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Abetract

At a two-loop level leading logarithmic corrections to
the coefficients of the operators entering the effective
1ASs] =1, 14T/ = /2 week lagrengian are computed, taking
into account the G I M - mechanism. The results confirm the
originally proposed in f1-37 method of the renormalization
group improvement of the operator expansion coefficients in
theories with more than one masgs scales.
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1« Introduction

By recently the method of amccounting strong interactions
at short distances in the analysis of weak nonlepionic decays
based on the Wilson operator expansion of a weak current pro-
duct have been developed in [1=-3]. 1t is equivalent to the :
introduction of an effective weak lagrangian expressed in terms
of some local operators composed of quark and gluon fields. The
coefficients of this operator expansion are being renormalized,
the W-boson mass Uy, being commonly taken as an initial norma-
lization point and a typical hadronic mass /@1 as a final one.

2 2 7z
This leads to arising terms of the form (945ﬁ‘£?”"?{,,z) in
the perturbation expansion in powers of the strong interaction
constant & . They can be summed up by the renormalization
group techniaque. The result is

by e

G = Lizm ) e ) (D
gﬂ(mw) 2 C’fmw

Here J':, 2 the matrix of anomalous dimensions of the opera-

tors {2, , C(#) - the column of coefficients of these ope-
rators, the latier ones being normalized at a point M . The
effective charge ratioc is

M:/.ﬁﬁfﬁf@!,&%&

,g‘z(ﬁ'f*y) & 2 (2)

When nondegeneracy of the masses of W - and € -qguarks
ig taken into account (because of large mass ¢ = uuark occu-

res in decays of ordinary hadrons only in loops at short dis-

tances), the terms of the form ég—;—i)ﬁ*ﬁ&‘%a-fﬂﬂgéf
arise in the leading log approximation. They can be summed up
in two stages. First, one investigates the evolution of the co-
lumn ((g) from the point A¢ = A, to A =/77,  with ano-
malous dimension matrix 4 end coefficient &y . Than he mo-
ves from A=/, to. M=/ with some another matrix

Jé and coefficient ﬁz » As a result, we have

*) Dhis formula needs some more accurate definition; see consi-
deration following formula (6).
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However, the question arises which is connected with the intro-
duction of the intermediate normalization point AL =/7%

and the method of passing it. For example, in [4-5] the argu-
ments are given in favou.r of the necesalt:r to um up only

2. n
terms like (’92 Sext’ &n M‘,’/ ;) but not /5?45;4) é?"f‘w .“;_3“_!
for some of the coefficients C} .

In a recent paper the validity of the formula (3) ie veri-
fied by means of a direct computation of £° -order diagrams
in the framework of a specific model. First, in section 2
briefly listed are some notations and definitions and the re-
sults of interest of [1-37. Then in section 3 insufficiency of
the argumentation of /4-57 is revealed by the calculation of a
concrete two-loop diagram with the leading log accuracy. Fur-
ther, in section 4 the results of the full two-loop calculati-
on are listed and some related points are considered. In conc-
lusion, resulte are summed up.

2., Operators and their renormalization

Effective weak lagrangian is written in the following
form:

= cos@.sinb, p Cyl(17y,, 7 "r-s‘?‘)f“)&?; (4)
Ligp =2 GrCOSC ciz.r w7, el

Here H;#}u.}=y2(#‘;/4x - effective strong coupling
constant at a point A . The subscript A near an operator
means that its matrix elements are taken over a state with
virtualit:r/‘without accounting gluonic corrections coming from
the region pbove A .

We consider decays 45/ = 1 of ordinary hadrons compo-
ged of the light quarks u,a._’,.r « Then the main contribution
comes from the following (of dimension 6) operators:
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Here f‘g 3 /‘?‘z .S'C/(:?)_generators, Aﬁ/fﬂ b= 29z4.
Further A = IAa L B e b o G &
correspond to the representation E‘T} of the flavour group

EUEB)f and therefore they are being renormgllzed separately
from the other ones corresponding to the representation 8

of this group. Below we shall omit them. Four remeining opera-
tors correspond to the/47/ = % change of isospin.

The structure of ofj4 (4) at  =#2,, is fixed by the
born graph (fig. 1):

) ( ’-‘) + Ofas(m,,) (6)

Weak amplitude renormalization at /%, <A< /77, occurs due to
the scattering graphs like fig. 2(a). In the operator expansi-
on language it is reduced to the renormalization of ﬁ by
the graphs of the type of fig. 2(6). Strictly apeaklng, at

o ?f?z‘. . the full number of operators increases because the
terms in which operator "¢  is replaced by € come into ef-
fect (atﬂfﬂ;matrm elements of these terms are suppressed by the
powersa of" f“/mz ). However, since & - and & -—quark-
~containing’ 'l:erma are renormalized independently by the scatte-
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ring graphs of fig. 2(b), we may confine ourself to dealing
with the cited above set of operators @,Qz;c‘?f_, &, under-
standing under (,"04) in (3), as in (b}, .the colum of coef-
ficients of them. Computed with the help of scattering graphs
anomalous dimengion matrix is

4 0 0 O
s g-2 o o
4 0 0 7 35 (7)
0 0 164 O
In the same region 4. = 25;’3 (four quark flavours including I

€ -quark bring the contribution into the effective charge).
At /Lflwc annihilation graphs of fig. 3(a) come into ef-
fect too since the GIli-cancellation between & -and c -
-guark-containing loops is not complete. Therefore, dg- are
renormalized by the diagrams of fige 3(b) as well. Anomalous
dimensgion matrix is modified:

r=r+[ 8 e (8

s % “%-170

o o 2 ¢

How éz =9 ( & -quark doesn't give a logarithmic contributi-
on into the effective charge in this region).

3. Example of computing two-loop
diagram

How we shall treat the diagram of fig. 4. Using this exam-
ple ingufficiency of the argumentation of [4-5/ will be also
considered.

We have the integra :

1 i R y 7 & Fraln
) : -;‘ ] 4 f
ﬁ;'e 4 JE" "'-:-—/F-m,{“-,a-—f-@ fp -7, %_,)2_,”;(9}

Here /7, = O or /7. - the mass of & c) - quark (the masses
of the light quarks are neglected in comparison with their vir-
tuality m). Pirst, the quadratic in the gluonic momentum A

part is picked out:

pf—Em, p=d-m, (D)

In addition, the momentum / in the K -boson propagator
will be neglected (the account of it would lead to terms ~ ﬂ‘;’z&’zﬁl&-
tive to the main result). We arrive at the integral of the fol-
lowing form: :

W&f _dledp
-9 -t~ A=l —miﬁ?ﬁ) G-r*=mf (1)
% o i
L

o P ,

o g
Combining the propagators with the help of Feinman parameters

drdﬁZ;E depicted under them, we take the integral over
;4# « We are interested in the term arising from the structure

Pﬂﬂﬁﬂfﬂjﬂs in the numerator and proportional T;o j&ﬁﬁ=
Sos " Socy Fpé 7 S8 Fpy « Up to this tensor

atructure and a numerical factor it is equal to

o f i{ ':;" o 2
274
A 87 =X~ X, Rz, % wﬁﬁ-"'z—@z] £ /282 -
X7 2 1/2*%9#""5/”?&;*#;)#-&?%3 (9. (12)

o

722 = mEer-x") + /i

Then we combine the denominators once more with the help of the
Feinman parameters X , 1-x pointed out in (12) (taking

g = 0 for simplicity). After integration over &# we pick
out the coefficient of EEP ; up to a numerical factor we get
the expression for it:

oF A=) i

(Rt o, )10, =0 P 5o g (7—0g)KP=tri% _ sz of 42
e ¢ (0 #o )7 — =) &y # o5 s
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o, o

wittpe in the euclidean region we set kE = —mE. Now the result
of interest is produced, first, by integration over a(w:

**-i-l‘_—_{_

o? rf-x) /f e o doc® y
=92 § e A1 ety r-0,) - P L= _/
“;"“'fz
_ Kycr-Z) / v F—e—oc, ) (7~ /7, )7" ”3%%,-;..
oty oy ML (14)
725 2 +
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Z =X y—

o J oyl —x, < dabalaatar
}/LZ el o "2’.'/
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then over a(} with the log-log galrfing its value at o¢=/-cx,

in accordance with the formula /%:.’_gérf#/z)ﬂ,é(&%%l

where AZ >>7
. / 3
’”f 7 ‘%ff""ﬁﬁ)
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e

o,
;’Ea / at'f/v’-—..z’) a_@ g,

Lo G5
m.z -2 -05)% £ 2L zm :
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It 1s obvious now that the difference between the d - and 1

¢ - containing diagrams (Mf = 0 and /72. respectively)
containg the term of the form

1 4,27 2
(129 (- 00,0 [ L tn* 2 zfg,zm PRS0

~x.ama -—.__; o

z
Mn/

where integrations over remsu_nlng Feinman para.t’geters are tri-
vial and 3’1&1!1 the numerical cneffi%;l.ent oi‘ [ & m%:
._4,&12«’7?w 2 = Jfﬂ?w 2:2 7%, Goe2 — 5 z”’v

Log-log terms of another kind arise from this diagram as
a result of picking out the bilinear in K Gl its part.
For doing so we leave the linear in A4 term in the decompo-
sition (9), teking the linear in & part from enother propa-
gators:

7 7 7 7

= = 7"' fr ‘
;—f 1"' -—f Z (17)

We come to the following integral:

/ﬁ Eup=Pso~28)) S5 bep 4-44,
2%ct-2// ¢ ,0~f)z-ﬁ'?'§73(ﬂ —m722) p? —-mﬂ, (e
(& % _'_z_ o -
1-2-% 4 =T

Using the parameters n"tr ﬁ;v,z one integrates over 549
extracting the term ~-77 rs , then one integrates over ;{z
with the help of parameters, g, f’—;i:’—é! and picks out the term
Hg?E « Por the coefficient of the tensor structure %’“NJ
we have up to a numerical factor:

X7 (1~ 22— %)
21722, 0 % 1727 1= ) ] + 1Py —4P o, — e (19)

Here we set 92_____#.22 .
"

Further, one integrates over e :
f X~ —g) AW
/ﬂz’vn’w zﬁ,_ wj+ﬂzfﬁ*ﬁz)fd ‘.xzj

=L K-z 4 (f-—n’)ﬁ-—ﬂ ;;'?’f; ~ (20)
”"w z 7
zﬁ L)X, —ex%) | ”’w+
5
v ,;;;/-tg)(a;--wé) /
+ 5 g &

then i:we:r.* _‘2!’ in accordance with the formula
Yy

e A pf2C
'&Z"fp &I%J (29)
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valid for j‘;f*,}/a-‘f, .'?-i:-_{ .

e get to the log-log accuracy:
&‘:_:_ oo Jf.)/-'{ Y o dinulan -z )
w ﬁf,,"ﬁ“!‘yfm—w“)
L b ol 2 s
2z ‘fj’-jl)(n; -—cx'T] ~mz, * #‘W/ é’
/ &z 7%

rhere J is replaced by constant E:ﬂﬁ omitted at
? f’ 277
PP =7 u,z_? and is equal to ﬂz e at L, =/72. .

(22)

V-4
Then —C -cancellation yields - 772
Ao 2 /722
25 xZer-g) L b (23)
AQ;P‘ ﬁﬁgj Azrz o

where the integrations over & , & are trivial and permit
us to find the numerical coefficient of log-log.

It is obvious that this second type of the leading logs
(23) in annihilation diasgrems arises just in the way proposed
in [5]- According to /57 multiple logs arise as a result of
integrations first over &’  then over parameters entering
Cfx) where C@x) is some function of Feinman parameters in the de-
nominator % of an expression obtained as a result of perfor-
ming momen tum guadratures:

o W2 Lo d 2
g = (x 777 +§ﬁ,ﬁ??/ﬂ(ar) FA7 )

But every parameter entering &£¢é.) is just that which ig

put in correspondence with the /7, -containing denominator
of the result of integration over some loop before integrating
over the next loop in the course of successive parametrization
end taking momeritum quadratures.- In our case it is parameter
2 in (18). However, the powers of logs may also arise, as
we have seen, as the result of successive integration over
parameters introduced when taking momentum 1ntegral over a
certain loop containing W -boson (parameters af d"; in
(11)). These parameters cannot enter the multlpller of Aﬁhy all
together.

10
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4, Full calculation

Full result for an annihilation one-gluon-reducible dia-
gram is got by picking out all the terms qguadratic in the ex-
ternal momenta. In table I each diagram is confronted with its
formal expression in terms of the external momenta, mean-gqua-
re value of which being ﬁu Lﬂn Y. The gluonic propagator is

s -—_.(gﬁv+(a/ {)ﬁ‘f—‘d) ; also brief notations /e,
zfur 4, z, M2z G TC used. In order to extract the diagramatic
contrlbutlon 1nto any phyesical operator one must move on quark-
-mags-sghell neglecting quark masses. As for the terms descri-
bing moving off shell, they correspond to gauge-nontrivial
operators which are not interesting for us.

It should be also said ahout the logarithmic divergences
in loops of the type of 4§¥‘4;j§1 where A4 is cut off
parameter, p is the momentum flowing through the loop. All
such the divergences can be included into renormalization of
the charge entering the expressions for the one-loop diagrams.
If one implies under He¢= the effective charge at the
point #ZZ then /4 must be replaced by AZ (or by /72~ in
the case of closed loop with & -quark, fig. 5).

In table II listed are the wvalues of the irreducible an-
nihilation diagrams. As for the scattering diagrama, they
yield the result proportional to 145‘22/»?;;.« with the ex-
ception of fig. 5(a,b) where ,.4/ = 3 llght quarks and 2 -
-quark propagate in fermion locp, corregponding contribution

into "{'Ef is
(£ ) 277 5, sindeoss, (fy/:.w 22 )3y ¢, )-

(25)
J/A;;&/WW:‘-

Computing irreducible diagrams is more easy than it is
for gluon-reducible ones because of the needless to extract
bilinear in the momenta terms. Therefore, we shall straight
list the values of the summary contributions into a(}y@f of
three groups of scattering diagrams using Feinman gauge of the

gluonic propagator = -—&_‘l/,éz .

11




1. Diagrams where only one gluon carries colour between
fermiong (of the type of fig. 5 excluding fig. 5):

}.zﬁ G SinBcostl 2EN (7Y 4% Xt U ) E By

2. Colour is carried by two gluons, with their lines not
crnasn.ng each other (of the type of fig. E:(a))

/;ﬁ-z 2156, sinbcosn FEALLYE ,1/29” £,

5:'3/72
i (27N
3. The same, but the lines cross each other (of the type
of fig. 5(1}}}: 4
(42, )or5 s, simp gy Cre) Tt s M@ st %),
i : Ll

- Let's transform the expressions obtained to the form con-
taining the operators @7@ (;H? gf/" » For ﬂc}ing this we;{]l uge
the Fierz identity in SJ(M)L : t’z L 2L, = ; 1t O = %

and for the J’ -matrices as well, taking 1111;0 account anti-
commutativity of the fermion operators. As a result, we gel
the necesgary relationships:

?%fj"f )(f)‘"tf)-——{;—{M %.#,y@ffd?

2(5‘3’ £t )7k o) = (14 )+ "ﬁ’-* )Q
“H,a, S

St f;.)-,ﬁ /:-”)ﬁ’?’"
g =4, .,5’ )
mkz‘ ;(d‘}’ z‘a)—— e;’Z A".—-c@ ()

(&L, z-‘“é:)rc'z"r f‘?“g;-—-— ﬁﬁ/ﬁ L7 !—’je?
(7, ¢4 )@‘n‘r e f’/m =L )

hpdeda

Collecting tcgether the results obtained and taking into ac-
count that Jt‘!m*"/fwj —JI%W ,?&Ww&mzf&’%z
we get for the coefficients £ ¢ in formula (4) at N = 3:

() Vit
)/M / /,,,,/// % _5_,,‘%)

> /Vﬁ’,z,y
&mz +,3/ ,ﬂ,/é,m ﬂmu
; ﬁm——-+
Af’—f’
/rx"”“fa .s‘w) 2
| f"‘”‘/ﬂ/
(30)

“%
\_
%
\$

.
"“&

R\
‘\\'

13




References

.

vwhere the terms of the first order of é?z resulting from
one-lopp computations are also written for clearness. The
same result will be if formula (3) expressed in terms of "

i 1« A«Il.Vainshtein, ?.I.Eakhgrnv, MeA.Shifman, Zh;'Ekép. Teor;:
p{S'(f'?z)-- iz(kff)fﬁ- is expanded up to the terms ~ocZ ; Szl e CIOTD Sicio s

S :
{ 2+ MeAsShifman, A.I.Vainshtein, V.I.Zakharov, Phys. Rev. 18D
((1978) 2583.

3¢ MeAseShifman, A.T.Vainshtein, V.I.Zakharov, _Hucl. Phys.
B120 (1977) 316 and Soviet Phys., JETP, 45 (1977) 670.

5« Conclusion

_ Consider above the two-loop diagrams may be divided into
one-gluon-reducible and irreducible ones. Whereas the law of

.-'.:-.ll...F__.- -

A. C.T.Hill, G.G.Rose, Nucl. Phys. B171 (1980) 141.
formation of leading logs is rather manifest in irreducible

b - &
diegrams in any order of perturbation theory (these logs can : 5. C.T.Hill, G.G.Ross, Phys. Lett. 31B (1980) 234.

be obtained by the successive integration over the loops),

this is not so for the reducible diagrams because of the ne-
cesgity to extract the quadratic or bilinear in external mo-
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