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An explicit expression for the renormalized charge densi-

ty induced in the presence of a Coulomb field is derived both
. in momentum and coordinate space, by taking adventage of an

integral representation for the electron Green's function ob=-

tained earlier by the authors.
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The accuracy in measurements of energy level differences
in muonic atoms (see /1/ and references cited there) mzkes now
the quantum electrodynamical ((ED) corrections an obaervable
nagnitude. The muon Bohr radius tends to be gmaller than
)7‘4:.= 1i/m (m is an electron mass) at large 2 {the nuclear char-
ge ig Zle}, e is an electron charge, € = -ie| } and the effect
of vacuum polarization, arising from the coupling of the elec-
tron-positron field tc the Coulomb field, becomes importent.
At distances r 2 1/m, the magnitude of electric field E is
B 2§ 4{5&}1[‘)13 Oe (ol = e? = 1/137 is a constant of a fine
structure) and it is the reason why the measurements mentioned
above test the WED in the strong field domain. In the theore-
“tical calculation the eituation occurs where the fermion pro-
pagator is far off the mass shell and cannot be handled in
perturbation theory in Zo «

The vacuum polarization in a strong Coulomb field has
heen congidered for the first time in /2/, where an expression
was obtained for the Laplace transform of r© times the vacuum
polarization charge density § (r). The potential Ss’iir}, ass0-
ciated with the firet (linear in Z ol ) term of expansion of
charge density was calculated earlier in /3/« The result of
paper /?2/ was used in /4/ to obtain the next, proportional to
(zl)?, term of such expansion 53 (Z) in coordinate space. The
short-distance behaviour of the vacuum polarization potential
has been congidered in /5/ and /6/ by using formal operator
and determinantal technigques. The numerical calculations have
been performed of different contributions to the vacuum pola-
rization {see references in /1/). In the present paper an ex-
plicit, exact in Zol expression for L (r) is obtained directly
in coordinate space.

The influence of a Coulomb field on the (ED pfocmses is
convenient to take into account in the Furry representation.
The usual rules of diagram-technique give for © (r)

Fy= -ieh[GO,X)Y] (1)
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*J The system of units B = ¢ = 1 is used.



where X9 is the Dirac matrix, tilde denotes unrenormalizsd
quantities. The expresgion for . the electron Green's function
in a Coulomb field G(x,x') is of the form
i e .

Goox)= (£ c* " erYe
where, according to the Peinman rulees, the contour of integra-
tion over £ goes from - 00 to + 09 below the real axis in
the left half-plane of variable ¢ and over it in the right
one. We have recently derived /7/ an integral representation
for G(F,?’ | €& ) which is valid in the whole complex plane E
and does not contain, in contrast to the results of the other
papere (see e.g. /8/), the contour integrals. The latter cir-
cumstance is convenient in applications.

The known ruleg (see e.g. /9/) are to be taken into acco-
unt in the limiting procedure x-» x' in (1). Note that all am-
biguities disappear, when renormalization has been performed.
Setting ? =P in formulas (19) and (20) of paper /7/ we have

G~ ('a T1g)= L '2!; fggmp +L[&%oti$+a,{tdgfes -ﬁ]}

om 3t
here (3)
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U=\ 22- G, R= 3_—&33 , &= Vimt-g2

where Js(x) is the Bessel function. In the case of attractive
field; that we consider, ¢" determines the function G in the
upper and G~ in the lower half-plame of variable £ . The func-
tions G* and G~ coincide, as it should be, on the gegment of
the real axis (-m,m). It has bean shown in /7/ that the deri-
ved expression for G{?{%'I £, ) has snalytic properties, which
follow from the general theory /9/: it has the cuts along the
real axis from - 90 to m and from m to &2 in the complex pla-
ne g, which correspond to the continuous spectrum, and simp-
le poles in the interval (0O,m) corregponding to the discrete
one. The cited analytic properiies and analysis of the expres-
sion (3) permit cne to deform the contour of integration over

(4)

s

e, T

£ in (4) so that it coincides finally with the imaginary
axis. After this deformatien one can rotate the comtour of in-
tegration over § in (3) to the imaginary axiam: it goes from
Q0 to - 100 in the expression gt and from O to 102 in 5
Performing the stated transformations, teking trace and making
an obvious replacement of variables, we have

§6) = Z{Haxfat-ea £3,¢) ©
?rzp. g=1 ©
where

3( EgR / g:W!R: Im't.}/q=2%0(‘§
(6}
$(3,8) = § £ singre) I, (3)- 224 ctht togfut) T, )

here I.o {g.r} is the modified Bessel fui'ction of the first kind.
Note that expansion of the quantity § (r) (5) in Zol contains
the odd powera of this parameter only, i.e. the Furry theorem
ig fulfilled. It is necessary to renormalize the expregaion
for f(r) (5). We perform this proceeding from the phyeically
clear requirement: the total Ilnduced charge should be equal to
nmero. It is convenient to perform the renormalization in momen-
tum space. By definition:

4-1 oo
= L B e 7)
Fle)=[or e 50) = ot [Rar €t siufpr)
where B }L’ Substituting the expression (5) for ?{r] in-
to eq. (T] and gassing to integration over y, ingtead of R, we
get: -
Be . e T8 ycht
Sray. 4 5 0 (ax {at E—E—&SL g,¢) (8
S’(ﬁ)' E-!& §=i £ S i 3 ( )g -5-( .)

The renormalized quantity € B') should be equal to zero at
the point [5 = Q. For thig reason we get the I_‘ernorma.lized axX~—
pression for P i B : B P fé._a'st, we determine the asymptotic
behaviour of the quantity ~P ( 8 ) at  ->0, retaining only
the terms, whiclh do no¥ turm into zere at £-'0 and, secondly,
subtracting these terms from expression (8). The terms of
different orders in 7 ol expanaian of .5’ (ﬁ ) have different



agymptotic behaviour in the limit B> 0. So, the linear term

©;( & ), which can be obtained by chenging +(4¢)=> :l'_-i.{é‘,-h)
in the relation (8), where

$, (3%) = 22 [t (3)°L) 19)- Mt T ]

containes the term Ed./g‘l 4+ Lo at f%-'ﬁ 0. The quantity f-’i {ﬁ- )
corregponds in terms of the theory of perturbation to the dia-
gram of polarization operator of the lowest order in ol :

P

z € a2 '

fsa-fl@')= T }?(—!‘HJ _ (10)
| 13

and subtraction of the fterm C{/{gz + Cp coincides with the

usual praggdure of the renormalization of the polarization

operator §° « After subtraction we get

- oteifs 4 L 1] T (e ¥

S (@)= "—'_['-*—‘-z-l- 1—;’!,) |+ 2 ﬁn(__.-_—- £11)
am L - ¢ ?‘1 ﬂi" TR 1

for the renormalized quantity Fl( f?, Y+ The e%ression (1)

coincides, as it should be, (in genae"'}rela’cicn (10), where til-

des are to be removed) with the result of direct calculation

of polarizaticn operator (see /9/). The potential correspon-

ding to charge density /@1_ ig known as the Uehling potential

/3/. It has the form

L)
- i ~2RX
‘fﬂ {,T-}: - gr—r-ba'ﬁ{ ['ZG(QR}-— i E"Eq Lq':_d: e' } (12}
4 p 8 St

here KéER} ig the modified Bessel function of the third kind.
We write the Uehling potential ‘P,(r) in the form (12), which
makes obvious its behaviour at R~ 0. :

The terms of the order (Zel )° in (8) correspond to the
diagrams of the type of light by light scattering. Thege give
fhie Vibh © Cos Oy & < in the it A0 - EHN Tagt ek Aot
ted in /2/. At last, the terms of order (zol)? and higher in
(8) have a constant limit at g- O. It's eagy Lo calculate
this constant by changing in (8) sin (B3 Sh-l-./zﬂ?l > ( pysit/20.
Performing subtractions, we obtain finally the renormalized

expression for ¢ (ﬁ] = fi{ﬁ} +fz{ 53]. where P, () is

B

-

defined in (11) and for ??_ {ra} we have:

fur= {3 To Toxfon T4 s ()" Frtwm -
- (‘é:'f)) ¥ S'ia(g.'_g.'b)%(‘é,t)] ¥ _Q_g

where

7
& i : ! ‘ 2ot)?
0w ie. FE-i28) + 3 2012 d)+ LAY+ 55 -1 ‘iﬁ%f
E=¢
Fi
here q/{fﬁ:;‘é_ﬁ,r&ﬁ. we get the renormalized expression for
the induced charge density in coordinate space &, (r), perfor-

ming the inverse Fourier trensformation:
a0 OQ

e yeht
9. (3)= %,ga 2 b fax gp&:[e (5(3,6)- 5,684 }@i,t)]%?@_Q.S(%)

-

(45)
nere y =26R/4Le 5 ¥, = @R/ , the other quantities are de-
termined in egs. (6),(9),(14)s The explicit expression for

g(r} enables one o write down a set of expressions for cor-
responding potential ¥ (r), taking into account the fact, that
the total induced charge is equal to zero. As mentioned above,
the behaviour of the potential ¥Y(r), at small R, is of impor-
tence in some cases. We give a few first terms of expamnsion of
the potential W(r) at R= mr J{ 1

w i\ e R AL sie B Thak e
WSO o SIPEN Bl s ] (14)

8 2V, '
S -2 (LU ) BB FR DR } (16)

where C = 0.577 «.. i8 Euler's constant, {.'l.: Q 1~ (Ray? ;
= {t aﬂq r w 1 [- H ‘ : {
A _Trg—_tfj““!_g’“ P("‘ L%d-)+2l?.‘(w.u)-{a--.u)\{’{,}-tﬁ) + :23.,;‘ - 12 e_i}-{éﬂ

Di:' i I [] 7
T W8 M us B s ST
F T ¢z V ‘j:j 0% -4 20% (w+1)

B=-2:43 & {ut) uas)e > (bt - 5y )
2={‘V =] = e 511117

. (% -9) __"" 2t D
9=~ or-1) I () 5;‘““ +(22) ], (zat)

(17)




here I, J,, are the Bessel functions, Vi) = ;"—g md%:iﬁﬁ')-
The gquentity Ae corresponds to an induced point charge ( 8@’
iy notation of papers /2/ and /5/) at the origin and containe
the terms {Zd}B and higher. The quantity £Q' was at firet ob=-
tained in paper /2/ in the form, differeni from (17). It was
recalculated in paper /5/, which is entirely devoted to this
question, in the form coilnciding with our result for Ae in

eq. (17). This form agrees, to all orders, of 2ol with the
result of paper /2/, as it was shown in /5/ . The quantity.f&'
coincides with the limit of P, (@) in eq. (13) at §2 o .
Within our approach a part of $QF has arisen at renormaliza-
tion ( £ in eq. (13)) and the reglon of x3» 1 gives the con=-
tpibution to $Q' in the remaining integral. So, we can neg-
lect unity in expression for b = ﬂi2'+ 1, that corresponds to
zepro—electron-mass limit, utilized in paper /5/. The paper 76/
ig devoted to calculation of the coefficients F and D« The co-
ePficient F in eq. (17) coincides with the corresponding re-
sult of /of. The coefficient D ig presented in /6/ in a rather
complicated form. The first ftwo terms of expansion in Z of
the quantity D in eqe (17) agree with the corregponding terms
in /6/. The coefficient D in eq. (17) has a singularity (pole)
at v, = 1/2, which cencels in eg. (16) with the sgame singula-
rity in the coefficient F (at V > 1/2, Qt‘_}i ) this question weas
digscussed in details in /&/. The coefficients B,F and D have
also singularities ~ 1/, 8t v,2 0 (ZA= 1), These singu-
larities csncel in the expression for ¥ (r) (eg. (16)) in pa-
irs: B and DRQﬂ‘, PR and a term omitted in eq. (16), which is
proportional to Rij“*i s that we have egtablished directlye.
The term ~ (Z d\lj in expansion of quantity B was obtained in
paper /4/ and is in sgreement with our repult.

At large R 1 the Uehling potsﬁtial ‘Pi(r} decreages ex-
ponentielly. The leading term of the potentisal % (v} (corres-
ponding to Fatr) (15}) 1s proportional to r~° gnd only (Zol)
term survives, that we have checked by direct calculation.
This sgrees with the result of paper 72/ and may be easily in-
terpreted in terms of effective Lagranglan (see Ff2f, Appen-
dix IIX).

The asuthors would like {o thank Profeésnr V.Ne.Baier for
his interest in this worke.
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