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Abstract

A nonperturbative mechanism of an asymptotic freedom brea=
king has been analysed for the Q ,%a , ©° =resonances which is
comnected with short-wave 'vacuum fluctuatioms (VF) ofg~gc & 74
(A = 0.1 GeV) in size.A method for investigation of nompertur-
bative effects in the physical region has been suggested., The
description of the e'a"’—r(had.rona}c,e'at- (hadrnns}b,e'a+-
(hadrons)y_, processes for the physical velues of qais not
only in agreement with a smell size of VP due to which a gene-~
ral structure of the total cross section is formed,but also
gives a large value '\/5-‘{5@#)“ 0.1 Ge‘i’d‘ of gluon vacuum conden=-
sate.An approach to scaling is accompanied by large-scale oscil-
lations of the total cross sectiors in agreement with experiment,
It is shown that the sum rules in Euclidean region for the Y
and (Y°-families work quite well for the considered mechanism
of the asymptotic freedom breeking.In the sum rules the Coulomb
effects play a very important role for theqoand Y =families
and they should be adequately considered, The given mechanism
of asymptotic freedom breaking is shown to lead %o a dynamical
freezing of the coupling constant o(g ,starting from rather
small distences.It is shown within approach,that interaction
between heavy quark and antiquark may be desaribedby a potential,
which ies local,static, energy and quark mass -—independent,what
is common for the phenomenclogical potential models.



1« Introduction

Although the main problem of QOD - explanation of the
mechaniem of confinement - is not yet solved, by now some im-
portant steps have taken in understanding of the nonperturba=-
tive QCD. A real progress in this field has started with the
discovery the solutions of classical Buclidean field equations -
- the instantens /1/« In the papers /2/, /3/ it has been
realized that instantomns should play an important role in
the formation of the structure of nonperturbative QCD vacuum,
spontaneous breaking of chiral symmetry and generation of dy-
namical mass of quarks, renormalization of the coupling cone-
tant as well as in the solution of the U(1) - problem and in
the generation of pseudogoldstone bosons.

At present, one can obtain quantitative results only in
the dilute instanton gas approximatiem {(DCA) /3-6/
not taking into account the interaction of instantems be~
tween each other. It is importent that not all the processes
in (CD.take place at "extremely " large distences, Z ~ £/
(AF-TE & 0.1 GeV ) » at which this approximation is
sure not to work. There is /3,5-10/ an intermediate region of
distences T~ Q. (9.« /A ) with which connected are, in
particular, chiral gymmetry breaking /3,5,6,9/, large scale
/7/ in gluon channels with quantum numbers 0f, formation of
large intervals of variability because of small-size vacuum
fluctuations (VF) /10/.

In this paper we present some results that are the exten-
sion of the paper /10/. The concrete consideration of the pro-
cess e'e"—= charm in the physical region and the comparison
with experiment enable one to conclude that the VP, which form
the general structure of spectral density, are emall size VP
(we have connécted them with instantens) and also that the
vacuum gluon condensate <;5@2> is large in magnitude
( {EC2) ~ 0.1 GevH).

In Refs. /11/ the phenomenological method has been sug-
gested for obtaining the mass and widths of lowest states in
different channels beyond the framework of perturbation the-
ory - the method of sum rulee. The bamic assumption of the



method /11/ consist in that the dominance region of the lowest
state and the region of asymptoticelly free (with an accuracy
up to small power corrections which fix, however, the scale in
the problem) behaviour of the Euclidean amplitude are partly
overlapped. 1t is clear that such a possibility depends, cer-
tainly, on a relative magnitude of matrix elements of the cor-
responding local operators, which in turn is detefmineﬂ by a
characteristic size Q. of the VF forming the amplitude under
di scussion. Omittion of the higher power corrections implies
that {/Qc« E, (E, 1is the distance from the left border of
the dominance region of the lowest state to the threshold),
i.e. the VP must be of long-wave nature in this case.

The conclusgions of Ref. /10/ imply the other physical pat-
tern in which, for example, {/écaafgt ~ 1 Ge¥ for heavy-quarks-
In this case, one should not consider only the contribution
from the operator of lower dimension and it ig necegsary to sum
up the infinite subsequence of power cc:;_rections agsociated
with gluon small-gize VP, 9. ~ /£ ,K %/ . The leading infi-
nite subsequence has been gummed in Ref. /10/. In this paper
the case of just heavy quarks, which interact, mainly, with the
gluonic degree of freedom of the vacuum, has been considered.
Therefore, the effects of the condensate of light quarke are
negligihle. There are some arguments that the quark degree of
freedom is connected with the spatiasl scale & , larger than
Q. » Where the o ~characteristic distance between instan-
tons /5,6,9if DGA is true, then o > @. ). Therefore, in
cage of the procegses with light cuarks one can. expect that

i/Qc. e Jonrdi oy . This explains the smeller duali-
ty intervels as compared to those for heavy quarks.

In this case af gc_--.-{ 1 Ge‘ﬁ.’}'1 the Buclidean sum ru-
les, in which the operator axpansi{m is not used, are well sa-
tigfied although the magnitude of (g,i__s Q_E) is unntitll;
larger then in Ref. /11/. Deviations from asymptotic freedom
change smoothly with virtuality in the Euclidean region of do-
minsnce of lowest state. The procedure of extraction of infor-
mation on the vacuum structure, basing upon these smooth ;
deviations from asymptotic freedom, is ambigous in meny res—
pecte. Moreover, the contribution

of small-size VF (we have connected them with instantons) fast-
ly decreases with increasing the virtuality, that can obscure
the larger value of <‘;_'fr3 G’-E> « In the physical region, whe-
re the amplitude varies fastly, information on the vacuum
structure is more direct. If the VF are long-wave, Qc ~ /A
then the consideration in phyeical region giveg rise to the
spectral density concentrated very closely to the threshold,
on an interval of the order of /A , If the characteristic VF
are small size, Q. ~ ( 1Ge?)'1 s large intervals of variabi-
lity, much larger than [\ y then appear in a natural manner
for -t e” b {haﬁrnns%b, e*e” —= (hadrone) .

T=4
If the second possibility (@, <« Z/\) is realized in the
nature, the coefficients in the approximation of deviations of
polarization operator from the asymptotic freedom in the Euc-
lidean region by the inverse powers of virtuality already make
no sense of vacuum average values of the operators of lowest
dimensions but represents some effective quantities.

Below, apart from an analysis of ete” —» (hadruna)i
( £ is the flavor of heavy quark and antigquark) in the physi-
cal region, the Buclidean sum rules for this process (of the
type of those in Refs ;’11,12.!,' and the o T amihilation into
hadrons from light quarks with isospin I = 1 direstly in the
physical region are comgidered.

In this case however these sum rules don't use the ope-
rator expansion with account of contributions of the lowest
dimension operators only as in sum rules of Refs f11,12/,

We have considered non-perturbative effects in the Euclidean
region too, especially in order to do difference of our mecha-
nism of the breaking of the agymptotic freedom for vector re-
sonances from longwave mechanism of the Refs /11, 12/ more
traneparent. Moreover, it is remarksble fact that the success
of the potential model can be explained Just within the frame-
work of physical pattern with small-gsize VP. The reasonsbility
of the very concept of a potential in QCD is a direct conge-
quence of the smallness of characteristic size of gluon VP.
But thepotential has no sense in the pattern with long-
-wave VF /12/, and the success of the potential model not only



in the explanation but also in the prediction of a large number
of experimental facts seems to be absolutely incredible for

this case.
Note that the consideration of all these problems gives

ods & = 0.09 + 0.03 Gev?
(F& ) i (0

gct = 0.720.2cev

2+ He L g in the gic reglion

In studying the non-perturbative effects in phyeical regl-
on we cannot restrict ourselves to the finite number of terms
in the series of power corrections. It ie necesgary to gum up
a certein infinite subsequence of power corrections 710/ .@1’2
the non-relativistic approximation not only the npratg (O,?

& = T >4 where & 1is
but the operators 8(0} s &) (n2 sy

the vacuun chromoelectric field corresponding %o the vector-po-
tential f,?;f,, (@a={;90+3&), should be taken into -account.

The heavy quark end antiguark G ,Q , produced in ete” an-
nihilation, moving away one from enother and increasing there-
fore their total color dipole moment, perturbate the non-per-
turbative QCD vacuum, thereby creating a gluon-like excitation
- the non-perturbative gluon & (*Mg. 1)+ Then, the quarks Q ’
Q , being previously in the singlet state, come to the octet
state. If @, @ are non-relativistic, they have time to inter-
act with the non-perturbative gluon G , having the non-zero
total color charge in the octet state.

With increasing of energy E , some fraction of E 1is ta-
Ken off by the gluon Gx , that increases the time of interacti-
on and, hence, the @Q production cross section. As will be
seen below, this amplfi€ation is very significant; ai E ~ ‘ifgc
(9. 4is the characteristic size of VP) the deviations of the
Q@ production cross section from the perturbative one with

tekking into account operatore g({?)@f"é:(o/ (el ? . )

b

is cun_q}i&erahly larger than for the case when only the opera-
tor £ E{n} is taken into account.

It is worth noting that the main non-perturbative effect
for heavy QQ at comparatively short distances is connected

with the mixing with the state Q@G , i.e. with the admixtu-
re of the other Fock component.

The sum of infinite subsequence of the most significant
power corrections proves to be representable in the form of a
multiplicative combination of the quark matrix element and the
correlator of gluon vacuum fieldas. Purther, the difference of
the total cross section E‘;E'E-fE) for the process
ete” — (hadrons), (f ieg the flavor of the produced heavy

quark and antiquark) from the perturhative cross section
G;_E":E (E"} i connected with Jrm A G(0,0';E):
r J

e R S S QEE¢ -2 o
Ae ()= ;PJ I OG(0,0;E) (2)

- = :
(AG (e "} 25 E ) from Ref. /10/). Neglecting the Coulomb inter-
?:;j;on, one hag for the quark matrix element MPa (_o"_g; E—')

37, 3 4
> ) _ ERSSKa-2 = =
Mp, (0,.0/E) = 7 [L re e 1y I é’x’ﬁ4+16r3«*a)

3 : (3)
= i:g ((}xa_;;ijflf'g'(Pa-E)-,&-{(f?_/{e) éﬂgé—pc)g] 3

2
where K2 = F“E;. A= MR, » The cut, which starts in
E- QO ,» contributes only to the imaginary part of the matrix
element. At the point & =p, the second cut occurs, which is
also contributes, above the threshold, only to the imaginary
part of MPa (EJOE E) . Then,

oo
o > =~ (4)
A& (00;E) = SdTKECﬂ Me (6.0;E)
a
where e
‘EzT 3
Foo L ey €-2/24 3 /¢ ¢).1
Elemet e 3 It
M:O0E)=F¢s Vor 23 lpelzi/s8/ "
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Integration in (5) is carried out below the real axis. The on-
ly singularity of the integrand is the cut along the real
axis from 2= 4 +to 2= oo . The contour of integration
may be deformed to the upper half-plane, reducing (5)
to an integral over the cut:

[ s 3/
s zmz d-z. LET‘E‘ Z—’-—Z 2
MelBO5El~=a \55S ('53) e
4
As a result, one has a8
5 Ee@re)
e o B eN\15 5 e (M
AG(OIES) E)" ngng‘KE) (2«*9}.1?‘/'
o o

In formulas (4) and (7) I{ {T) is the gluon vacuum correlator

E '~ o
s 9 B&)IE —~  (g\B (§)dE
Kgﬂfl=§f""°¢s<é(cgpe‘3§5 M G pe 3 P

It has been argued in Ref. /10/ that the VP which saturate the
correlator (8) may be represented by instantons. In this paper
the correlator KE (’r—) has been calculated at Euclidean ti-
meg in the one-ingtanton approximation. However, in order to
describe the total crosa section, & correlator in the Minkow-
ski sgpace isg required. The problem of analytic continuation is
not trivial in this case. Emphasize that a consistent procedure
of instanton calculations in physicel region can be performed,
in prineciple, from the very beginning to the end, in terms of
real fields (see Ref. /13/ and B.P., will be published. Naive
analytic continuation from the Euclidean space to the Minkowsalcl
one (T —= (T ) leads to a complex singular vector-potential

(for SU; (2) subgroup)

s 5 v
R, (X&) = Phra X T &
Sl O o S e
where X7'=((T, X} » Ta is the Pauli matrix. Although this
procedure offers the possibility of obtaining correct answers
with the use of the way of getiing round the singularities as
in (9), it is only an suxiliary one. Here we are limited

a8

to the use of this procedure in its litersal form. As e result,
we have, for KE' (]

Kye)=2 S"%J}@ ;rgg (é“?) (10)

where
§

!}{?E (5):5%%;}{?&7 [g"), (11)

£
KoL) -0t (e ts) e ol
= —~—L £ o fe > 400 -ge
) 3 £(6’+IF§E)? (E_j i £4L/g’+ jj;)z

o
6:—' g,/fc' » ’:’ is a hypergeometric function. The in-

tegrand has a singularity of the form (é’-— sz__.‘k-i’ E'PS'\ o

at P8 =V/-€e’' |, l.e. 8t o = m/ﬁfj?’ 2o being
the distance to the instanton centre. Regularizatiﬂnjia per-
formed in such a way as shown in (9).At T = 29 the correlator

fff ‘:3) is singular and its regularization should be also

per orfied according to (9).When T.“}Zg: it has an imaginary
part.

The behaviour of the correletor in the physical region
drastically differs from that of %ﬂr)in the Euclidean regi-
on.In Fig,2,where %E?_—'S%;{gf-is preagnted,une can see the
singulerity at o — 20 yWhile in the Euclidean region /10/
we have a monotonously damping}; 31 Just such behaviour of?&(l:)

(11)y, (12) resulis in a non-monotonous energy dependence afe
the total cross section; if the correlator damp monotonously,
then the oscillations would be abgent in the crose section at
all. At large times T (both physical and Euclidean) the
correlator WE"WEJ decreases rapidly - as ('i/ﬁ)@a o
at small T ?2!-:'(:) = %?E({i- %%i}(fur phyeical and ;‘Euclide-
an @ respectively). The characteristic scale of varigtion of
1ﬁ;£13/_> is 'E? ~q .
e/ 3 6t )
The difference between R—i (E) =_f —

= (=) and perturba-
tive value of ,this ratio, due to the Ieaﬁfng subsequence of

operators, f{{p) @f” E(o) (n= 0,4,2,.., ), is representa-

9



ble 28 followa:

| A RyEE ARS (€) =)
ﬂr'?f(E) - 37205 (g “(i if:?"‘ S A

T e ys
e (14)

gg( )= C ol &t Ky ) a&(&a—ﬂ
= ({ ?‘2)4‘5 jm K (o) _(15)
where M-—“m’ﬁ’ -.j""@ .The same factnr.which takes into acco-
unt the (}'gulnmb jnteraction in final state,is included in AR;

as well as in the perturbative term F<‘§ (see also Sec.3).

In this Section we restrict ourselves to substitution %*5?{:{9
The correction of order «g /15/ is teken into account in

(14). At fairly large E , formula (13) is transformed into
the nonrelativistic version of the result for ﬂ.ﬁ? in Ref,
/10/, which corraap:mds to the contribution from operator EE’.
(0. /) . Remark that in this case ARy (E)

ie nega‘l:ive, although, one would think, the VF are suppresseds
when the quark and the antiquark go away one from another,

that should leasd to attraction and, hence, to A K (E)>0 .
Explanation is that at high energles (when only the contribu-
tion from operator E’E Mgurvives") the intersction, genera-
ted by VP, is, no doubt, non-potential and, hence, the above
congiderations are umapplicable. With a decrease of &  the
function é.f’_‘; {'E_J oscillates and, +that is not so trivial,
ig positive in the near-threshold region.

The change of the sign of AR((E) is connected with switching
on operators 3__"'(5)2} ,_?-Tgl,nb- 1 in addition to Ea Just these
operators ensure the potential charecter of the interaction
(AR;> 0 in egreement with intuitiye comsideration) in the
near threahnld region,whe e ﬂ)?; N_SdFKE(TJ (see also
Sec.5),that differs fror. long-wave ‘mechanism /11/ swhereAR. <0/10/-

In the function
(£) the energy £ 1is met with the characteristic size
e of VP forming the non-perturbative structure of the to-
tal cross section. It is obvious that the larger ©. is, the
faster are oscillations and irregularities in cross gection to
which the corresponding terms will lead, but the global struc-
ture of oross section is due to the small-gize VF. Since we
are interested in the VP with small size @ , averaging

C13)

10

-

needs to perform at energy intervals less tha:n ‘:/S"c for
direct comparison with experiment.

In the case of small-size VF, the spectrum of states
Q@G‘ should lies much gbove the states Q_Q' because
the energy of the non-perturbative gluon in the octet interme-
diate state is of the order of Z/g. S>> /A . We identify the-
se states, QQ'G- (rj__"') s With the so-called vibrational

levels introduced, in Ref. /16/, in the model of a quark-confi-
ning string (QCS). It is of interest that after fitting of the
gstates 5'/14/ and '-V"‘ the predicted position of wvibrationsal
levels /16/ is, indeed, rather high: one level is at around

4 GeV and two close levels are at around 4.4 GeV, i.e. in the
non-relativigtic limit of the QCS model the spacing between vi-
brational levels and the levels with no string vibrations turns
out to be of the order of 1 GeV. In Ref. /16/, in order to

test the velidity of the non-relativigtic approximation in the
QS model, the relativistic splittings of low lying states

have been studied. They have turned out to be emall, of the
order of 0.1 GeV. As we ahall see in section 5,§large splitting
of states QQ and QQG is a necessary condition for rea-

sonability of the very concept of a potentiagl, at least, for
not too high levels.

Because the function é-(E) in (13} is independent on the
mass of a quark, deviations of the total cross sections from
the perturbative ones, which have been averagad over fast os-
eillations, for ete” — (hedrons), and e*e” — (hadrons),

should :ﬁ.:rfer, in the accepted approximation, only by nnmali-
zation:

ARe(E] _ Cii (_:E‘)géc 0,04

AR, (E) il

It is interesting that this conclusion doesn't use any
specific form VP forming the gluon correlator KE ("tj

It agrees with the recent experimental data on e*e” —>
—> (hedrons)g /17/; in experiment there are no oseillati-
ons, beginning already from 10.6 GeV:iAR;= 0.0 20,08 (R is
constant within this errors ) . If the family & (€t€)

e



will be diaccverad, the total cross section of ete™—s (haﬂrnnslﬁ
will take a perturbative value soon after the threshold of open
flavor € :QQ{EJA{E:)%d& [E) <0,04pt me> 206V (Re(E)<2)

The attempts have recently been made. to observe vibratio-
nal levels for the °Y° =family /18/, whose position ie predic-
ted in /19/:10.45 GeV and 10.80GeV. With a growth of the mass
of & quark the mixing of the Q@ and Q@& states becomes
weak rapidly (see (16)), so the lepton widths of these levels
should be very small, that complicates their observation.

Note that for the process e'e¢ —> (hadrons).in the region
where non=perturbative effectes are significant, it is degirsble
to take into account relativistic corrections, since the mass
of c-quark is not too large (m, =z 1.5 GeV Yo

o b i ¢ uni neglects the contributions from operators

E0) Q2" E) With N> 4 4 then AR, (E) is very, small
in the energy range of E:Lterast (B ﬂifgcl- Taking into acco-
unt operators g(a}g)f" E(o) with n>4  introduces & lar-
ge factor of lification. At low energies the contribution
from operators c?-z’a/ QDEEYe to Rs(E )  diverges as ER .,
In this region ( E- O-) formule (13) logses its validity beca,
use the operators of larger dimension, E&"‘E@a'"’ oa‘, "E
eté., begin work; the one instanton approximation hécnmga unva-
1id as well, . After
the bump in the near-threshold region, there is a deep at high-
er energles, that 1s a consequence of the global parton-hadron
duality.

The other interesting result is a concentration of the spec-
tral density in the near-threshold region (even for gcfn 1 Gev).
For light quarks a first zero of A RI™'(s) is at V8 ~ 0,9 GeV,
while for heavy quarke the first zero of A Ry(E) is at
V&8 = 2m = BE~ 0,3 GeV,It is very interesting that this fact
agrees with the mess value m_ = 1.53 GeV obteined in Sec.3 and
gives My, = Emc « Mg .

So,it follows from this Section and Sec.3jthat there is a
principal difference in mass generation of vector resonances
for light and heavy quarks.For the ¢ meson mass an interpreta-
tion is possible in terms of two comstituent gquark masses

e

(mo~ Emﬂ?n»p,-.- 0,7 GeV),while for J/, — resonance it is not the
cagse.One of the reasons for this fact consists in that the light
quark and antiquark go eway at large distances (comparing with
©c ) ywhere nearly independent generation of constituent masses
occurs,whereas the heavy quark and antiquark are at the distan-
ces comparable with ¢. .Moreover,the interaction of Q and §
with VF is stronger than for the case of light quarks because

of their nonrelativistic motion near the threshold.

In calculating KE (t) , we have used the expression
for :D(g) in a somewhet more general form than in /1071

Dle) = D, (g)Hec-¢) + :?ﬁ(;%ﬁ%_&) o 90

Pa:t:mater .'.'Dﬁ can be fixed, for example, using the quantity
<3 G-’z)

i in the one-instanton approximation

T A S S (18)
767 G+B) &

where D, (?) is n61_:_1:-ﬁ'ke_n”intu account.

The dependence E’c {._E)= RS(E)"'*QPQ ('E) is plotted in
Fig. 3 for various values of O, { 25et), forg@ = 0. For di-
rect comparison with experiment; it is necessary to carry out

the smearing procedure using, for example, the sum rules of
the type /20/+ Note that the dependence of R, (E)on Sis weak.

Enphasize only thet 1f (#5@2)> = 0.012 Gev*  /11/, than
the smeared value of ¢Rc |E) , which can be estimated with
use of Egs.(13)~(15),1s very small for the case of long-wave
VF with €c = 1/(0.2 GeV),that contradicts to the experiment.
In this case,the total spectral density proves to be concentra-
ted in an extremely narrow near-threshold region 4 == (0,05 GeV,
if one extrapolate the instanton contribution to such energiles,
However,the experimental data on RG{E}, even when averaged over
large energy interval A = 0.7 GeV /21/,subst@tially differ from
the perturbative value RJ(E) up to energies E ~ 1.5 GeV.Although
we have used the results of the calculations with the instantons,
the estimate of the characteristic interval for variation

—13



of the heavy quarks production total cross seciions A ~ ""/9‘:
seems to be model-independent. One can expect, however, that
additional numerical factors can appear in different channelsa.

It ie worth noting that an anelysis of the polarization
operatarﬂ(E) in the Euclidean region is rather unsensitive
to a size of VP which cause asymptotic freedom breaking becau-
se of smooth beheviour of the [1(E). Deviations from asympto-
tic freedom can be described by some effectlive quantities in
thie region. But in the physical region the determination of
the characteristic size Q. of dominating VF {and their ampli-
tude) is performed basing on.the characteristic frequency of
variatinn with energy of total cross section. We obtain that A~

~0d ~ 0.7 Gev.

Thus, just small-gize VP can form the general structure of the
totel cross section for ete” — (hadrons);, its large interval

of variability.

3, Sum rules for heavy quarks

‘Let us comstruct eppropriate sum rules in fhe under=thres-
hold region. In the non-relativistic case the sum rules are

convenient to formulate directly in terms of the Green's
function in imaginary time.

In this case, the Coulomb effects should be taken into ac=-
count adequately. The matter is that at K =K, = ZT“ (K'L'-mE)
n=1,2,... the poles of the Coulomb Green's function in the
energy representation manifest for the Green's funutian in the
imaginary time as exponentisl facters e EnT (E =- K
For the 6f° - and ¥ -families, the characteristic doilead A%
frequencies of motion & send Q are not mll.cumm 0,5 GeV
w ¥ ~ 0,3 GeV. Consequently, taking into acuumtthe Coulomb
factor is neaeaaary already un cnmpa.m’ciwly a‘hort distances

r% ay (aB ~ (1.5 GeV)™' ,aB ~ (0.7 GeV)™! , 8y is the

Bohr radius,here /\ _z= 0,25 GeV, A} = 0.35 Gev,aee egs. (30),(31)).

We shall take into account also, according to the method
of summation for the systems containing heavy __rg:.arks (Ref,/10/),

an infinite subsequence of leading operators é"o% ‘_g o0 =01,
2,e0ees ifl the non-relativistic approximation., If the sise Q¢

i

=

of VP is amell enough, description of the deviation of the
Green's function from asymptotically free behavior will be er-
roneous without such a summation alreedy at comparatively small
times f‘i‘z»gt. Summing over . , we obtain,from the Green's
function G- (TT; .g) in Ref./10/,the following sum rules (Coulomb
effects are nut taken 1nta account hare}

iy _fﬁ{s 2m z
DG = de‘ﬁ-w’) jorvK w)(ure-t)® o)
where the spactral representatlon ¥

AG, ~15GQ‘P(oo;r) G _(@3z)- G, (06¢) ,

— - —ET
5'3!'?' = SD‘IEE Q‘.‘F (E)}

Gﬁxp (DrOjT]
G, (0,6, ’“ﬁ'm'ﬁfi?“ S"fEE i b s b3 e £ j?:- )*’

R ()= 2QPE 129 (g) (=555 ), | (20)
is u.Ead fur the Green's ﬁmction.
The sum Tules (19) are representable in the other form.

Let us expand correlator K ('c) in powers of ¢~ (® = 1):

K (<) —K’ (O)Z'_’ae T2 ;

Here tha term cantaining ‘C‘E“" corresponds to operator& o@e‘_—'f‘
Then eq.(19) takes the Iallowi.ng form:

i 26,
A O el K ) Z e+za;(z+2nk’3+2h)(4*57{2ﬂ

Correlator I{,E,('c) is calculated accnrding to (8) and (10).

Let ue now turn to the Coulomb effects for the sum rules
(19), It is the simplest way to find ocut the Coulomb factor for
G_ (@O; )frnm the Coulomb Green'a function in the Meixmer form:

s G(0.T58) =5 M- W, 4y, (2x2)

where )/ = —— . With the use of the expmiou for the Whittaker
functionwﬁ(qmjat small arguments we immediately obtain
# ey 2

= ____.mkf s
G(G;O}E)“’ Zﬁ; ‘E—ﬁ&m{tﬁ{_’- E""Z K. e

the terms which are independent on energy (scmm of them are di=~
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vergent at r-» 0) are omitted in the regularized Green's funce
tion,that corresponds to an usual renormalization for the pola-
rization operator. The formula for Q(@;ﬁjEJhas earlier been de-
rived in QED in Ref,/22/(see also Ref./12/).

The Green's function (R(04G: ;v in imaginary time is derived
from (22) by means of the inverse Laplace transform ’R?t s 1%
is worth emphaaizing that the borelization operator Esft =
26w (~=1}! = Vede)" used in Refs./11, 12;" iﬂ connected with the

E>m, nush, Ep=L/ir
wellsstudie :I.nverse Iaplace transfum ‘xt :

.Ji.
ot o AR il
- L
The inverae Laplace transforms of three terms in (22) are tabue

lar P_h(

(5% =<316" 5 513, 9 =2 e o
where C(T ) is a Coulomb multiplicative factor

oo % E_h'z
Ci={+2%% + —E-ﬂ“zﬂ‘z+fﬁﬁ’-ﬁ‘3z Sy et exfon) (23a)

where & = ﬂG(MT) G'n"'_ etfz= ;"E ‘exo(-2') ,Paremeter &
carreapnnda to an us'ual Coulomb parametar g ‘_if_‘f‘ in the energy
representation,Formule (23a) has been derived in Ref./12/ vie
direct use of the borelization operator.

Formula (23a) with bare «g = const does not take into ac=-
count, however, the leading logarithmic corrections .:(""&1"‘( ‘{/ '-t)
ms= 1,2,.... where r is the characteristic distance between @
and Q, Their summation based on the renormalization group redu-
ces to the appearance,in (23a), the running coupling constant
ols (x) instead of oAg= const,It is clear that at small times P
=~ ,Q and Q move almost freely and the characteristic a-n_(.?)‘!
In the case of large times T ,the lowest state (the n-th state
is suppressed by the factor e (En- “J‘JT} dominates in the Green's
function (23) and,hence,r ~ 8pe

In the general case,the averages

T s, % STl R
o (T) = Qp_wé 3 <<~:P(r-))—2t <e7e)),

{2e)) =& H_;‘:E aF =t o

— 16 —

(23)

can serve as appropriate quantities in our analjaia. i p=20
is an integer, then for <z F(g) > we obtain

m2 [T 2 Piags
2PE)> = Tp+2) Z . il
L Cn- U"}P*a_j
(25)
where (Q)a is Pochhammer symbol: Qb= (@+Z).... (@rp-Z).
In & simple particular case of p = 0 , we have from eq.(25),

:( %{+Qfé{'j‘+ -—5“:::"%45”26'32' € (9-‘1'“&:&.1“5‘)
(—h"}

ol ¥

'23‘%5-4- G‘ %3 + 262 Z ;;‘3 (3+G:.?je '"(ﬂ e2fs,)
=1

-~ fé (26)

At Bmall . G '?_'- CT.") Zé'.;‘) at large T : T, r (e ) = a.B.The func=
tion r (T ) has the expected behaviour both at Bmall and large
T .Equalit;r (26) should be considered as a self-consistence
equation for r_( T') sinceof depends,in its right-hand side,on
_f;('t‘ )s%00,For a consistent determination of the argument of &
in this problem, it is desirable to calculate and to sum up the
corrections ol (m”s./t_r)m( m= 1,2,ss+ ) to the Coulomb Green's
function Gﬁ(ﬁtﬁrt) .

It is convenient to take the logarithm of the both sides
of the sum rules because of the ex_r_mnent:l.al Coulomb factors.Then
in the spectral representation for@ fOD 't;] one uses the follo=-

wing Re(E):
Ry (E)-ﬁ[z ; EJ)(E “Ee)+3 3( E) ﬁ" '9 & 27(2’;)

It is worth emphasizing that the sum rules for the (P- and

HV -families depend weakly on the choice of the instanton den=
sity D( Q ).Therefore,for our purposes it au:rficis to use the

simplest model with peak of D(Q ) at @~ Q. «_E (see Ref./6/

and also Ref./9/).As a reault,we have the sum rulea in the form:

! mo"'ﬂ g
L(t)-&i;a ie‘/(;( im)ZFe -(M i A 2_§ﬂf6(é'—zdfe ]
Me=8my

=RE)=6 C{t-)—;cf, < -(5_55@ (a2 O(vc )—2za

G (me+4)
(28)

' ——
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where <

T o ¢t ¥
O(@)-’:Sdé @-—zj Sdui‘({—ur) o pz) K fr)_—_-Ké@l(/(g}(zg}
In eq.(EBf, Mg are the masses of reaonancée-ﬂ;ccntinium starts
at M, ( M= 2m + Ec).For the convenience of the fittings,a
fixed large quantity m, is separated in tlée mass of the guark
m = m°+.& end the parsmeter [\ varies {ma = 4,60 Ge?,mg = 1.45
GeV).Then the function /s (T) depends weskly on the fitting pa-
rameters,

In the sum rules (28) we do not take into consideration
the difference of the Coulomb renormalization of the nomperiur-
bative term,which is proportional to S b @“} sfrom the corres-
ponding factor for G;, (5;5} z).When Q,Q interact with VFP,the
quarks Q,Q exist for some time in the octet state,i.e.far from
Coulomb singularities. Hence,the Coulomb factor for Gé(@:gf t)
grows more rapidly than farﬁg(ﬁ:d:ﬁwith the increase of T .In
view of this,the results of the fittings for (%’@z) here serve
as the lower boundary for a true value of <£5Gm> .The sum rules
with the difference between the Coulomb facsgnrﬂ taken into acco-
unt will be published elsewhere.

The factor (f- '21':_36_-{5 ) can be fixed with respect to

o A 100 MeV.Experimental data for the Y - ana Y ~femilies
are taken from Madison Conference (1980) and Review of Particle
Properties (1982) respectively.Let us note that in our anelysis
the best £it is obtained for the lepton wiatm[’qiﬁ (0.97 + 0.06)
KeV and 5 * = (4.95 £ 0.25) KeV.

We start with the sum rules for the (Y) ~family.If the
Coulomb effactj are imt taken into accfunt,the sum rules,as seen
from curves RaTq',le-(’t-), R:“('Ljand R_>(t)in Pig.4,cannot be
consistent et any values of the paremeters.If the factor C(T )
is taken into account,but the leading logarithmic corrections
“"sh&m( i/ﬂt are neglected,i.e, at s = const in S ,a good
enough fit, at 8 Wl B S o Wy S gev™! ;can be immediately
found (curve Rfﬂ’ﬂ} at o= 0,32, A = 0,24 Gev, \/:Tfs'@z) =
= 0 (1?).The sum rules in the form (28) have previously been
analysed in Ref,/12/ just under thiaaamp_tinn that o« = const
end without taking the operaiors é@:"&’ into account(the
Coulomb factor for operator & > has also been calculated in
Ref./12/).But in that paper the range of small T ,which gives
the information about m and /\ ,hes not been taken into account

18 -

and only one Y® resonance has been teken into consideration in
[, (=).In this case,the fitting itself has little sence;the values
of olg , A coincide practically with those of g, A from
naive Coulomb formules as a result of such a fitting(/(t/is
determined by the values of M., and [15" ).This does not
mean anyway that the spectrum of ‘Y’ -resonences is a Coulomb
one.In addition, neglection of the corrections ac';“ {?n"‘"('i/m) is
by no means juatified for this problem,Taking them into account
change R (%) very strongly.
In the following consideration we shall use ?GLT' )} from

(26) as the argument of o{g (note that the ratios €p (Tl & const
for not too large p ). The fitting curves R (v) are depg‘?ﬁ:mt on
the parameters: O,/ , & %"@‘) and ©. .Only the parameters

A and /A are essential in the range of small T .If
we fix, for example,the quantity A ,then_/\ ".is alreedy fit-
ted with very good accuracy.Let us choose,from &ll curves R, (o)
( for which <%‘Q2> = 0),obtained in such & way,one .Q;‘,#J.which
corresponds to & minimally possible deviation of R,(x) on / (t/
at large T (this curve provides a large interval of sewing if
<\’§"Q‘?—> and @, are taken into account). The curve corresponds
to the parameters (for average points):

A = (0.35+ 0,10 ) GeV , my = ( 4.91 £ 0.07 ) GeV
(30)
At fixed /A and A ,in the range of large T the fitting is
performed already by means of the parameters c ;"Q‘)-, € -In
the region of < ,where the deviation of ,Q;““E,-,;mn 4 (t) is star-
ting,the dependence on ©Qc may be neglected since the operators
gggﬁ”g’ ,i = 1,2,,..,. have not taken part in.At the larger®T
the range of consistence between R()and / (t) can be enlarged
by choosing the parameter Cc:

<%§Q?> = 0,06 * 0:03 cev# , @ =(0.7 1 0.20e7)”" o)
(taking into account the Coulomb factors difference for the per-~
turbative and nonperturbative terms in R Cr) results in incree-
sing this value ('%5@"->).£Eha corresponding curve R, (t)is drawn
in Fig.4.It is noteworthy that at small enough T (T~ 1 GeV™ ')the
relativistic corrections enter into play,that leads to the dif=-
ference of R(T) and L (v) in this region.Prom the side of large
T ,our consideration is restricted by the growth of a relative

G -



megnitude of the nonperturbative term as compared to the pertur-
bative one(this is indicated in Fig.4 by the croass).

The use of the one=loop expression for o{g in the fitting
implies that the higher corrections over «s are included in the
redefinition of /\. .This is analogous to the introduction of

=, ! .~ 10 the physical region.And we denote the introduced,in such
a wey parameter uaA@a «The coupling constant « has been taken
at the virtualities which are inherent for &(50; T/,0ne should, .
therefore, expect that Aog is close tnﬁ_ﬁﬁ 2,16 Az «In this
caae,AQE /2416 = 160 MeV refers to the Euclidean region unlike
A\ 7 #=100 MeV which is extracted from 7> ~decay in the physical
region.We would like to emphasize an important circumstance.The
basic qualitative conclusion of this section: a large magnitude
of (3:;‘ @ ?2) and a small size of Q. are both independent on the
agsumptions about,say, the inatanton nature of VF and also on
the form of density D( € ).This conclusion is based on the sub-
stantial deviation of the curves R:"T‘(Tj'andé('d oI f‘(;ﬁ) =

= 0,012 Gev? /11/ one cannot make consistent the theni-’-etigal and
experimental curves for reasonable values of parameters,

As seen from comparison between the curves Ax,(®and RLey
in Fig.4,taking into aeccount the nonperturbative effects in the
framework of the given mechanism of violation of asymptotic free-
dom has led to a dynamical freezing of the coupling constant o, .
In Ref,/10/ we have obtained,for effective mass of the gluon, the
estimate Hs :(%F(-(s G"’))g 0.65 GeV (at (;59‘) = 0,012 Ge?“'};if
{Ze> "= 0.05 gev?, then Mg 0.90 GeV,that is in egreement
with the empirical estimate in Ref,/8/.0ne can expect that the
coupling constant of¢ will be frozen just at energies around
2/-(31‘;1.8 GeV. From the other hand, the dynamical freezing of
occure in the range 7 ~ (2 L‘-ev)'1 in our sum rules.In view of
this, we assume that the given mechanism manifest iteself
there where the freezing of olg 18 empirically observed.

An asnslysis which is similar to that for the "Y’-family,can
be carried out for the'V -family es well.One should bear in mind,
however, that the region of sewing in this caese is narrower than
for the Y ~family because the nonperturbative effects achieve a
level,say, 25% faster than for the (Y -family; the relativistic
effects also are more important, Here (in Fig.5) the curve Rg"hj
corresponds to the parameters

‘l

[

S\l = 0.25 + 0.06 GeV, Mo = 1,53 + 0,07 GeV (3'1}
and,for the parameters characterizing VF,one obtains (from the
curve R, (r))

ﬂ'{ 2 o 0-04 4 -£. -
(6> =0.07 £ 3:0% cevt |, % = 0.7 + 0.2 Gev (16)

For <‘3‘_§G‘?> = 0.012 GeV* /11/it eppears that there is no pos-
8ibility to obtain an agreement between the theoretical curves
and /, (t) (£ = 0.23 in / (7)),see R¥(T), R¥ (),

The sum rules for the Y ~family have been considered ear=
lier in Ref./11/ in the moment representation,where the Cou-
lomb effects have been taken into account,however, in the lowest
order only, although, ﬁs'nwﬂgs(ng”v ~4 ,for such n ,for which
the fit was carried out,.The Coulomb effectsplay a very important
role for sum rules for the Y/ ~family also, that can be seen
comparing the curves R;{",E:'ft;] and L{T‘} in Fig.5. Let us note
that the curve _R_ﬁ'@;i which corresponds to the parameters similar
to those used in Ref./11/ can be fitted to the"experimental"
curve /,(d at ¢ = 0.08,Recently,calculations of the contribution

C(GBJ to the¥sum rules were carried out in an interesting paper/14/
where the Coulomb effects were taken into account ,however, at
the lowest order as well.

4o Light gquarks in the physical region

It is of interest to check the received conclusions for
the other channel where there are veriety of experimental data,
namely, in the isovector channel in the e*e” -annihilation.
The logic of consideration is nearly the same as for heavy
quarks; if we are not interested in detailed information on
the spectral density at small energy intervale, in this casge,
1ts structure comes from the VF of relatively small gizes,
©~Qc K f/A. of instanton nature. Using the analytic conti-
nuation into physical region, as in section 2, for the polari-
zation operator in the one-instanton approximation /4,23,24/,

one obtaing
[

T=1 : — I?. ﬂ{_'g N *35
AR™ (s)=-27F S - D(g)a'(‘%/vav* 99N, a‘%)tm}
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instantons with 9 N’% (gfv‘;{-'g) (taking (or not) into account

the chiral symmetry breaking).For the seconﬂzf_egime(camp.withfzrlf )
= 9 R 2 o3 P
QQI’{(.SJ - 1,33'10""’ -A-va(? D/ <9 bn 3 mw) ~

~ - (é 0,5¢6ev) .27 (/o3 66v) <0 (330)
This means that if the instantons are reagonable even at © £
(0.3 GeV)~!,then eq.(33a) is valid only at high energies
V> 2.2 GeV winen |A\RT(s)) < 3-407%

We would like to note the interesting poasibility of

extracting information on the denaity of instantons D (e)
(33) from comparison of the instantons e,cnt_rihutions with differen-
ce of the experimental cross section from the perturbative one,
by solving a some kind of inverse problem. ihe demsity Do (€
/2/ gives rise to a monotonously decreasing contribution /24/,
small in magnitude; whereas in the experiment, oscillations
with a period of the order of 0.7 GeV are cbserved. Already to
obtain observed oscillations ﬁé;eﬂ s 1t is necessary, at
gome Q. , to increase _'D{'g) as compared to Dg (©)
moreover, for the first regime to be accomplished, the increa-
se ghould be fairly sharp. In our rough model for D () in

_Lf\_w____qipﬂ), With the generally accepted now values of /10/, the increase has been represented as a jump of O (g¢)
at the point € = Sc » Because the period of oscillations in

ApreNAge-2A = =~ 0 GeV the result /24/ (neglecting B : .
apa@é&neﬂuﬂs hreakib:fé of chiral symmetry)becomes of the order Clot is of the order Q.7 GE—V}}_—;?" the required size
of g, should be smalls @, ~ (L£GeV) &

Recently, in Ref. /25/, attention, parallel with Ref.

where the argument of Bessel functions {Je ,_/Vé is equal to
eVs . At asymptotically large § , two regimes: o>y Z//c
and @ ~ 1/f5 are possible. Second regime
can be realized using the instantons of any small size, whose
density, therefore, is 1D,(¢) /2/. The first regime can
occur for the instantons whose characteristic size is
€c (e~ (1L GEV)")and whoge dengity is amplified due %o
the interaction with large-scale VF. In this case, ( S—» oo )
(D (g) from Ref. /10/),

L e

Sih(25:(%)
(85 )7

ﬂRI:{'(J) A %:ﬂ-z §£@1>fj

i.e. the instantons lead to damping oscillations of the total
crogs sections with characteristic frequency -~ 'f/gc « The
gsecond regime haeg been considered- in Ref. /24/ as & dominant
one. But the values of the parameter used in this paper are
AP\/’ = 0.3#0.7 GeV, that has resulted in exceeding the ans-
wer by 2-10% & #'IU? times (ae compared to the case

of 1 at Vs ~ VI-SD :-.-qai?&;' where, first, the DGA epproxima-
tion is slready unapplicable and, second, at such V&i the in-

stantons of the large size €@ ~ 4//S, work, whose denelty

is not equal to D (g) , of course. At \f? =0 GeV

the corresponding alersi(gﬁ_i,jo'fg is negligibly small.
Spontaneous preaking of chirel symmetry in the instenton

/10/, has been paid to the importance of studying the non-per-
turbative effects in physical region. In this paper, a model

for Rr’i (s) is considered which is based on introduction of
aingularities of the light quarkse vector polarization operator

in the complex ){2 = plane, and these singularities being mo-
re simple type than those of the one-instanton contribution.
But the senge of these singularities is unknown unfortunately.

= = =
Pig. 6 presents the dependence RI=1(s)= Qg CSART (s)
! at various values of B  and (i G"'} (o.= (0F¢G ”V'J'i)
Jr s Qe ="(Labe
as well aeg the experimental points (see, for example, Ref.
/26/) The experimental cross section in this channel is more
regular than in ete->» {hnﬁrnna}c and, hence, & direct
comparison of gi=1 (s) with -Rz;;(a) is possible, in

density associated with long-wave quark VF /11,7/ reduces to the
substitution of m?_ g ,where mq is the quark current mass,for

m (S’nJS’ e"l(foAW))é‘_ &ﬂ((?—‘?) >E3 &, (FOAPI-)

’ €n(ehpy)) 3 fo €. (o2 py)
where ¢ = 4/(11 = 2Ng/3).In this case the second regime gives
larger values of g},pﬂ,which,hmewr. are still very small ,Let
us stress that due to high powers of © in the instanton density
the main contribution to the integrel over © is given by vhe

-’
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principle. The stricter procedure of comparison can be carried
out by averaging both RT¥*(S) ana Ri::(s) in terms of,
for example, the sum rules /20/. In contrast to heavy quarks,
the light ones can eacﬁpe at the larger distances in virtue of
i%s relativistic nature ang, therefore, are more sensitive to
multiinstanton configurations, in particular, to the instanton-
-antiinstanton ones. Theame effecte are of great importance in
the near-threshold range, where formula (30) already does not
hold. All this leads to decreagsing the scale in this cheannel
as compared to /fc » that corresponds effectively to larger

¢c than for heavy quarks.
5+ Potential in QCD because of small-size VF

One of the methods of describing the heavy quark gystems
1s introducing the effective potential of interaction. In very
successful potential models which describe not only the spect-
rum and widths of bound states but predict alsc & lot of expe=
rimental facts, the interaction potential has been introduced
phenomenologically. Such a success of the phenomenological po-
tential models should be explained by the consistent theory of
strong interactions, i.e. by QCD. However, in the paper /12/ it
was affirmed that 1f <§'::c55@2);é O, the quark-antiquark inter-
action cannot be described in terms of the potentiel in its
usual meaning. Furthermore, the effective potential has the
following drawbacks: it is not local, energy- and mass-depen-
dent. In that paper the effective potential is proportional to
the mass of a quark, while the observed spectra of ol and
rY) families agree with the approximate independence of inter-
action on flavor (a.g.,m?,f = Mgy = MM )e In this ca-
se 1% is most unlikely that the potentisl model work so well
with 80 weak support from the Q0D. It is worth emphasize the
important circumstance: these assertions /12/ have been made
basing upon the assumption of Ref. /11/ on the long-wave nature
of VF.

As we shall see, the conclusion on the very exlistencs of
local potential is opposite to the paper /12/ in the physical
pattern with the determining role of small-size VP. Roughly
speaking, the factor g, md,sa serves as a parameter of loca-
lity. Moreover, the effective potential proves to be approxima-
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tely independent of the flavor of the gquark and of its energy,
that is in well agreement with potential models. This and fol-
lowing sections have been previously presented in fE?’f._

As has already been indicated in /10/ and in sections 2
and 3 of the present paper, consideration of amg.}zl—aiza VF re-
u;_x__irea Lo take into account not only operator E but operators
fa@f”é’ (n>4) ag well. The corresponding correction to
the Green function of a quark and antiquark /10/

AG(Z, fjf}:/!r@/g‘f—gas W;ET_%;:/?> (34)

may be interpreted as the manifestation of the interaction po-
tential;

X + 00
=_1( dps * B > (35)
V M -2% Kg (Pﬁ) s H:"E +Pa

—_

L &’Gjﬂ is the Pourier transform of correlator K‘? (‘C‘) en.

If the long-wave VP formed correlator }fE (-Pa) y the ener-
&y of non-periurbative gluon in Athe intermediate octet state

~can be neglected, a:_n_g operator V then reduces to the contribu-

tion of operator &£ 2 y considered in Refs. /12,28/. But,
for real quarkonia - the ‘J/ and (Y.' ~families -~ only the
VP with size © > (é m.{sﬁ)‘i L - (0.3 @EV)"{- '
e fO.SE-’-eV}'i respectively, may be regarded as such
long-wave VF. It is difficult to agree with the fact that the
VF with so large size play a dominant role in the dynamics of
these gystems. But, for heavy quarks rv > (,';: ch(;‘(a—é_( ))Hf‘,
M 20 GEY_ at e.= (¥ GeV) 4, only the contribution
of operator survives and the conclusions of the paper /i2/f
become valid. Note that the non-perturbative effects are very
small for such systems with > 20 eV ; f.e.

ﬂEiﬁ 4515.' << 1'.0#2, here A\ = 0.3 GeV, A
Let us consider the matrix element of the operator V
= =/ :

from T to B .1

- B



=0

e 1 o -1;.-'. dpﬁ' — : 'f. e
V (?:ft)“'j-—'fj ;,;_}Kg(%)<t }H” 8 ]t) (36)
. b8 o= o

The case of a local potential means that

Ve E) =VE)SE-E) (a1

where V(E& is an usual potential. Note that and in the physi-
cal pattern with small-size VP playing a dominant role, a rela-
tive importance of three terms in the denominator of octet pro-
pagator depends on which distances are of interest for us and
which levels are studied. Nevertheless, the Coulomb repulsion
in the octet state can be, in practice always, neglected (the
ratio of the repulsive poteniial 'V:(z): s to the attracti-
ve one in the singlet channel is equal to Eﬁct(ﬁéﬁz) "1. so for
Ty s g ¥ (ag} ﬁq.{}&’@eﬂ After this, Vﬁ;i z) is expres-
sed via a free quark-shatiquark Green function = (G (%2 E) =

r‘;_’, e—(m[’no-E})”ﬁﬁ‘.a; If one is interested in not so small
dfs E:nc 8, such that the kinetic energy P‘E/m i f/fh fé’?—-f’)a
ig small as compared to the energy of non-perturbative gluon

=

[P, » then G, fi‘flf; E) is proportional to - function:
: - i - >
Ga (vrle) s i 0(7@; o (38)

Hence, the non-locality of the potential extends up to distances

T T = -1/
P FaY e
|2 H. | (Po-E)| « ag 5 (39)
for not too high levels ( Qg = (3% mes (éa) ) is the
Bohr radius). In this case, the potential ie energy-independent

and reduces to an oscillator one:

s
T/_(Z) = 22 S oer'&_ (T) - (40)
Ne o :
where we trensfer to Euclidean times, KE' (T) >0 . |
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The integral of correlator KE’ (‘I‘*) which determines the force

of the potential, can be readily estimateds A E\SﬁtKECT};N

—g% Roin comparison with ite value 3°-4z2T% 2\ g+
25K~ S NASE )
derived from formulas (10), (17). !

The potential (40) appears from the first term in the
expansion of the potential operator (35) in powers of
-i-ﬂ (EE E)h . The corresponding terms of a series for the

Pﬁutantial operator (35), at N> { , are not local and cannoi

be interpreted literally as the manifestation of the potential
of interaction. But, when one considers the interaction with
VF using the sum rules in Buclidean region, such contributions
give rise to a certain effective potential ’\/eﬁ(t) in the sum
rules. Let us expand the effective potenti:l (E.} in a se-
ries of 7 T‘é}:{

Voglr) = Z =z” s

and then find the first correction to the Born term for the
time Green function at Euclidean ‘T  due to interaction (41),

by expressing this correction via (j @

GJ&‘%F}=G}E)%F -?;'@P(;+Z)(E) %] (42)

Pormula (42) has been derived in Ref. /29/ for k = 1,2
end in /30/ for any k. Now, let us use the connection (obtal-
ned iﬂ__f.cmula. (21), sect. 3) of the Green function
= ((}10; T‘) with the correlator of gluon vacuum fields
KE f‘t‘) . Equating the coefficients at the same powers of T ,
one can see that K =4n +4 . Therefore (with neglection of
Coulomb repulsion in octet state in the limit of large AV, ),
in the expansion of the effective, from the point of view of
the sum rules, potential w;;(t) » associated with the cont-
ribution from the operators of gluon vacuum field SQQE”E .
there are only the degrees =¥, 2‘5:, S etc.:

S



*Ql_k‘é(@' oo e, (m’t”-} Zin+2
vejéz)- ™ Z (£+2n)(2+2n) (3+2n)(4+2n )(2n2)!

It should not be forgotten that the result (43) corresponds
to the first correction to Born term, and, hence, one can use
it only if the corresponding terms in (42) are small as com-
pared to the Born term. In view of this, the attempts to sol-
ve /30/ the Schrodinger equation for GG with a potenti-
al €o =9 » corresponding to the first term in (43) have no sen-
se. In (43) the expansion is performed with respect to the
dimensionless parameter @-1mR2 | i.e., with respect to the
parameter inverse to the non-locality one. There is no locali-
ty on the distance & where Q- “me%« 1. However, if the VF
are of fairly small sigze, ©c ~ (4 G?ueV/-,i the region of non-
-locality, % {(’S’c./q.,,)qﬂ, ig narrow ( 2 < (4€eV)"¢ pon

Y -famly end 2< (3¢eV)™? for () -family). Al-
though there is an explicit dependence of the potential on the
mass of a quark in (43), this formula is converted to the os-
cillator potential (40) outside the region of non-locality
(when the parameter QJ{'MEE is large). The osecillator po-
tential (40) has sense irrespective to the sum rules for po-
tential.

(43)

Ge & corrections for he = quark gtems

Now let's consider the corrections to the energies of le-
vels Q) which are due o the interaction (35) generated by
gluon operators E@E"f « Neglecting relativistic correc-
tiones and the Coulomb repulsion in octet state
we have, for the Coulomb level with the main quantum number n,

A e lwd (44)
E -1 _E - 4 — 44
A5 ) 25 K ) T ———

Calculating the quark matrix element, for example, for
the lowest level 18, one obtainsg

— -

4 F

— Z
Dy ‘%K;P%%g [5+188+ 408 H4aS sdfe>

where ?:Gf‘*mpoaé) i’%‘ Og 1s the Bohr radius. Since the

characteristic IPo| ~ 4./ Qc the kinetic energy }gg/m a

at ©c ~ (Z€¢V) ™, can be neglected for the ¢ - and
% -families. Then, from (44) one gets approximately

oD
2
AE,, = 2.‘."&[51-,2%_35’(@4]0;3 ‘gdrKE(r) (46)

Correction tﬁEhe from (46) corresponds to potential (40) .
It is seen from (45) that for the lowest level 6}”(9.45),

at <%5<;E>n 0.1 Gev?, gci=o0.8 GeV, B = 5 ome has2i"e 0,20
(and from €q.(46) one has ABwn /|EnAn] = 0.39)for A\ o, 30ev.
If one takes into account only the operator E& ,this

ratio will increase,for the seme value of {FG*) = 0.1 tevt vy
a factor 1,6,i.e. the summation of the infinite subsequence of
pPower corrections would give rise %o their partial cancellation,
This is readily understood from the qualitative point of view:
teking into account the energy | P} ~ £ /9: of the non-pertur- .
bative gluon in intermediate state Q3G has led to the substitu-
tion of the energy denominetor of the order g ~ ';'/5*"“'&2 for
‘-;'/gc >§m .{f.'We observe here that the influence of small-gize
VF is possible to imitate by the contribution of long-wave VF
at noticeable smaller velue of <§:5 e .Corrections to
the energies and to the__w:l.dtha of Coulomb levels which are due
to only one operstor ga have been calculeted in Refs./12/,
/28/.

The fact that,for the E}Qreacmca,non-perturbativa Correc~~
Vlons prove to be small means that the Y -resonance is almost
Coulomb system. Moreover,we can obtain,from dE‘Y'/IEnp." 0.20,

that 1
m, = E(HW'TIE'\”'* ﬂ.Efr)' 4.92 GeV,
what is in excellent agreement with Sec.3. For the J/ resonance

- — 29 —



we have,from Sec.3, AEy = My * | B4 4| = 2mg = 0.35 Gev-'v]EMj
and eq.(45) gives an estimate AL, = 0. 38 Gev This meens

that the non-perturbative effects are very important for

the J /@  resomance. YVglidity of the potential (40) is li-
mited, from the side of small distances Z , by the region of
non-locality; from the side of large “°Z the limitation is as-
sociated, in particular, with the bresking of multipole expan-
gion.

It should be noted that a priori the very fact of existen-
ce of the local potentiel of interaction between G and @
in QCD is not trivial and rather surprising since it is requi-
red, . for ite axistence that not the initial operator of inter-
action V(2 )- T & &) €T  with a free color indices
be iterated in highar carrantiona to Born approximation, but
a certain effective gauge-invariant colorless potential const-
ructed by means of q/"(§:??) « The fact that the non-locality
occurs in the second order perturbation theory over 7/ (%, <)
is known from the coneideration of the Stark-effect in QED.
Non-triviality consists in a principal necessity of small-size
VF for reasonability of the potential. The role of these fluc-
tuations is not only to meke the potential of interaction local
but also to make it iterable in higher orders.

The important consequence end confirmation of the physical
pattemswith small-size VF, when we compared 1ts consequences
with the potential model, ie the statioc character of the poten-
tial generated by them. In this section we often use the small-
ness of kinetic energy 2 2//» as compared to Ipal ~Z/p, +
This just implies that the quark and antiquark are gtatic in
the intermediate octet state in which the potential is genera-
ted. Thie assertion is in good agreement with the potentlal

model. However,one camnot neglect the motion of Q,Q in the colour

ginglet state,Let us siress the difference with the known con-
gideration of the static potential from the Wilson loop (see

i.e./3/),where quarks are comsidered to be static in the colour

singlet state also.

So, as we have meen in thie section, the assumption on
a dominant role of small-gize VF in the dynamics of & @

30

[

—states enables one to explain, in terms of QCD, all the basic
features of the phenomenological potential in the potential mo-
del. Whereas the assumption on the long-wave nature of VF 111/
gives rise to the impossibility of introducing the potential of
interaction Q and Q in the freamework of QCD.

T« Conclusions

We have assumed in the present paper, unlike /114 that the
non-perturbative mechanism of asymptotic freedom breaking is
connected, mainly, with emall-gsize VP rather than with long-
-wave VF. In the framework of thie physicsl pattern we for-
mulate the method of considering non-perturbative effects in
physical region both for heavy (the method i based, in this
cage, on the gsummation of the infinite subsequence of power
corrections) and light aquarks; in addition, we succeed in
demonstrating the consistence of the potential model with QCD,
in particular, in explaning an approximate flavor-independence
of the inteéraction between @ and Q .

The logic of construction of the sum rules in the Eucli~
dean region becomes the other to a great extent; in the region
of dominance of lowest level the operstor expansion 1ls unappli-
cable since E,~ 'f/gﬁ « But, because the deviations from
agymptotic freedom are moderate in this region and are a
smooth function of virtuslityessential part of this deviations
may be imitated by several terms of operator expansion., Howe-
ver, the appropriate coefficients cannot be identified, in &
given physical pattern, with the vecuum averages of local ope-
rators of lower dimension: ..5(;'2 ¢SEY, &=, etc. The
average, with reapect to the nun-perturhative vacuum, of the
1Euared gluon field prove to be here much larger than in /11/:

( 5@9/{‘“6‘)3@ & . The analysis for ete —» {hadrana)c b
and ete” — (hadrons)y.4 may be generalized to the other chan-
nels, In the present case, the operator expansion is subastitu-
ted by the expension over the number of instantone end antiin-
sfantons are taken into account (which represent smell-size VF).
The physical reason for the possibility of such & consideration
18 the suppression of the density of instantons by light quarks
/3/y /5/« 1t is just effect that makes reasonable the one-ins-
tanton approximation widely used in the present paper.

s A g



In our opinion, the possibility of forming a wide broad

specirum of resonances with characteristic masses

Mol €eV 3 /A in vecuum fields with large wavelength

Ko (qg@e\#)'é"eemﬂ to be rather strange from the qualitati-
ve point.of view. Moreover, the analysis ie insensitive to a
specific 'ahape of VF, in particular and homogeneous fields are
admissible. The more natural possibility would be the reflecti-
on, in the masses and widthes of resonances, of a specific gha-
pe of VP, which form them. '

Note that if one proceed from the connection between the
vacuum average {%5@? } and the magnitude of condensate of

Vacuum quark-antiquark pairs, which is generated by a gluon
field /11/,

<-§EG’?> bt - e <¢‘~P>m (47)

and one uses the quantity <¢Fw) known from PCAC, one ob-
tains e

of
768°> = o0¥6evV? (48)

In the estimate (48) we have extrapolated the equality (47),

which holds at large enough masses yvi y to the mass of the con-
stituent quark, vy = 0.35 GevV.

4
We would like to note also that the magnitude ¢ =°G2) ,
derived in today's popular calculations on the lattice, is lar-

ger than in /11/ (in pure gluedynamics, ,S'(J (3)) as well

(Refs /31/): - £ |
<§.s Ci) = 0.10 #+ 0.05 GeV (49)

It appears that the mechanism considered in this paper
works quite well, In the QCD framework it is possible to
explain many phenomenological and empirical facts and to avoid
some difficulties connected with the long-wave mechanism /11/.

We are thankful to V.S.Padin for useful discussions of the
Coulomb problem. We are grateful to A,G.Grozin for giving aome
computational programms and advices in programming.
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tigure captions

i : urbati contributions
Fig 1: The leading subsequence of nomperturbative b

= o . i
for neavy quark Q and antiquark 3 in "<~ annihilation.

Fig 2: The correlator %&.(E curve a) for Huclidean times;

L]
e ——

for Minkowski times we present ?f:? (%’): 5:_/3‘{'; (%) ,curve b)

for R Fo )t suve ¥ ToF I P2 (]

& i i into
* Pig 3: The ratio RG(E} with nonperturbative effects taken

account in one-instanton approximation.

Curve 1 is for HE[E] ({g."fot’s, @‘“}:ﬂ} with due regard for the Cou-
1omb interection in final state, a amooth interpolation is made
with RO({'8) in Ehe felati:istic region; 2 ons
curve 2 is for R_(E) + AR (E), operators { o

are not teken into account; GJEG- 2:0.12 Gev4; -~

curve 3 for RO(E) + A R, (B), <§~°¢sﬁ>= 0.1 GeV", € = 0.7 Ge"u"i
curve 4 is for RE(E} +ﬂRc{E}’<}r*sQ?= 0.15 GeV"', g *= 0.9 GeV;
the function A R (E) is taken from Egs.(13)-(15),m = 1.53 GeV,
Ag = 0.23 in formfactor multiplier as in Sec.3; A= 0, .-
Byane ™3 % Q%(f_-:-gs/;;a; ) 2.1, We put A #ACEIN.EHLH'GE‘F
tlhas @ Uf':a“‘js'ﬁl'iev obtained in Sec.3) in w = 4Fuls(mv) /20 -
Experimental date come from Ref./21/.

(nz1)

g (rui‘amil .FPor particular curves
Fig 4: The sum rules fmi- the s ¥ g (;2 s ?4}

we use the following notations for R(T): {{s. S ) e ’

Sc {Gev‘_T), A (Gev), N (GeV)),the dash means independence.

R (‘r:’: {0406,1-43,(‘}-31,‘4}-35}1

RO (T )3(01'10*31: 0.35),

Ry (T):(0.012, 5.0, 0.31, 0.35),

RE(T):(0, = 0.24,- ),

H#{T}=(G: _— 0.204 = 5 :

R (T ):(0.012, =y A » = )s Bp= = 0.2, f= = 0.3,8,= 0,0

o

L (TJ:Q{;= 0.13.&“&.31’ Mc= 11.0 GeV. +
Crosses correspond to the indicated ratiar of the nonperturbative
term to & perturbative one.

Pig 5: The sum rules for the {/ ~family, the notations are the
same as in Fig.4.
RET{T)=(G'DT’ 1-431 G!‘OBl Di25}i

Rt;in("{"):( 0, -, 0.08, 0.25),

e, . O



R (T):(0.012, 5.0, 0.08, 0.25),

RY% (2-)1(0.020, 5.0, 0.019, 0.35),

BRCEIIE 0y ey B8 9, T, % WY A, = -0.25,
R (T):(0.020, 5.0, -0,195, - );

L (T)icke = 0.23, 4 = 0.08, M, = 4.3 GeV,

L' (T ):otg = 0,08, A = -0,195, M, = 4.3 GeV,

Pig 6: The ratio RI=1(3} in one-instanton approximstion
(Qci= 0.5 GeV):
curve 1 for (j.‘&"""'} = 0,1 Ge?4,ﬁ = 0,

4
curve 2 for <{5‘=‘62} = 0.20 Geg ,_ﬁ= 0,
curve 3 for <’n-(_;c;ﬂ'> =0.20 GeV", ‘)5 = 10,
Experimental dfta. come from /26/,
The dashed curve corresponds to the perturbative ratio
Re™! = 321 + oLaR)g).
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