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Following the general ideas of the theory of erystal or-
dering, the casge of the hexagonal symmetry of the local order
parameter is studied. Unlike other point-gymmetries, the hexa-
gonal local order parameter ig the sixth-rank-tensor. The va-
riety of solutions of the MFA equations is studied. The tempe-
rstureripterval of an overheated (metastable) crystal is
small: = = 0.04. The explanation of the non-existence of meso-

j —
phase in simple hexagonal crystals is proposed.



la Introduction

i The statistical theory of crystal ordering, developed in
LI,E]3 describes the liquid - crystal (melting) phagse trangiti-
on in terms of the local crystal order parameter field /\ﬂ(-’(} N
The simplest case of the cubic symmetry of parameter /\,LK]
was studied in L1,2]. As shovm in | 3], in case of lower point-
-gymmetry of parameter [X) a get of phase transitions in
crystalline phase may exist. The general case of the lowest
possible symmetry, the triclinic one, was studied in [4], whe-
re the nature of a polymorphic phase transition was examined
and the appropriate mathematicsel apparatus introduced. Brief-
1y, the interaction of varioug point-gymmetries local order
parameters results in the existence of the effective "exter-
nal® field acting on one of the local order parameters. The
"external® field is due to the global ordering of the other
local order parameter.

The simple symmetry-considerations allow one to determine
the symmetry of the low-temperature phase once the symmetry of
the higher-temperature phase and the hamiltonian are known. In
order to discuss such a prdblemt*the casges of the highest po-
int gymmetries of the field (K) should be examined. In stan-
dard textbooks on crystallography (see, e.g. [5]} it is shown
that any point group is a subgroup either of the cubic (m3m)
or the hexagonal (Gfmmm.) Eroup.

The aim of this paper is to introduce the local order pa-
rameter for the 6/mmm point-symmetry and to find the most im-
portant characteristics of the system described by this para-
meter.

2+ The order parameter, hamiltonian and MFA equations

The local order parameter is the smallest-rank irreducib-
le tensor which reflects the characteristic anisotropy of
atomg! arrangement. Unlike the other point-symmetries, in the
cage of 6fmmm symmetry it is necessary to introduce the sixth-
-rank tensorg. It can be easily seen that the fourth-rank ten-
gor of ©/mmm symmetry is uniaxial (sée Herman theorem in [51 )e



In order to consitruct the local order parameter conaider
the simple geometric figure 5 of Fige. 1. MTote that figure S
does not give rise to simple hexagonal Bravais lattice. Hever-
theless, figure S reflect: properly the characteristic arrange-
ment of atoms in a 9/mmm-svimetry crystal. One can hope that
the analogous treatment using more refined figure S will result
in the existence of omall (numerical) corrections to our pre-
sent results. Our choice of figure S is due to computational

simplifications.

The choice of numerical values of O and B ig not a tri-
vial one. In the theory of crystal order only the point-gymmet-
ry, of a cluster is fixed; its numerical characteristics are,

a priori, undetermined. The mos? general treatment would be to
leave one free parameter, (O /B, and then extremizing the final
results.

In this article it is supposed that the geometric charac-
teristics of cluster (and figure S) are that of the elementary
cell. Such a preposition geems natural and is supported by the
following theorem: the number of independent invariants of the
local order parameter of a given point-symmetry is equal to the
number of parameters describing the ﬁgrrespcndlng Bravais lat-

tice. In what follows, we take (= -3, B= 3.16.
(o}

Let! construct tensor H“‘-PIJFP :
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where Y1 is the radius-vector of the i-th atom of figure S,
and the summation extends over all such atoms. In the rigid
form approximation [1 21 one has

H(®) =G0 H® @

?
where_ tilda denotes the irreducible part of a given tensﬂr and
g (?f) describes rotation in point X . Tensor u.; ‘FFP has
I‘J.D components in cartesian coordinate gystem ¢ cf} Fig. 1, twci of
them linearly independent. For example, for H AL and [M333333
one has

H{:‘;m i g ("?'8:1 SB) H333333 231 ( inB)- (3)

The mem—f:.ald appraxlmatmn (MFA) equa,tians are
-F-HH'L

hd.f,a'ﬁgjr =Z JDg : ipa'é‘f—ﬁf{g)e 5 (4)

where the MFA hamiltonian is

p My B i A | {l
“Hmm{ga’ *nggé‘y;(g}%pﬁw ; (5)
and the self-consistence condition is
(6)
hapgtiup =V < H *#55&1’72 - Hyra
\) is the coordination number, Z = iDE] € .

At T = 0 the global ordering in the gystem is described
hy formula (3). Prom here it follows the natursl parametrisa-
%ion for the mean-field te:nsnr hq{lﬁgé‘ﬁp + One nbta‘ins

L‘LHHI[T 3’3’1 (23:!(1 T)-5b(T)) i

(““iDCt (T) + b( ) (79)

f

: r1333.5}l.

xith a(T), b{T) satyafying obvious conditions

2(0)1 , bO)=B .

“he choice afn,..,” end Mi33333 as independent components was
due to computational simplifications only. Numerical anslysis.
:rhﬂwéi that the system of 10 equations, ea. 4, is equivalent
.0 the system of two equations for a(T) and b(Z).

The mesn-field }.'*-em:'.il'!.:n:m‘lie.nr'iiw:ﬂi (eqe 5 )'is

"i MER — = LT)( 6 l“!um - 26 H?su’* i S'HW‘ 333 - Hiu”z)-f‘
(T) Hassas

{9)

In formula {9) we put V =



The gyetem of two integral MFA equations was solved nume-
rically. The minimal domain of integration over three Euler
angles was determined from the gymmetry arguments. The inte-
gration was carried out using the Gauss method, with 32 points
on each of the axes.

3, The solutions of MFA equations

At high temperatures the only solution of MFA equations
(4) is a(T) = b(T) = O (an isotopic irreducible tensor vani-
ghes).

At T = O one finds the obvious solution (8) and a non-
trivial one

a(0)=0 |, b(0)=B-10 (10)

The physical meaning of solution (10) will be discusgsed
in Sect. 4.

In Fig. 2 the plot of functions a(T), b(T) is given.
Curve 1 satisfies conditions (8) at T = O.

In order to examine the phyesical meaning of these gsoluti-
ons it is necessary to find the thermodynamical potential
'(JD(EJbJTj corresponding to MFA equations (4). One finds

cp(a,b}r):%(bﬂﬁszﬂz-zr}ab)-mz, o
The system of two equations, aCD/aU.=O and Bce/émoia e

valent to MFA equations (4). With the help of P one finds
that curve 1 of Fig. 2 describes the solution which is gtable
for temperatures T < T,, and metagtable for TG<ZT*QTG.* Here
TG,TGf denote the melting temperature and the temperatufe of
crystals absolute instability, regpectively. The solution gi-
ven by curve 2 in Fige. 2 is metastable.

Both for curve 1 and 2, the "negative™ and "positive™
(i.e. under or over T axis) solution, correspending to the
same temperature are characterized by the same value uf(ij y
which implies they are equivalent. Consider, for an example
‘the positive end negative solutions, given by curve 1, at
T = 0. The former describes figure S of Fig. 1, the latter =

- the same figure S in the coordinate system rotated round

the Z =axis by'}]'/,?, .

The temperature interval of the metastable (overheated)
erystal, found with help fojﬁ is
¥
e LTl e (12)
— T**
C
Note that this value is twice as much as it ig in the cubic-
-gymmetry cage [1,2]«

4, The mesophase-like golutions

In this paragraph the problem of the existence of stable
megophase-like solutions of egs. (4) is shortly discussed.
Mesophase is characterized by the orientation in space of 1its
order parameter, the director. In our paramefrisation (7) such
a phase is described by a solution of the following type:
a=0, b#0. As seen from Fig. 2, and formula (10), such a
solution existsg. It is, neverthelegs, metastable. It explains
the well-known experimental fact that for systems which crys-
tallize into he.c.p. lattice the liquid-cuptal megsophase doesn't
existe.

Tn what follows it is shown that this result is of pure-
ly geometric origin. Namely, the real hexagonal .crystals have
h.c.pe. lattice built from two simple hexagonal Bravais latti-
ceg. The sgimple hexagonal Bravais lattice is characterized by
ratio cjﬁ (C,A - standard parameters of hexagonal-lattice ele-
mentary cell, [6]). In case of ideal crystals C/A = J8/3 ~ 1.63.
For real crystal this number varies from 1.56 (Be) to

1.89 (ca) [el.

We examined the case when C/A = EJEFE. The character of
ordering in the system changes drastically as compared to that
of Sect. 3. Namely, the liquid phase transforms into the meso-
phase, which is thermodynamically stable. At still lower tem-
peratures the hexagonal cryetal appears.

As it was shown in [4], the effective hamiltonian of
space arrangement can be split into two parts, the self-srys-
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