfa-
ce of gpection are not given beforehand but, instead, are deter-
mined by the motion itself. What would be the relation between
randomness of the continuous motion and that of the mapping? If
the invariant measure is compact, i.e. the dynamic component
comprises a finite domain of the phase space, the regular or
chaotic oscillation gets steady. Particularly, it implies the
existence of some time average for a trajectory recurrence to
the surface of section: T = <(-’f,,.,..,a e Z‘,,)} + Then, both
KS-entropies, that of the mapping {}lq,} end of continuous moti-
on (&), are related as follows:

h,= Th | (5.7)

4
Hence, eitiher both quantities are nonzero, and the motion is
random or the both are zero, and the moition is nonrandom.

The concept of slgorithmic randomness appears to be in
conformity with our intuitive idea of what the random is like.
Moreover, the developing of thisg concept has been actually gui-
ded by that conformity. At any event, that randomness does not
mean the complete randomness, in particular, it does not execlu-
de correlations in motion. It only implies some correlation
decay, and, moreover, in both directions of time ( ZT—+ % 20 )
in accordance with the dynamical reversibility.

For a given motion there is a continuous transition from
deterministic to chaotic behavior. Generally; this transition
can be characterized by the following randomness parameter:

TA
In M

the limit ¥—» @ corresponding to an approximate and temporary
imitation of deterministic evolution while the chaos is buil-
ding up as F=-—>» 0o ,

——

(5.8)
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The random, dynamically unstable motion posseses am im-
portant property of the gtatistical stability, i.e. stability
of any averaged guantity, which, in turn, is a corollary of the
structural stability of dynamical chaos (see, e.g., Ref. /11/).

On the other hand, the randomness of a motion does not
fix its statistical properties. For example, the exponential
local instability of motion, generally, coes not imnly any ex-=
ponential relaxation, nor even the latter anpears to be a ty-
pical case /30,20/. The reason is in different averaging for
both quantities, the entropy and the correlation. In narticu-
lar, the chaos border in the phase space, i.e. 82 coexictence
of chaotic and regular components of motion, inevitably leads
to a power-type relaxation ( ©C rf‘*’p; p~4) /20/. Such a
relaxation has been apparently observed both numericaslly
/31,33/ end experimentally /32/ (see Ref. /20/). Note that a
power correlation decay implies, generally, a fairly complica-
ted and unusual statistical description of the dynamiecal cha-
08
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