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AbBstract

Semiclaggical solutions of one-dimengional inhomogeneous
Schrodinger and Dirac equations are obtained. Using these solu-
tiong, the agymptotic behaviour of the Hartree-PFock and Hart-
ree=-Fock-Dirac orbitale is found. The asymptotic solution in
atom coincides, within the accuracy of a few per cent, with the
numerical solution in the region after the classic turning po-
int. Two questions concerning the influence of the exchange
interaction are discussed: 1) the change of the long-range be-
haviour of wave functionas, 2) the violation of the oscillation
theorem (additional nodea).




It have been shown (Handy and Marron 1969, Handler anhd
Smith 1980) the Hartree-Fock atomic orbitals at large T to
behave like EKP{'—{- IJZFT."IE]“LJ , where E is the highest oc-
cupied orbital energy. Such a behaviour of the wave function
takes place only within the range which is an asymptotic one i
for all atomic electrons, i.e. at T > Qowe o where Aour
is the outer electron orbit radius. In this paper we have fo-

und the semiclassical asymptotic solution of the Hartree-Fock
equation which is also applicable in intermediate range T > {in.
Here in is the orbit radius of the inner electron whose
wave function we try to find.

Congider first the one-dimensional inhomogeneous Schrodin-
ger equation :
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Suppose that the semiclassical conditions
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are satigfied. A solution of equation (1) ie & sum of a free
golution of the homogeneous equation and the induced solution:

9’: [-'P;'ngf ¥ L-’:rt 5 (3)
Congider, for example, 8 classically forblidden region whe-
re P(x)={2m(u-E) . Here the free solution is of the form:

o = Const tf fpdx
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Condition (2) impliee that the function F(x) varies not so
rapidly as the solution of the homogeneous equation. Therefore,
we can find e slowly varied induced solution in the zero appro-
ximation by neglecting the derivatives in (1), i.e.

(4)
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Then equation (1) can be written as followe:
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This equation can be sgolved by the iteration method. The re-
sult of iterations is also repreaentahle as a geries
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Similarly one can find the solution of the inhomogeneous radi-
al Dirac equation (A=C=7)

(-2 +ANH=(F) ®

where the matrix ,4 is

A_(*% E+2m-u)
= G 5

T

If the semiclapsical conditions are satisfied, one obtains

[}) -2 ()5 ) Az f)eo

where
(F1=ATTH)
Ze Ff
It is necessary to point out that in the cases of interest
the series (7) and (9) turn out to be asymptotic ones. In view

of this, in the following we shall use two or three first terms
only.

Let us now mroceed to the asymptotic of the solution X,(7) =
T- A7) of the radial Hartree-Pock equation:

F | .i'
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Ueyg = U+ %"
Kir) is the exchange contribution. Within the range
T >dA: (A 1is the classic turning point) X.(t) strongly
vanishes and the main contribution to the exchange integrals
comes from the sphere T <« . Thus, at T >, k.(%)
is practically independent of the values of X:;(7) in this re-
gion and egquation (10) is similar to equation (1). Let us show
that at T >d: the conditions (2) are satisfied, too. -'f(%’ in
atoms raplidly decreases with increasing ‘T . Therefore,
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the integrals
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where Cax are standard (angular momentum dependent) coeffi-
cients in the exchange term. If T4, , the second term
can be neglected and the exchenge integral (11) takes the form
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where  fu = JY Xuly) XilY) Ay eIt K =0 Hiwm0
due to the orthogonslity of radial wave functions with the sa-
me angular momentum. So, the minimal K equals 1.

If “L>d: , the wave functions with |E,| Z|E:| are
very small and the terms with |E.l/<|E:) in K;(7) are the
only nonvanishing terms. The behaviour of X,/%) determines
the variation rate of expression (12). Therefore, the ratio of
the gecond term to the first one in (7) is about fEn'H%‘),i/{'E*HQ}
As 1%t has been noted above, Fuq{l << E. « Hence, the accuracy
of expression (7) is determined by the ratio En/F <7 .

Thus, the asymptotic solution of the Hartree-Fock equation
ig (e=4)
[ Pdx
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The constant in the free solution can be determined by
comparison of Fg. (13) with a computational solution of exact
Hartree-Fock equation. For a rough estimation of this constant
one can use the expression (Gol¥dman and Krivchemkov 1957)

A=l4 2 "E (14)

where E, is thq energys /7 ie the principal quantum number.

As has already been pointed out, the first term in (13)
vanighes more strongly than the second. But uvsuslly the exchan-
ge interaction is amell enough compared to ({¢gy . Therefore,
the free and induced solutions become comparable only at the



digtences where the typical relation En/E, <</ . Thug, the ac-
curacy of the expression (13) is about a few per cent even if
we use only two terms in the expansion of induced solution.

For heavy atoms the Hartree-~Fock-Dirac equation should be used
ingtead of the Hartree-Fock equation. In this case, one can re=
peat all the argumente with no important changeg. Hote only
that for the Dirac equation every two terms in the series (9)
corresgpond to one term in (7). In practice, at T & it is
more convenient to use the Schrodinger-type equation which can
be ubta.i,ned from the Dirac one if (feff<<mc’s
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To estimate an accuracy of the asymptotic expressions, we have
compared the asymptotic wave functions with the nr.mlerical solu~
tions of the Hartree-Fock equations for the ?’5 2;‘9 confi-
guration of Be and of the Hartree-Fock-Dirac equatiﬂnﬁ for the
ion C; ground state. Figure 1 shows the ratio of asymptotic
golution to exact one for the 15 orbital in the ?’5;2%2 Be
configuration for the zeroth approximation and after the first
iteration in (6). In both cases the accuracy is the seme as it
is expected, i.es F:/F, = 0,04 and fEia ) = 0,0016. In
C; the accuracy is about a few per cent for all orbitals

- after the first iteration.

As known, the additional nodes occur sometimes in Hartree-
=Fock orbitals in the asymptotic range (see e.g. Proese Pischer,
1977). The appearance of these nodes is easy to understand using
the asymptotic solution obtained in this paper. Let us, for
example, discuss 18 orbital of ?'5'; 3P Be configuration.
The 3P wave function has a node at 7= 3s ( (s - Bohr ra-
dius). Therefore, the induced solution for 18 changes the gign
near this point, too., But at T:=344 the free solution for
15 is larger than the induced one. The node of 15 orbital oc-
curs only at T~ 4d;, s where the free solution becomes equal
%o the induced one. The functions 18 and 3P are shown in
Pigs 2. The exchange interaction with 3P electron leads also

{
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to the appearance of the first node in the 15 orbital in C5
ground states As is shown in Fig. 3, the total number of nodes
of this function is equal to threes .

0f course, these additional nodes are in the region where
the wave function ig very small. Therefore, the contribution of
thig tall of function to the matrix elements of physical ope-

rators is usually negligible.

If the radius is larger than the gize of atom, there is
only one nonvanisghing term in expression (13), i.e.
X = const- 1" E‘pr-fm"ﬂ , where the En ia the
energy of the outer electron. The value of P is the same as
in paper by Handler and Smith (1980).

Interesting results can be obtained for the asymptotic
behaviour of the wave function of an inner electron in the
atom placed into a crystal. The wave function of the electron
from the conduction band does not vanishes at large distances.
In the weak coupling spproximation this function equals

f-f,-‘&”’fl’ K7Z) . Therefore, due to the exchange interaction, the

wave function of inner electron vanishes only as a power of T

Y1)~ Wﬂ(ﬁ.;}; (ko) ECDC Ko T) : (16)
1

where the K, 1e the Fermi momentum.
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1. Induced solutons for the zeroth (curve 1) and first
(curve 2) approximation divided by the exact soluti-
on. Curve 1' and 2' are corresponding functionsg inc-
luding the free solutions.
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Pig. 2. The 1S yorbitel multiplied by the 10% (Z/ Q)" and

L 2
3P#1 orbital in the 13,}31 3ij£35- . Mg. 3. The 18 g orbital of G'; ground state multiplied by the
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