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Abatract

In crystals with magnetic structure the exchange interac-
tion between ions and conduction electrons when parity noncon-
servation is taken into account, gives rise to P-odd long-range
gpin-dependent forces between iﬂnﬂuﬂmhe energy of the P-odd
interaction reaches ~400 Hz for thé“crystals of rare earth
elements with helical spin structure. The feasibility of obser-
ving parity monconservation in such crystals and in Bloch
domain walls in ferromagnetic films is discussed.



1. Introduction

In our previous paper C1] where P-odd van der Waals forces
were considered, it was pointed out that & parity nonconserving
interaction between ions splits the energies of crystals with
right and left hélical spin structure. This effect is an analog
of the difference of the energies of right and left molecules
(or qryﬁtals) due to a weakiinteraction, the phenomenon repea=
tedly discussed Freviuusly, but not yet observed experimental-
ly. The present work contains a theoretical study of the parity
violation effects in magnefo-ordered crystals. Although the
parity nonconservetion in atomic phenomens is reliably estab-
lished now in the experiments performed by wvarious gruups[2"4;
the observation of the P-=odd effects in éryﬂtals would be cer-
tainly of great scientific interest.

A helical spin structure exists in alloys and compounds
which contain the elements with incomplete d- and f-shells
(MnO,, ThMﬂ%E Cefe - etc.), as well as in rare-earth metals:

T F il s L 10 . Domain walls in ferromagnetics also have a
helical spin structure. The main contribution to P=-cdd effects
in metals will be shown below to come from the exchange interw
action between conduction electrons and ions. Since there is
no such an interaction in dielectrics, the P-odd effects are
much smaller in them than in metals. And although it cannot be
excluded that the observation of the discussed effects in
dielectrics can prove nevertheless to be gimpler, we restrict
to the considerstion of metals. i

Discussing particular mechanisms of the P-u&& interaction
between ions in crystels, we shall meke ell the numerical esti-
mates for holmium, The advantage of holmium crystels consist
in the stability of the helical atructure at low temperatures,
in l&rge nuclear charge (Z=67), as well as in the large apin
: };nmpnnent forming the helix. Due to these circumstances, the
' magmitude of the P-odd energy of the holmium ion is higher

Jthnn, say, that of dyspresium or erbiuam.

Metallic helmium structure is as flllQIB[‘]: ions H03+

are localized at the sites of the hemxagonal close-packed lat-



tice (a=6.77; c=10.62 a.u.). At the temperature lower than 132K
the angular momenta of ions located in the same basic plane lie
in this plane and are parsllel %o each other. When going from
one plane to another the angular momente are rotated by an angle
o, dependent on the temperature. Below 20 K the megnetic moments
of the ions acquire & small ferromagnetic component along -the
hexagonal axis, and this angle o is weakly temperature-depen-
dent and close to 302, The phase transition "ferromagnetic

helix - simple helix" and "simple helix - paramagnetic" ;n
holmium are not accompanied by a change in the lattice structus
re. The electronic structures of the holmium atom and its ion
are as follows:

1l -2 4
Ho: 4f' ‘68 I15£E

Hoot: 4r!° 51B

The nuclear spin of the most widespread isotope 1654, is equal
to T7/2.

2., P=odd wvan der Waals interaction between ions

The energy of the P-odd van der W&als interaction between
two identicel ions with angular momente J at the distance R is

written as[ﬂ | am) = a.r(ﬁ} at("?}
:7xj7 7
Us (ﬁ) 7 /f/( !I _f“"" (w)/g (w)w ol o
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where 7= (& &ﬁﬂa “Rul? Qe = LT+ T —FEu I3+,
ol lew), ogt@ﬁj Jg (¢d) ﬁgf(gdj are vector and tensor

P-even and P-odd golarlzabilltles of ions such that
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ofs (), ﬁggﬁq are scalar polarizabilities, and the polariza-
hlllty tensors of: (W) | ﬁ (w) can be represented as follows:
oldifudulolel0) Lofdew(uldifo)
o, (C-u'] == ;
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(3)

where J‘F are ‘the electiric and magnetic dipole moments of lons:
o= & —Cc £ 6 are the energies of the grouri and ex-
cited states.

In calculating the sums (3) and (4) we shall describe the
excited single-electron states ln> ¢f the ion in a crystal by
plane waves, The arguments in the favour of this approximation
are a3 follows., In the method of orthogonaelized plane waves

= s T

where h&)lﬁ a state with a given momentum and 1H} are occupied
electron states. In the matrix elements of interest to us

oI ZInY = <af [Z[R) = Z AHEINAK)

[A):: H“f> dominate in the sum over A ., And the numerical
calculations using Hartree-Fock wave functiﬂn51J of the holmium
atomz) show theat

| ChilZIRY] > [<4d(F 1hd Yl |10)]

- - . e L A " Fj %
in & broad interval of ]wl (see Fig.,1). Just this allows one
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Figure 1. The dependence of <(%ff2/k> (solid line) and
(4}/3/44)(4&_};:} (dashed line) on k. The arrow marks the

position of ky in the model of free electrons.

1JWE are grateful to V.A,Dzyuba, O,P.Sushkov and V.V.Flambaum
who kindly placed at our disposal their Hariree-Fock programs
by means of which all our atomic calculations were performed.

E)Since a crystal is quasineutral, it is more reasonable to use
just the etomic wave functions rather than the ion ones,



to use simply the plane waves with k >k; as |n .

Begin with the calculation of the vector polarizability
o (w) of the ion in the crystel. The contribution to it will
be given only by the electrons of the incomplete shell 4f752,
Substituting into (3) the relation

Galzdnd = c€olpln) /0.,
(m is the electron mass; we use the units where fi=c=1), summing
Eyer all fTKE electrons and integrating over the orientation of
k, we obtain 1¥§ 2y = ; { : . j !
: 5 dL(J/ Lt j" ( o
where o =1/137; j,f'are the total and orbital angular momenta
of the electron; m* is the effective mass;

L3y

T (c) = [ R (e)jo(re) el (6)

=)

a/:f (t'z) is the spherical Bessel function, K e (t) is the radial
function of the 4f-electron, In deriving (5), we take into ac-
count that the Fermi energy is counted off E,, im practice.

At &) -=+0O the vector polarizability of the ion equals to

L (je) w? W (72 0l
vl el

where %fomd is the Bohr radius, Ry:mdzfz ig the Rydberg COne
stent, end the irntegral is written already in the dimensionless
variables,

I+ is much more difficult to evaluate the P-odd polariza=
bility that differs from zero only when one takes into account
the week interaction between the electrons and nucleus. For
the vector aﬁd tensor components we are interested in, these
electrons should belong to an incomplete shell, in this case
+to f- one. However, the weak electron-nucleus interactlon is
of & locel nature, is proportional tﬂ}?&(?}, and gives rise
to the mixing only of the s~ and p-electrons (Bee, e.2+, Ref.

[?I}. Therefore, the functiﬁnsﬁ?@ﬂanﬁﬁé@ﬂdo not vanish here only
due to the mixing of configurations. The relative magnitude of
this mixing is JfRy‘nf?D_1+1D"2. If one considers the P-odd
polarizability of the f-ghell arising as & result of the admix=
ture of the s- and p-configurations, then it can be easily seen
that Pvt(@) can arise only to the second order in J/Ry due to

6

the diagrams of the type "a" (Figg?}. Here v is the operator of

closed shell

*-- - -
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Figure 2, Arising of the.P-odd vector polarizability of a
a rare-earth lon.

the configuretion interaction and W is that of the weak inter-
action. Therefore, the contribution to ﬁrﬂa)af the inner s- and
-p-shells, polarized by the interaction with the outer f-shell,
turns out to be more important, It is sufficient to take into
account such an interaction once, that results in the diagrams
of the type "b" (Fig.2). But, being linear in the spin of the
f-electrons, this mechanism contributes to the vector P-odd
polarizability of the ion only. ;
Thus, the P-odd vector polarizability of a rare-earth ion

contains, unlike the P-evén vector polarizability, an extra

small factor é’mlafs.i"’}{’ o
7 Ry (8).

where G=1D'5m;2 is the Fermi weak interaction constant, R~5 is

(8



a relativistic enhancement factor for the wesk electron-nucleus

interaction (see its definition in Hefl7 }: the difference bet-
ween m* and m is here neglected. As to the tensor polarizabili-
ty Ptﬁd} , it depends on the factor J/Ry quadratically. lore-
“over, due to the intermediate position of the elements, we are

interested in (Dy, Ho, Er), in the row of the rare-earths with
the incomplete 4fT;2-shell, the quadrupole moments of their.

triple ions are small, and for H03+ it vanishes at all. The
conseguence of this is an additional smallness of both the FP-
even and P-odd tensor polarizabilities.

Pass now to numerical estimates. As has been mentioned
already, the Hartree-Fock wave-functions are used for the hol-
mium atom. The resulit of the numerical calculation of the inte-
gral (6) as a function of k is presented in Fig.3. Finally, the
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Pigure 3. The dependence of I,hIIFE 3 on k., The arrow marks
3
the position of kF in the model of free electrons,

polarizability of the holmium ion does not exceed its dimensio-
nal estimate and for small &/

dr(w] % C?: w/ﬁf _ ' (9)

But then even an optimistic estimate for the interaction betwe-
en two ioms gives

U, ~ SXRuel é J"-T}(E_'} %{ (10)

¥
And the energy per one ion in the erystal equals to
; : |
L ke Zy(:rx.?}(aa/.p S e, (1)
that constitutes for éﬁ {E_E-'i'* R-4 b= ]J{-Eu J/Ry~0,1)

B; ~ {1@“36+1ﬂ'1?)ﬂy~ QL il He,

"Ref.

Tt is much smaller than the estimate in Ref.[i]. The disagree-
ment is explained by the following factors., First, unlike the
scalar polarizability, to which all the ion electrons can in
principle contribute so that '

Ao ™~ mza%,
the vector polarizebility (see (9)) contains no large coeffici-
ent, the contribution to it comes from the electrons of the
incomplete shell only. Second, the specific structure of the
electron shells of elements among which helical spin structures
occur, makes it necessary to switch on the interconfiguration
interaction, that gives rise to an additional small factor in
the P-odd polarizability. Transition from the f- to d-metfals
does not eliminate this smallness,

3, P-odd exchange interaction between ions. The first order

Fortunately, there exist more effective mechanisms leading
to the P-odd long-range interaction of the ion in a crystal.
They are associated with an indirect exchange interaction., We
shall use a gimple model of the indirect exchange suggested by
Ruderman, Kittel, Kasuya, Yosida l[E’.l’{I{Y}EB 1ﬁ]. The spin-depend-
ent exchange interaction of the conduction electron with the
electrons of incomplete shells of ions is described in this
model by the operator ,

> e >
= r
V() = - JuZ (3$)8(F-K,) (12)
L
-3
where g is the spin of the conduction electron; Si is the spin

of the ion located at the point'ﬁ'* V, ig the volume per one
ion in the crystal. For heavy rare—earth elemﬂnts the exchange

integral is positive and constitutes au1D of the Fermi energy
'Bgs To the second order of perturbation theory the operator (12)

resulte in the following interaction between two ions (see; €.fey
I6],.

£y~ 2T (VES (3304 (=) (1)
where .1’; Jk} / ‘?5(1}‘ _z(x)/i' /j(z/_ d_‘t‘ xz__

is the Spherlcﬂl Beasel functlon' n is the number of conduction
electrons per ion; kF»la the Fermi momentum. The existence of




stable spin helices in crystals with helical structure ‘is due
L0 12}3}. Note that the latter decrea-
gses with a distance between ions much slower (hﬂH_B] than the

2 -6
van der Waals forces (~R ).

just to this interaction

Find now the correction to the crystal energy, due to the
interaction (12) and to the weak P-odd interaction between the
conduction electrons and the nuclei of ions. In these calcula-
tions it is convenient to use the non-relativistic limit of the

operator of the weak I'-odd interaction between the_cleciron and

nucleus, we write it as follows (see, e.g., Ref, L i
= *—l‘- {é? ( ﬁ3
: — 2: 5] )(S(Z ﬁ =

=, Ci)
+ s LG 7GR, i (5 6

Here [ J_ and f___? denote a commutator and antimnmutatar,
respectively; P ig the operator of the ELECtran momentum; I. is
the spin of LhEuE;ﬂAledbGd at the point R » In the dlmenﬁ;;n-
less constant Zq of the first structure the lalge factor 4 has
been made explicit to emphasize thal 11 increases with the num-
ber of nucleons in the nucleus. In the standard model of weak
interactions the value of q is for rare-earth elements qZ -U.7.
Hote that in the same model the constants ¥+ and &' are numeri-
cally small.

We shall consider the conduction electrons as free, posse-
ssing an effective masgs m*, and filling the sphere of radius kF
in the momentum space.

The correction to the energy of an electiron with a momen-
tum X and spin projection @ , linear 1in V and W, cquals evident-
iy to -

{JJ_Z{KF'/V/'R’%')(#'?/W{WS) ¥ 5 ﬁe

& h"z_ ﬂ- : - (15)

—
L al] =y

5
The total correction 5{1) to the crystal enerzgy is cbtalned from
S .
the above expression by summation over k, iT{F‘é lcF and over § .
It is clear from the invariance arguments that the pseudoscalar
correciion should have the structure of the form

B}Gf course, in Bloch domain walls the spin helix arises for
another reason, due to boundary conditions.

10

—

Z (LS )8 4 ;)

Therefore, the first, leading term in (14), proportiocnal to Z,
-+ & L L
but independent of Ii’ does not contribute to it. The term with
M in the operator (14), independent of the electron spin, also
evidently cancels out after the summas.on over 5 ,6 . Simple
celculations result in =E(§343U5’
— F
G dh' = =
e .2 w'm* z(fﬂtﬁ;)]? e

 JK uw? 2 ¢ ‘ k''=k?

= 3 S e S = '
Integrating over k', k and introducing the lacvor Z°R, which

[vc!‘-k'

takes into account the difference of the density of conduction
clectrons on the nucleus from the average density over the

crystal, one obtains

(1) Gunfiftﬁ 3-7 ﬂ#

_ fj}faﬁ(/
e

i v"’ -F'fo'

a(k’aig ‘}’35(2'/ g;(’r}/,?:’ = ,ezc‘r'z x

- LI
In uhﬂ abov L explequlon the obvious relation ﬁﬂkg = N

J%, 3;?2&*‘(5’}

teken intis sccount., Note that, as it is seen from (17}, the ion-
ion interaciion decreases at large distances {RFR§}1} a3
R BSJH{dFPR}

If the hyperfine ¢oupllng ig not broken, the energy of the
interaction of one nuclear spin, found from [1?), constitutes

@ Gl R T wt Z(I L C{.‘?g(y‘)‘
= ; 5)% 6f? X )
¢ V2w qu x’
For a rough numerical estimate of the result, we replace
the summation over the lattice sites by the integration over

the whole space, Then the expression (18) reduces to the form

E{.fj Gwof-f';{’k J wi*
¢ 2% .%,
Besides the transition to 1ntegratlon, we neglect here a small
ferromagnetic component of b and restrict to the first order 1in

the parameter aékoc, which is very small indeed. The numEr%cal
summation over the lattice gites leads to the result which is

(18)

— (k. C?S)IS -iqy (19)

11



about twice as large as (19). Substituting into (19) the expe-

rimental velues (see Ref. 6], P.260)

J = 0.7-10"°Ry, m*=3m,

which correspond o the model of free electrons {kfe3= D5,
one obtains, taking into account the mentlened correction from

4)

the numerical ealeuletlen :

EE.M} Ee Z"f{? Hf%{ ~ — ¥k' H= (20)
Note once more that in the standerd model of weak interactions
the constant &' is numerically small.

One more correciion to the energy of the crystal could in
general arise in the same order. \le mean the deformation of the
Fermi surface, due to the perturbation V and different for the
opposite spin orientations, with subsequent taking into account
of W, Or vice versa, W would deform the Fermi surface and then
V would be teken into account, But in this case there is no
such & correction, Indeed, the sums over the "exchange" and
nweak" sites factorize here, and then it is impossible to con-
struct a pseudoscalar, invariant with respect to translations.
Thus, here the problem of the relation between this contribution
and the usuel second order correction disappears (see Refe..[-mir

13]j

—

4, Second order effect effect in the exchange interaction

To the first order in the exchange interaction (12) the
first, leading term in the P-odd Hamiltonian (14), which increa-
ses with the nnmber of nucleons in the nucleus, does not contri-
bute. One can expect, therefore, that to the eeeend order in V
the smallness J/Ry will be eempenseted by the faeter 7. The
corresponding correction to the crystal energy is

Gl <k€f’wx’ﬁ’}<fc VIR S WS
E (2 )Z { [ ."z ; z 'Z
S i £
4? For the enhancement feeter we assume here the velue R-4 5 ]

which corresponds to the ebeenee of: derlvetlvee in the reletl—
vigstic Hamiltonian ef the week eleetren—nueleen lntereetlen.

feféir

12

.QI-__%"—.

(R VIEE I WK DR S 1 VIKS)
(k= k) (&= k")
CREIWIRS (&G VIR YK s | VI 6)
=t T (£1_r,r2/]('£,z__ ,.,z/r ]H
Zi RV Fe)E s | WIKS)+ Aa.
Kl rf—}.?."

2 s (.eff;f L"fk‘ﬁ}(k‘ﬁfV}'k’E}
-—'<*”5f”ﬁ7kfﬁaggg (ki x'’)?

(21)

- (k6] V/ge)

It is easy to show that the terms proportional to #C and )x' in
the operator W do not contribute in this aﬁproximatien. Then
the diagonal matrix element of the remaining term in the weak
interaction W evidently venishes when taken over true stationa-
ry states of an electron in a crystal - standing waves (i our
problem there are no current statea)., This allows one to omit
immediately the last term in the expression (21). As to the
other terms, it can be easily seen in the limit of & large size
of a crystal the running waves instead of the: standing ones may

.be used, and they are much more convenient technically.

The next to last term in (21) could be nonvanishing only
if & ferromagnetic component is present, when

(?e!V}?e): ﬂj’;i<§>z‘§': # 0 - (22)

However, after the summation over the momenta and spins the
result for the term under discussion should be from the invari-
ance consideration of the form '

—> _n _f# £l

It is easy to see that by virtue of the symmetry of the problem
the summetion over 8 turns this expression to zero,

For the analogous reason the contribution to the energy
sssociated with the deformation of the Fermi surface and similaer
to those dieeueeed at the end of the preceeding section, vani-
shes also. 1 ' . |

In the reenlt, the eerreetlen to the crystal energy reduces
to the form

i



R d*'cffi?” 2 z = z i -
e o m/ (zfﬁ o GG R
1K 1€ ke :
Z(ij’j{(k+w/‘?¥p(fff (K Res+ K Kys) — (23)
c";,.’:‘
~ (R }ea,a(arf - KR, - R ;) (&'w/w;a(fr’f &0, +wﬁ7)j

Besides the constant Zq, we have directly iaken into agcount
the already mentioned factor EER, connected with the difference
of the density of conduction electron near the nucleus from the
average density over the crystal, Unfortunately, withoutl furth-
er approximations neither aﬁalytic, nor even numerical calcu-
lation of the sum (23) proves to be possible.

Pherefore, consider at first the contribution from the
terms with s=i and s=j. The corresponding correciion to the

energy looks as the sum of +wo Terms:

2/ 26.{‘(?5_2.% &1;;’;:-1";’; = oz i 2 T :
E.i 5 = (j } j{ (2% )¢ (k. @« r) (k 5 /
= 5 k. ff;":;yé’/ (24)

-
am

z-,z;ﬂ ACLZ, o ey )
ffﬂ QW ﬁﬂ/ }f(-ffﬂ"; (Zz)¢ (e / (e (257

= rn’.:rfz.ﬁe
5 e
v 2(-5- NS)V “Z*- £

In cdlgulafian of the first of them, when integrating over 1ot

_2(5.-.(5) > e

i

we come across a divergence, natural for a celculation of the
sccond order correction in a contact interaction. For regulari-
giui%ﬁﬁgd%ﬁ%—ﬂfi integration momentum Q, which is naturally
jdentified with the inverse radius of the ion f=shell, After
that the expression (24) reduces by means of elementary trans-

formations to the form

o) @’m( f@; ( I 5058 £y cld(x;)
& ' K 8y é? - ¢ 3

(s%5) (26)
/ é";_, c?'.r?,

very similar to (17). The correspcnﬂing contribution to the

afqzﬁ(J/
L (27)

interaction energy of one apin is

(e b TG G e
Z —*-a;?jgp ﬁ?"m)’%{ oy (f""//@;-

14

- A

In fact, the sum here is the same as in the formula (18). Going
again from summation to integration, one cbtains

£ &'mn(‘.{?;,. @/ﬁ) o7 oo 3n

- (28)
fe Chke 47
Using the numerical velue @ = l.38, and taking 1ngoe gecount
L4
the correction factor ~ 2 from the numerical swmation, menti-

oned in the foregoing section, we find the magnitude of Glidia
contribution
{2 2 1,1.10" Ry = 35 Ha (29)

One can ascertain that in other terms in (23) the divergence
at large momenta does not arise, Therefore, although a real
ratio u}kF is not large (~1.7), the presence of this formal
parameter in the found contribution allows one to believe that
it is not cancelled out completely by other terms and hence can
serve as a relatively reliable lower estimate cf the effect
under discussion.

Mo more complications arise when calculating the contribu=
tion (25), Performing the trivial integration over all-E: we
get for the correction to the energy of the whole cryst tal L( 2)

and to the Lﬂergy of one spin '{ 2) the fellowxng expressions:

2 Guicd 2% ;f#v 37
R /%, ”?_(.S‘x.ij__gr

f g
hc [ ‘.# 'r’r
fkb_.lk} r p/ J
¢ Gui R 3"'“/ ‘F*’z L | L
Gose %( £ "‘r/’??' k (31)

4 "’i*i“,u( "
ﬁ;‘a z, ur}d'x
Note that, as it {; seen from the above formulae, the interac-
tion between two ions at large distances conivgains in addition
to the cscillating part the non-oscillating contribution fall-
ing off as qu.

For the numerical estimate the summation over j in (31)

can be replaced by integration over the whole space. Neglecting
AS previously a small ferromagnetic component, to the leading

15



order in o/, we obtain

_(2) Gmo:‘.fﬁ?g, Ficse 2\5?2 oL Tn

e . 'E
£z R | ofo] 70 22

This zeroth order in ;{ contribution comes from the mentloneu
above non-oacillating term ~R™ -3 in the ion-ion lﬂmEf&cthn.
The numerical summation over the lattice sites in (31) results
in the value which is smaller by 15-20%. Thus, this contributi-

on constitutes

.Ejé;?}:t 1.6-10 "Ry= 50 Hz (33)
And finally, to estimate the confribution to the correcti=-

on (23) to the crystal energy Eia} from the terms with s#£i,J,

it is convenient to smear the weak interaction (14) over the

GZg
W — fV(j

The eigenfunction of the obtained Hamiltonian

whole crystal:

= L+ = (6p/ | (34)

f;?> [f"i r’éifxg m*(éhz//fj(ﬁ) (35)

and the eigenvalues of the true statmon&ry states, the atanding
waves (see above), do not change: (&, = fEm* The correction to
the crystal energy to the second nrder perturbation theory in
V with the functions (35)

Z 4::51}’;"&:'5")(#5‘ fl'/f'*“'ﬁ}‘

"f;? Pl e~ . : (36)
567 4
is easily transformed into the form
@ Guel Thy @mm’z’&a 3n Z(JX.S’jfb’. 9‘;( - o
3
&‘

Here again the &ddltional factnr Z R, dlscuasad above, is taken

into account. The corresponding cnrrettlan 'to the energy of one

ion is equal t3 2 3
L 5;,_&233}(?@/ i Z(ng’j_.zg- .Sz, )
N 2

(38)

It is seen from this expression that the most long-range part
of the P-odd potential between two ions depends on the distance
between them as RHEGDS(ERFHJ.

For a crude numericel estimate pass from the summation
over j to the integration over the spherically-symmetric region
X 2 X,» Assuming in the arising in this way expression

fw"" Gmit‘zafff’g- Teie™ ZSE Lo XoSnx #2052
55T fzw &y C 4 297 %

that x,=2k_R, where R, is the minimal distance between the ions,
we get Egi ~

(39}

-J.8 Hz, Numerical summation over the lattice
aites in the expression (38) leads to a larger result:

B$2)x -3 na | (40)
Thus, with (29), (33) and (40) taken into account the P-
cdd correction to the ion energy in the crystal constitutes

e e e S
Bgo = 845 21:] Bag Suatla (41)

Of course, this result derived within a rather crude descripti-

- on of electrons in a erystal, is valid evidently only by an or=-

der of magnitude,

It is curious that in the uae%pprcxhnatiun of free elec-
trons the sign of the effect is fixed unambiguously. In the
standard model of weak interactions (where g<0) thehleft spin
structures are preferable than the right ones since their ener-
gy is lower. ;

Emphasize once more that the quantity L{zj depends only on
the sign of the angle of the spin rotation u; but not on its
absolute value. Just due to the absence of the small parameter
:dkoc this contribution dominates in (41), although other nu-
merical factors in it are disadvantageous.

5. I8 it feasible to observe parity nonconservation in crystals

with helical spin structure?

The natural question arises on the feasibility to observe
the effecis under discussion. The found value of the splitting

' of spin energy in the right and left helical structure ~ 100 Hz
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by itself is not so far from the accuracy of.ﬁ«1D5 Hz that i=s
fairly common for the measurement of the constants of spin in-
teraction in solid dielectrics by the paramagnetic resonance
method[j43. Unfortunately, the exchange interaction in metals
gives rise to strong broadening of the EPR lines.

As to the dielectrics with a helical spin structure, more
ravourable conditions for the EFR spectroscopy in them are ac-
companied by an additional suppfession of P-odd effects. Indeed,
the interaction responsible for megnetic ordering in dielectr-
ics is undoubtedly not larger then the indirect exchange in
metals. This follows from the comparison of the corresponding
Neel points. And the P-odd interaction of d= or f—electranéﬁn
a dielectric must contain perhaps an additional smallness -
the exchange interaction with s- and p-shells of the ion (see
the discussion of the P-odd vector polarizability of holmium
i1 Sect.2). Therefore, the value of the P-odd energy of a spin
in a dielectric hardly exceeds 1 Hz.

Another manifestation of parity nonconservation can exist.
Left spin structures that possess lower energy will be produced
more frequently than the right ones when passing the Neel point
if random factors fixing usually the sign of the produced helix
are suppressed. This suggestion.looks quite fantastic, but the
following argument can be presented in its favour. IT has been
.shcwn_in Ref.[j5] that by applyling crossed electric and magne-
tic fields it is possible %o fix effectively the sign of the
arising spin helix in the compouﬁd ZnﬂrESe4. The fields used
in this experiment, E=2,5 kV/cm, H=12 kOe, are extremely small
in the atomic scale., Moreover, &I electric field influences a
magnetic structure only via small spin-orbit interaction. In 5
the result, the energy of the twisting interaction with these
fields is according to & ecrude estimate only by a factor of
10 - 100 higher then the P-odd energy (41).

6o Blauﬁ domain walls in ferrqmﬂgnetic films

A usual Bloch domain wall in ferrqmagnetid can_alan serve
as an example of a helical spin gtructure. Estimate the possi-
bility for the weak interaction to influence the sign of a he-
1ix in the domain wall which is formed when a new domain is
created by means of remagnetization of a pert of a single-doma-
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in film (see Fig.#}?} The weak interaction gives rise to the
twisting of the epins in the plane xy decreasing with the dis-
tance from the boundary z=0. Therefore, already in the equili-
brium state there is a nucleus of a helical structure,

£

o e R

Figure 4. Ariging of a spin helix near the boundary z=0U
s ; ol . -

of a ferromagnetic film, M is the megnetization, H is the

remagnetizing field.

Estimate the P-odd energy of an ion located sufficientiy
far from the boundary z=0. Since the angle of the spin rotation
falle off with the distance from the boundary, a significant
contribution to the effect can be given only by that part of
the weak interaction in which the smallness of the rotafion
angle is compensated by a formal divergence of the remainiﬁg
integral at large z. It can be easily seen that none of the
expressions (18), (27) and (38) leads to such a divergence. .is
to the expression (31), only its first, non-oscillafing term in
the_curlyd?rackeﬁs possesses the needed property. &Eguming that
the spin Ei ig. located at the point z and the spin Sj is locat-

ed at the point z', and taking into account the smellness of
corresponding angles &(2) and &(2)/of the spin rotation in the

1a : : f € e 2 ’ o Lo
plane xy, we find that now ('*-?xf;/l& o KT [g{g)_gﬂg;]. Subati-

5} & i1

We are grateful to V.I.Shvetsov who has attracted our atten-
tion to the possibility of parity violation in the process of
domain walls formation.
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tuting this expression into the formula (31) and assuming for
a crude estimate

9(ff' = Qp{ff"%/fg)) z >0, 3, i8 a characteristic length,

we get that in this case

2 &L ' :

6%’?3@(.7_’_1"72&3 ne. 7, (22)
Z7 g EXIN '

Here é% is the engle of the spin rotation &t the surface z=0.

£(2] =

It ig easy to understand that in this case £%}>£J corresponds
to a left helix whose nucleus has a lower energy (remind that
g< 0). The order of magnitude of the energy (42) is

E(z)~ -10 Hz- &,

With what should this energy be compared to evaluate the
possibility of its influence on the formation of domain walls?
Begin with the fact ithat in sofl magnetic materials the coer-
citive force, or the field necessary for remagnetization of a
domain, constitutes Hcaa?ﬂuz Oe. The energy of interaction_3£
a magnetic moment with such a field is equal to Ec“yuﬂcﬂffﬂ el
vaD-11R3'“TD4Hz. However, in fact, the remagnetization is ca=
uged not by the coercitive force itself which is none other
than the depth of a local minimum of the energy of the spin as
a function of the angle of its rotation, but by the eXcess
over zero of the spin energy in the field; and this excess can
be made much smaller than Ec' In addition, the generalized
momentum of ithe P-odd forces K = =2L/p£ is independent of
the angle € ., meanwhile the momentum of the usual remagnetizing
forces is proportional to a small initial deviation angle since
awitching on of the oppositely directed magnetic field leads to
the arising of a local meximum of energy near & = 0, Hence,
the attempt to observe parity violation in the domain formati-
on, i.e., the obtaining dominantly of lefi-helical Bloch walls,
does not seem hopeless. We would like to emphasize however that
this problem requires at any rate sufficiently soft magnetic
films with small number of defects and fairly accurate geometry
of magnetic fields.

Tt ghould be noted that the hypothesis of a dominant for-
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metion of Bloch walls with one sign of helix is being discussed
already for a rather long time[j6-18], although without any
connection with the weak interactions.
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