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Abstract

The general form of nonlinear evolution equations
connected with the matrix two-dimensional Gelfand-Dikij spectral
problem is found, Infinitedimensional abeliesn group of general
Backlund transformations and infinitedimensional sbelian symmeiry

group for these equations are constructed,



GENERAL STRUCTURE OF NONLINEAR EVOLUTION

EQUATIONS IN 142 DIMENSIONS INTEGRABLE BY THE TWO-

DIMENSIONAL GELFAND-DIKIJ SPECTRAL PROBLEM AND
THEIR TRANSFORMATION PROPERTIES

B.G.Konopelchenko

I, Introduction

One of the main problem of the inverse scattering
tiﬂnsform {IET-) method is problem of description of the equa~
tions ;nﬁeérahle by this method (see e.g. [1,2] }. All the equa=~
tioms to which IST method is applicable form the classes of the

'-'.equationﬂ integrable by the same spectral problem, Very conve=

nient and simple description of the partial ﬂ.lffEI‘EIl‘tlﬂl equa=-
tions integrable by second order problem (*J )\ A ‘]‘/1-

e P(%*)SV has been given in AKNS paperf_'i] . Then this
epproach ( AKNS approach ) was generalised to the problem (*)
of any order E'.l-‘iD] and to some other spectral problems EII1,1E]
in particular, to one-dimensional Gelfand-Dikij spectral prob-
lem EI3] .

Recently the two-dimensional generalisation of AKNS-
technigque has been given EH!-J » Nemely, the twc-&mensmnal
arbitrary order spectral problem --(ﬁ-f-A—SE +P{}{ 9‘){) l.’/—-
where A is any diagonalisable cunstant ma-tru: was considered
and  the general form of the nonlinear equations mtegrable by

this problem,thelir Backlund transformations were found [4] .

At



In the present papser we consider the two-dimensional

matrix Gelfand-Dikij speciral problem

Ay B s W
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where N is arbitrery integer, uoefficients'\?;{ﬁyjiﬂj sae) VM(}E%{)

are matrices of arbitrary order M depending on two coordinates

%y sl £ e=nd u(x,yi%;zf (k=0,., #-2). The
applicability of the IST method %o the problem (1.1) was dis-
cussed in Refs, Es,m] _ In the case Ns2 the problem (1,1) is
used for integration of Kadomtsev-Petviashvili equation [}5,1?,
18] .

In the present paper we find the general form of
nonlinear evolution equations in 1+2 dimensions ( fj).:g ) integ-
rable by the problem (1.1). We construct the infinitedimensional
abelian group of general Backlund transformations and infinite-
dimensional ebelian group of symmetry for these equations. As
an example we consider the case N=2, In this case we obtain
also the nonlinear superposition formulas for simplest Backlund
transformation.

The paper is organised as follows. In the second sec-
tion we rewrite the problem (1.1) in a matrix form, then we con-
gider the direct scattering problem and obtain some important
relations, In section 3 we calculate the recursion operators
which play & main role in our constructions, The general form
of the integrable equations and Backlund transformetions are
found in section 4.Group-theoretical properties of the integ-

rable equations are digcussed briefly in section 5. In gection

6 the case N=2 is considered: the infinite family of the equa-
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tions, simplest of which is Kadomtsev-Petviashvili equation,
their Backlund transformations and nonlinear superposition for-

malas are described.

11, Direct scattering problem end some important

relations

Let us note first of all that the problem (1,1) is
equivalent to NM order matrix problem

D AT Pl
'Egifi - fq 13éf r fj(.xyg é)(f} C)

(2.1)

where

00 .« O O-T, 0 O
' OO sl 0

A= P= (2.2)

a N ] &
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g RS B e WJL .Ré TS \4La 0

4

end ], is identical Mx M matrix. The adjoint spectral prob-
lem is v v :

LAWY L ol

'"j_; v gg Rt P(x!'&ljé)*——- O. (.
The metrix problems (2.,1) and (2.3) are more convenient
for our purpose than the problem (1.1) and the problem adjoint
to (1.1).

Let us consider firstly the direct scattering problem

for (2.1) and (2.3), We will follow to Refs. [i6,14]. we will

agsume that Vr(’ﬁ,g)lt)—"’{?xat Vx{,_y:l_; oo so fast that all the
quantities and integrals, which will appear in our conatruc—



ti will ist d that S =
ons, exist an gath (1) = -

5 (%,Y,%) end
F; (x’ 'B‘J {-) of the problem (2.1) given by their asymptotic
behaviour

Fonmsor a0 iy )

(2.4)

We introduce the m&trices-aolutlnns F

B byt ar* 20) expl-X'y + A

where A is a complex number, 'K is a diagonal matrix: At:&z

-X?*’yk (? exf,.zﬂ 5— {1‘: x) Qt‘i{_‘:’

o, (FK

1 Ul
_'f_’ ()‘?(x IJJ {t' ﬁ'j 5 ) The quantities }g?ﬁ-"
are eigenvalues.of the matrix A /\ A+ Pm whare P —{

= Cem P{x 1) i A @AQ)

ix’igz—na
The scattering matrix S{M/\y for problem (2,1)
)f i
is defined as follows :

g»’%) Ta’ 3: ,«;ﬁ*) §(KJ).}LL) ; (2.5)

Correspondingly for the adjoint problem (E 3) we intro-

duce matrices-solutions F (X' '5{}1") and F [I gjt"j

*) here and below latin indices take the values 1,2,...,N

(or N~ 1 ) and numerate the block elements of matrices of the
order NM which are themselvs the matrices Mx M, Greek indices
mark the usual matrix elements of WM x NM matrices and take
‘!:Ihe valued 1:25¢00 10,

Vi

F‘(xg,r,) Q;r.«,) €)<P{/\g i Dby - &°

and Euattering matrix 5[ A {-)

F (x4,t) = faf’ S()« )n‘) Fx {xg){)-. (2.7)

It is not difficult to show with the use of (2.1)=(2.7)
that the following relations hold:

ab/f 7" y)f) ;?)‘L)r"g(y"*))
o’k Byt Elyyd)=515"4), o

_;gﬁé“ S(I;/l{, i.L) Skﬂ,A;f) . 3—(:\:)\)

where 5_();) is Dirac delte-function, Hence the scatiering

matrices can be reprasented as

S(/\“) = gﬂ’;f (X;f; ¢) é?}g;{,i‘),
St = : f by Fogd o).

Te Ill:I‘ﬁ {) P are two different potentials

z\A;

!
and F F F‘+ S S are corresponding solutions and

aca.t-l:erlng matrlce.ﬂ for the problems (2,1) and (2,3), One can

(2.9)

T



prove ( analogously to Ref. Eﬂ ) the following imporiant re-
S - SEA)=

'.i' A e V’+ {2. 10)

G350 o Bl g pags) i)

L
The mapping P(’E, bf} f-)-ar- S(X; )\;{-) given by the spect-

rel problem (2,1) establish correspondence between the trans-

lation

!
formations B P-—? P on the mam.:f‘nld n£ the potentials

{ P(;.f % H} and the transformations S—’-? gl on the

manifold of the scattering matrices { S(A A r’-)}
We will consider only such transfnmationa B that

S'/M%)——%S[,w) B 0SEAYCAL) @

where B( A {) and C(}. %) are arbitrary block dia.gunal

matrices, i.e. Btﬂ.’ - 8 ()i f)SLkIH c‘{‘ C[)Ht)g- Iﬁ

This "restricted" class of the tra.nsformata.nns , &8 we shall

~ pee, is wide enough.

Further, it is not difficult to show that the follo-
wing identity holds '

§a %u S5 (4= Bp) S(ur 9 +(-808) S
X=+ 00
g {F (xg*)(i 5/9:;“)) F(xw}}!

X'-'- o0

=“_gdxdg '&’; ){P(ng){j-—g/g ‘t)) (x lﬂlft &

(2.12)

———————_

- (- Ba0) Plsgt) Fitss, )]

where ﬁﬁ'ﬁ P+P and Bﬂ%}*@@)ﬁ’(/;{)@&a) Here
and below g ""---—- %_‘

= oX
Combining the rela'l;:l.cna (2,10) and (2.11) and teking

into account the identity (2.12) we £ind
J"

Cohedad Fotsy 0 B39 Plogt) Blaga)-
(2.13)
- Py B9 Blng 9)f =0
whexe (F)«:Lﬁ %ﬁ a—p@# (‘oinﬁ=j,,? ;V‘ﬁf) for an

arbitrary NM ¥ HM matrix

Let us represe:::} Iﬁ_ock diagonal matrix B in the form
i s K
M
Bt == B, (Xt A
K=0

il
where 5 ()‘ {) are scalar functions and A g IHM .

Correspondingly for B( gg 1") we have
B(‘ggf):z 8"("3{,“) (“A gcg ;3 Pm)z U

It is easy to see that

MK
(—-AQJ.;.PN)K:-—(Pj) 9; e PWK (2.15)

"2 We will omit some intermediate calculations which are ty-
pical for generalised AKNS-technique ( see e.g. [5’13’14.’] )

g



where symbol 7  denote & transposition of MXM blocks in
WM X M matrices. :
We will consider only functions Bg(gy z‘) entire on
the first argument, i.e. B ( 'By {-) Z‘&;ﬂ)(‘g) where
gkn ({) are arbitrary fu.nct:.ons In virtue of (2.14) end
(2.15), for such functions EK("Q%, 15) the equality (2.13)
is equivalent to the equality

+ &0 N-4 o0 e Kmf
- S:d?‘ a’g ;' % g ({') 7‘[‘2{(;) ) (huj (’i#) )+
+ P Plge) 4P 1xg ) -

(2.16)
+1

s N-K A
- Prnyy) (72) (—z)"’ s

o ﬁ( 5’)9 P (—i) (n} (y é",*)} (ol#ﬁ)

where tr denote a usual matrix trace and

op) “(;E* ;)
(B & (1), L ke

((B(n) LA )) o3 (F; ) (/’K (x4

IITI. Recursion operators

For the further transformation of the equality (2. 16)

one Eru.st establish the relations between the quantities Cﬁfn)

and @m) with different n, i.,e. one must calculate the
recursion operators,
)
Let us consider firstly the quantity (P(n) . From

the equations (2.1) and (2.3) we obtain

A P (v%’ “&p)
Oy ‘P:f + 93; [»4 F

(f-’-} (ﬂ +1)

# fﬁ;ﬁf P[%Er’) ‘“% Cm f?kz—m) ﬂm} (n=613..

ﬁ'# n‘f ﬁd‘é‘l 'B‘EP{ ,{)
where m_m,f[ﬂ-m)_f and }3{, _J_ g;y

The relations (3.1) allow us to express all matrix

ot
elements of the guantity ﬁﬂf? through W -1 independent
one.,
Let Hs introduce the projection operation ﬂk:

du_);f" = 5:9*; (Pk’ . Applying the operations A,

to the equations (3.1) and taking into account the properties
s

of the matrices A P P one obtain

o) Awp)
O Tims, + (P;)A A=—A Doviya,+
(3.2)

f ﬂF)
@H)Ay’q +( ') An P ) _EC (- m‘) (m)A 4

1

J



(P i f‘f’r’ ( ©p) P
(n) A (” +1) Ay T {n}ﬁk A,

_ B p’ Nop)
AR Z ol

(3.3)

@'”") M)A« (k=23.,¥)

The relations (3.2) and (3.3) can be rewritten in a
more compact form., Let us introduce the matrix infinife order
(2] :
triangular operators J T with matrix elements

e n !
j(f?_,ﬂer' o _&mgx ~ Cn %-M) . iR

= | (3.4)
J’(*'if,,ﬂ'i"*f) =0 ,m2hed (am=gis..)
and
mm) 57?1:2& dun . (AM=912..,) (.5)

v
Hatrix operators j and I act on the infinite-

df (D D O
component. column Vﬁ ( @ﬂ) ‘F?i 2) ‘e, ) by the
! A !

usual rules, For example,

(TLWMJ s ﬁ {:%f’?’i)z ﬁ?mi m,) q?mi %V
HZ]E J"’” M) ‘Lﬂb m) fm.) (Tlf}/lﬂ) (n+1) -

my=c/Mm=c
With the use of the operators j and T the

relations (3.2) and (3.3) can be represented in the form

ATV 0N T A

( (&F) ﬁd)“ii

From the recurrence relations (3.7) we find

m)z (T_AT)N-K _ﬂﬂp) [Ar-ﬁ P:)Af-i
N-k-J

w20 (FoaT) (WPP), o)™

A,

=0 +4 ;

€ i (k=123 N-2)
In virtue of (3.8) one can express the quantity '-qﬂs:p)
through l{/@) » Substituting this expresion fcr 6‘?5)

into (3.6) and taking into account the identity

(ﬁy .Pu)ﬂe (A'*Pw)e“_"’ “‘ﬁy o V.,

where (@m}DW){g ifi (%j)ff’v;: we obtain
- f”
Z(J AT YEV=TYO 09

Let us note now that in virtue of the properties of
- r

o
the matrices A P, ana P ( for example, A‘?': AP=

=PA=APaP=PRA=0 ) the operators (P-AT)"

are linear on operator T, i.e.

{’E’AT\:- PP T P s

¥tk =f-f

13



where | 5&{ %_f(‘z :
fe =- =2, T AT
o K kg =€

it PEEIE 08 pf

Substitution of (3.10) into (3.9) give

z;(Tl/f"”a%) B s
(W}ow) ), Y

The equal:.ty (3.11) is the reletions between N quanti-

l

(3.11)

- 6p)
ties Fw ey ﬂ . The firat nontrivial equa-

tion :E:mm (3 11} &1101.7 us ‘tr::- expreaa FWﬁffJ through

1}/@ (LG
L S .u-J#

W& “p)

XY &)= = (3.12)
If{:ﬁ(;;’,) % @‘ RM e P 1‘ 5{,%)
where

‘1((? )u{ "v)) ghi g Suy” a13)
g (9‘@0 :f)‘-"—if - Wx §6y)-

Formula (3.12) contains the inhomogeneous term

(&
w P’;{I--wﬂg) 15) » Similar inhomogeneous terms ( namely

/ X +nﬂ;fi"))z€ ) will appear after integration in
fu:c-ther ca.lculatlﬂns too. Taking into account (2.5) and (2.6)
one can show that ( )\}- o)

14

(m} _
L:;m(m) (x:""ﬂf’ 5’1 {))Ef?. o
\ ol ‘ " g T
= — ~Nm Qm ;Dfé {?fm' ~€;‘(P{A{?”i?‘: ij.} ;

X2 4 02
(¥)

Let us mark by en). .

for waich Ke {’cy R gt cos(g%;))-wf( (.- z))( 0.

For indices n and i which satisfy to this inequality one have

fsm E’X/D{/\(t?ﬁ"i? h’f)'_x} == ) g Th&r-efnre in the
Wy o0 *)
relations which conftain the quantity TYU{ the inhomo=-

the subspace of quantities

geneous terms will be absent. In particular, instead of (3.12)

we have

yjﬁ) Z 65 ,271)41‘) il

In virtue of (3.14) one find

) (x) |
Y- MY,

where

/

[ I 5 0\ 0-nete O,
om0 [0 ey
M= - - -

!) g P SDE I

| &40 v uodm O o...0Y,,

{

"'-__._giei“' Ev-10 | G_o‘,‘

Substituting (3.15) into the relation (3.11) we obtain

15
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_em T[MHJ o Ve ) - rmlf
» At Ny k)
-3 PIMYw) -y My,

Let us now rewrite the equality (3.17) directly in the

A 60 x)
components of the infinite-component column i

n)A
Taking into sccount the explicit forms of the operators _f

(3.17)

and T (see (3.4) and (3.5) ) one find

— ) et SR k)
G CP{} i T(E;A +% ;ﬁnfm} 4?}71)5 (3.18)

1+1) 4
where (ﬂ:ﬂf%’%"'f)

Operator M is of the form (3 16) where instead of F

one mﬁst put the nparators @, which are
N gy o ;
7 . -'ll— i % C,) ) (, ) _._1. - ;
G Y Z)x (f 1k oV "'/ng:xgx a}’ , (3.20)

The relations (3,18) contain only independent quantities

16

A

Fa
4 . Let ua introduce the N - 1-component column }iﬂ) e —
A 2 o ;
= q‘)"*] o™ e cPw ) In the terms of these quan-
IV ) MJMJ Y lyw=LN
tities the relation (3.18) is
n=-1 (.."E _ :
kg e )( .21
Gﬁqu) .)(F?J %; (nm) ) (3.21)

where operators G- ? ?{‘;1 m) eare block matrices of the

' order N=-1 . Thelr matrix elements are

a,;'g {’ r/).{ﬂ’ x( Ve) s+£ I,a.f

N

(Tr "“}—_;; U thg,::[' ) ( - E "V}'

& g;.:;x IM 9;; - 5;,1 9} b 3 (3.22)

7
g N
(C};;m})tt

%l{ ((f()f?ml m*k{ W) i
;s 3 ZT‘ (T;mﬂ){ﬁ[ (&)(hzjm) 'JDV‘;} .

=0 m=o
((e=20y N-1)
L4
It is not difficult to show that the operator G is lower-
F a
triangular one ( Gr:-t' :—'/Vgx J ¢=z;”;, NM-13) and it has no
nontrivial kernel, As a result from (3.21) we hawve

A el 22 A o f‘"’
J(QM) ol JC)(-‘?Z) +z 6’”‘) .)(WJ . (3.23)

(‘Q Df%' J’)

17



From the relations (3;‘23) it follows that there exist

the recursion operators A n  Buch that

A A
_)((n) = A fo (r= %*’5-3"::)- (3.24)

P
The operators A n are celculated by the recurrence

relations
= A A0S LA
An-a-i 1 - - nm) m 5
s ~=1 ~ s (‘3-25)
Ai it ?_ 3 Aa = IHH
~— Pt e
where the operators G_, SF and ?E@ m) are given

by the formulas (3.22).

The operators A n are juat the recursion operéa-

tors which we are interesting in.

In the analogous manner one can show that

v
J(G'l) &= A,, f@ (n=133..) 75

where recursion operetors _/l_ n are calculated by the

recurrence relations analogous to (3.25), It is easy also 1o

showfthat

A Z(i) C an_/lk : (3.27)

K=0

In the further constructions we will also need the

18

.;_-":.l"-"‘ |

--_—-_._.“h;

- A+
operators A 5 and An adjoint to the operators
Vv
An and AE with respect to bilinear form

< ¥'y> = TJrﬂ% te(Y'ty) Y3 y..l)

where f and f are column with N -1 components, The
recurrence relations for calculation of the operators -A-ﬂ

are of the form n-i e 3
Ny A+ il AN e ,—..,.+)..
l-u A " ; Am Sz(";m) (G k.

(3.28)

A

A = F 6T (=123-)

+ &+
where matrix elements of the operators G SE and ? }HJ are
" |

_Gi.]t' =E V, (f-efjf;mf " g‘;x-u L ;

- ﬂ# s
E-F:':“%‘% (fff)zﬂi"" Ouw é:gfy—
i M o
—% éi Vf‘r (T"-),vg G g—%;mfIMgg) (3.29)
BB v( (o
(n,m) i *{Z_a ‘V’;( (J }(ff,”f) fjﬁ-ﬂ-f-
;Zo (€)oym (7 +)mm))m

m'

19



N

s + 1 Pt € -1 a
(ﬂ*knf’; - = Ve (U (rg,m)ugx +Ldy, %m)mﬂi

€= 1
v, (3.30)
‘N +\€
.y it
f i ..J._ |
In the formulas (3.30) and in all adjoint operators

( marked by + ) (Bujf)(x au*,) g fdﬁ" f(}i’ «‘5‘)

The operators f“; are c&lculated by the formulas

;7= Z I(Tﬁﬁvh)ﬁ\z(ﬁ?‘*)kz (3.31)

(3.32)

o O 0 Iy Viz
\ O O g3 % L3 O O /@_m) j
Pormulas (3.28)=(3,32) give somewhat cumbersome but
direct method for calculatinn of the recursion operators A 11
The operators A ,  can be found by the recurrence

relations analogous to (3.28) or by the formula

Vo 1 A+ n-k
An =(—i)ﬂ; C: -/]-ki 90‘{ b (3.33)

20

IV. General form of the integrable equations

In the prew.ous sectl\y it was shown thet matrix elem&nts
)

of the m&tricea ", CPG"I) can be expressed through ﬁm}
and J((m’j . And so let us transform the equality (2.16)
-~

into ‘t;he form which contain only independent quantities f

and f . :
Tak:ing into account the properties of the matrices P

and P one can show that the equality (2,16) is equiva-

lent to the following one
N-{ o0

_ngxyZZ &nf* a: P P(&M ‘PM(WJ{)

E=0 n=0
(4.1)

~ . It Z*M'
I'"rr:rm the relation analogous to (3.8) we find

(*)
{n)aﬁ_ _(3 AQJ+P AT) ()A (A%+ )

N-K-! : éen ‘ 1
S0y A 2GR, (i e
Z Gé’? m) q?m)n ke

Pasgsing on in the equality (4.1) from the matrices

L

()

Ay
to the columns ﬁw and introducing the N = 1=component

21



column V'(xy f) (V (x;ﬁ{) (541, .. ”_1{ {))Z

we nbtaln

226’ W€ V'° Z

K=0 f=p

-ty VZKMJ%*‘J““) VZZ /Vd,, m) ﬁw}>>=0

where

K)
(G(ﬂ m))zc’

(;za:) ﬁ”‘)

(4.3)

SED (e )w(@,,m)

(4.4)

(ﬁéfm))re s ‘Sszﬂl_” . S‘j”'k (e)@ B

(¢,€=1 vy N=-1)

Operators € are cnlculu.ted analogously to the npemtora F

Lastly, in virtue of (3.24) and (3.26) the equality (4.3)

N-1 o

- im equivaleat to the equnli'hy

<<IJ(@) ZZ 6, fé){z./l. mm)v—

where operatora _‘)_'1 B and

formules (3.28)={3.33) and

22

._({_:..;_) 8 K K74k i)ZA (M‘)VJ’(

ANy

(4-5)

are calculeted by the

-

(Gome = ©Caim)e Zo b (G,

(K@} e
S ¢J€-N+K IM ol

J

((n m));g g{ﬂﬂi IH > géﬂ‘ﬂ (6’:’-)(@:11)
(ﬁ;kjé’.: L1y ’M"{)

The equality (4.5) is fulfilled if

LS 0nS K, G-

(e A R e 3 A, (Y % ,,,,,)v}

Thus, we have found the transformations of the poten-

(4.7)

tial V*—"r Vf which correspond to the transformations of
the scattering matrix S——“r S’ 4 of the form (2,11), These
transformations V-—" V; are given by the relation (4.7)
where fm (1') are arbitrary functions,

- It is not difficult to show that the tranaformations
(2411),(4.,7) form an infinitedimensional abelian group. The
tranaformations from this group is characterised by N functions

Bj'. {}.‘; {') entire on ,\” ‘
The infinitedimensional abelian group of the transfor-
mations (2.11),(4.7) which act on the manifold of the potentials
{V(y/ '5{; f)‘- by the fornm}a (4,7) end on the manifold of
the scattering matrices {S(ﬁ; }‘! tﬂ)} by the formula (2.11)

plays a fundamental role in the analysis of the nonlinear

c3
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systems connected with the problem (1.1) and their group=
theoretical properties,

The group of the transformetions (2.11),(4.7) con~
tains the various type transformations, Let us consider the
infinitesimal displacement in time t : % -> "(H-.*—- f-f—EJ F> 0.
In this case

Vg 4)= Vg, )= Vg t) + £ P82
Bn [}tff) E-Qw.[)t z‘)

J
EZJ Wn! f))\w

Substituting these expressions into (4.7) and keeping the

terms of the first order on £ we obtain

OViry ) |
34 I,ﬂ, (Lt LA)V‘"—‘O (4.8)

where
Ml o
) : ﬂg
B gﬂzwm (+){Z i GM £
(4.9)

L o S V]
T TV R, [

ke n
14,1 are calculated by the formules (3.28)-(3,.33) at

!
Y =¥,

24

For the scatterlng matrlx f; under, 1nfin1t951ma1

time displacement Sr)g %) S{T)g {-)-i-— E ? f and

currespondingly from (2.11) one have

280 A0 = (34) S~ S5A,9Y0,8) o
Yp,f) - Zi Q.9 A

Therefore we obtain nonlinear evolution equations in

1+2 dimensions ( z‘,j X4 ) as the infinitesimel form of the
transformations (4.7) generated by the time displacement,

The class of nonlinear equations (4.8) is characterised
by arbitrary integers N and M, by recursion operators l:ﬁ
and by arbitrary functions Wyn(¢) (k=4. N-L) . A choice
of the concrete N, M and functions wm {f) leads to the
concrete equation of the form (4.8). The case N=2 will be con=
gidered in section 6.

Nonlinear evolution equations (4.8) in 1+2 dimensions
are just the equations integrable by IST method with the help
of the two-dimensional problem (1.1), With the use of the two-
dimensional wversion of IST method ( see Eﬁ,iﬁ]} cne can find
a broad class of the exact solutions of the equations (4.8),

In the conclugion of this section let us attract atten-
tion to the fact that in virtue of (4.10) the diagonal 2lements

:;ii (}?A) of the scattering matrix are time-independent:
Y
£{SLJIULA]__

fore the quantities

') & at any functions ‘-Qk:{xj{)' There-

S,J_u: {)‘.} A) at any )\

rals of motion for the equations (4.8). If one expands
—-p e _ J .
i? [A 6‘? S,'ﬂ()'})‘)) ((S&)Lfltgf &F S:'w_ ) in the asymp-

Lia

are integ-
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totic series on >,-i : _é?(A*Pé? i(«\ }t))':i )\-—n C(P)

then one obtain a counting set of the integrals of mntiﬂn
C(P) (,P"' oy ﬂ'— = aif,,) By stendart procedure ( see e.g.
E, _l’ ) cne can find the explicit dapendence of the integrals
of motion C(P nnV(ﬂ %f_’) V():‘gf)‘},,, %_2 ()‘;gjf)
Let us emphasize that these integrals of motion are universal
one, i.e. they are integrals of motion for any equation.. of
the form (4.8).

In the case 2_5_-— O .(;{:a}%“} ).f-,z) we have

.Af

Joyt=e? X(x 2 A)

t0 the one~dimensionsal Gelfand-—l)ikij spectrﬂl problem

o ﬁfn?-'v
%f;‘,+'\{w )4+v-f+V{H))( ,\J(

and problem (1.,1) is reduced

 In this case the trensformations (4.7) and the equations (4.8)

are reduced to the corresponding transformations and equations

connected with one-dimensional Gelfand=Diki] problem (see EB]}.'

V. Transformation properties of the integreble

equations

Genersl transformation properties of the equations (4.8)
mainly are analognua to those for the equations integrable by
the problem —-‘“14- Agﬂ +P( g} ).'P—-O EHL], So we

consider them brlefly.

Group of the transformations (2.11)y(4.7) pleys & main
role in the analysis of the general group-theoretical proper-
ties of the equations (4.8).

26

Let us firstly consider the transformations (2.11),
(4,7) with time-independent matrices B#C. These transformaiions
form an infinitedimensional abelian group ¢.~ as easy to see,
does not change the evolution law (4,10) of the .cattering
matrix. Therefore they convert the solutions of the concrete
equation of the form (4.8) into the solutions of the same equa-
tion, i.e. these transformations are auto Backlund transforma-
tions for the equations (4.8).

Group of the transformations (2,11),(4.7) contains also
as subgroup the infinitedimensional abelien symmetry group of
the equations (4.8). In the infinitesimal form these symmetry

transfamtiona are ( V—> V, V-i- é-V)

§Va-3 2 a1 L, G}M}

k=1 N=o &y

(5.1)
_( 1)ﬂ+iL”+I E{n)‘*_ 61)’!%' Z;f—m (ﬂmj }V

where ‘:EEIZ are arbitrary constant . The transformations
(5.1) are symmetry transformations for any equation of the
form (.445}.

And finally, the transformatioms (2.11),(4.7) with
time-dependent matrices B and C are generalised Backlund
transformations: they convert -the golutions of certain equa-
tion (4.8) into the solutions of the other equation ( with
other functions QJM [11) ) of the form (4.8).

A
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VI. An example N=2: nonstationary Schrodinger

spectral problem

Here we illustrate the general results of the previous
sections. Prcblemgﬂ 1) at H==2 is nonstationary Schrodinger
apectral problem -—E- u
scalar case M=1 this prohlem was uaed far the integration of
Kadomtsev-Petviashvili equation [15,17,18] .

At N=2 the general equations (4.8) are of the fum{%ET{)

9u(xar) ’Z'wmf*)[ﬁ (A% + du vuz)

=0

e L (& U A+ (B ) - o

2( (L B‘Z()%m)ﬂ‘“fi)[_, %ﬁ-m)g Z()}O

an v
Recursion operators L n and L n are calculated by

the formules (3.28)-(3.33) at N=2 (%'= 2/ ). For example

— '—Lfi{(g;{ b 1"“91)1 ”".‘2[2{({%)“1 ;li- g
H ey, %] - [usy) Y%+
+g},¢ g:f[z{) g: '1 +[ Z([{g:;t)i D;IZ(J g;jjj —JZ

ana Z’f-fi-ag were [A B8], % AB+BA.

The simplest equation (6,1) corresponds to (,_A.Jii e
:wi3= J‘fcfl‘o and it 1is

9‘6{({55,1‘) m(%) 9 L+ Wauft) (9 Zf(;c'iﬂ")

3
Bz‘ X i DX i

+§ s ;\_g_g,_) ?/ ut @ﬁ[%i%gﬁ‘%%ﬁﬁ]:o

In the scalar case ( M=1 ) and (Wyp =0, (WJs4=~4 the equa-
tion (6.3) is well known Kadomtsev-Petviashvili (KP) equation.
At M>1 the equation (6.3) is matrix KP equation (see E.E.E:ﬂ}.
KP equation (6.3) is the lowest one (KP;) frem the infinite
family (KP family) of the 1+2 dimensional equations (6,1):
KP, equation corresponds to (Wgs =...= (W) s= (Wypeg=es.=0,
Wi =-2"" (112,300,

The simplest Backlund transformation (BT) (4 7) corres-
ponds to constant ; and ﬁiﬂ and QOyp =0 (k=0,1;
n=1,2,.00, ) and it is g(Z{-rZJ.’")'

€(z€iu)_+ (ZH?J) Sofx . (Zl(rgf) Z/(x,g(,f))

(6.4)
f_gf“f( Uty e)-Utsy “))Z/ ("'#) Uy *)P*{Wx ghi) ~Ulx g%)_o

where £= s o . Introducing & quantity W(’“é‘ 39 —
§ p 31:: /v i
o / btai local f I BT ed):
“md'}{ ‘Z[{:‘} g}{) we obtain a loc orm o

29



..2_( / ) 4 /
g'ﬂx v W * Ix2 (W +W) g one can easily calculate the fourth solution W by
(6.5) E
5
? / ‘ gw; the formula (6.7). Let us emphasize thet the rrelation (6.7)
I i :
93[ (w _W) +(w "‘W) B)f =3 %‘:j (W "W)-“—"- O P is universal one, i,e. it is wvalid for all equations of the

form (6.1) and in particular for any equation from KP family.

The relation (6.7) is just the nonlinear superposition

Let us emphasize that BT (6. is uni i
(6.4) is versal one, i.e. principle for the equations (6.1). Some concrete nonlinear

it is BT Tor equation of th .
any eq e form (6.1). superposition principles for some concrete 1+1 dimensicnal

BT (6.5) allow us to. ' i
s WEL B OUMBAENLAS SR ITh EN A ST O equations ( for example, for Korteweg- de Vries equation )

the solutions of the equations (6.1) by almost pure algeb- are well known ( see e.g. Ref E’ZD] )

Telc operations, Indsed, let us conmmider the following In the scalar case (M=1) BT (6.5) and nonlinear super-

diagram :
position formula (6.7) are reduced to the following

g{w'_w)-i-%(whw)+i(wiwf:£x%(w'ﬂ;g),\\m,) 0 (6.8)

B& w.?- B&; and
MGh expresses the commutativity of BTs (6.5): B{i 8& : M - Wj, ‘!‘Wg*— Wp_ +2% en (gi _gi +W£-W£) (6.9)
Bg_,_ Bgi . Here \/\/a ’ Wi W;?_ J W3 are four |
solutions of the concrete (but any) equation of the form (6.1). which ocoincide at b=0 with those found earlier by ancther
With the use of the relation (6,5) for all four solutions method in Ref. [21]
wﬂ : Wi. ’ WR ’ \/‘\/_:; from (6.6) we obtain ' Let us consider for definiteness scalar KP, equation

(6.3), Let us start from the trivial solution Wa

; ""'i =0,
= (é "gz ‘FWL_WJ.) {(gi-fi)(wi-rwt;-wpg- If one apply BT (638) to this solution then one obtain the
(6.7)

W {W ) 4 3 _fa- solution L‘/'i which can be found from the equation
= Wo[Wi+Wa) +W, =W, +25&( W, -
2) + Wy =W, rax{ 1 W:u)} ‘ .g ’BW; PWe _ OWe e QW,, S et

Therefore given three solutions NW,;, . W:L 5 W_g_ BX sz :{

One of the solutions of the equation (6,10) is well known

30
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_solitan type solution of KP, equation (see e.g. El] JE

ot ol -
Uby t‘):@l((}‘ (% -a)x +( & 'ﬂﬂi- 4 [(-ﬁ’-)g—&)f +C

where ([} and (. are arbitrary real constants and 5}:.0,
Let us take now the trivial solution as Wp and
soliton type solutions (6.11) with constanis g_{_ and - &
as 'Wi and .W;z . Then by formula (6.9) we find two=-soliton
solution W3 . An obvious proceeding of this procedure
give any N-soliton solution of the KF; equation.
In the scaelar csse one can also obtain from (6.6) the

another nonlinear superposition formula for BT (6.8). It is

Wi B (we-ws)-2 '3 (Walxg)-Wits)
; d? "6; 4‘*WJ1'-‘VJQ

which at M__.__ 0 is reduced to well known superposi-

29

tion formula’ for Korieweg- de Vries family of equations
(see e.g. Ref. [20] }.

: 1. In addition to the problem (1.1) there exist
another generalisation of the Gelfand-Dikij problem to the
two dimensions, namely the problem .

:aﬁf M-2 _ o
?).(fy "‘Vv—:z (E%f)#ﬁ 4\};,(35,#)}’ - %{%: O, (1.1)

32 .

(6.11)

_—_#_—

Speﬁr&l problem (7.1) can be also obtained as & regult of
ZN reduction of the general matrix problem %% -+
*A gy + Poyg¥=o [14].

Tor the two-dimensional problem (7.1) one can obtain
all the relations analogous t0 those giﬁfen in sectio& 2, But
the recursion operators of the type Aﬂ and A n
(with the properties (3.24) and (3,26)) do not exist for thé
problem (7.1). Therefore an essential modification of our
constructions is needed for applicability of AKNS~technigue
to the problem (T.1).

2. Let us note also that in the present paper we consi-
der direct scattering problem for (1.1) by treating variable
X as time type variable, i.e. the scattering matrix S‘
relates the asymptotics of the solutions } of the prob-

lem(1,1) on X ~-infinites (at X=+ 0 and X= — 00 7

In the paper EB] in the case N=2 ( %ﬁ- +%K§+Z{/X;%lt)f=o)

the standart version of the scattering problem for nonstatio-
nary Schrodinger equation was used in which a scattering
matrix connects the solutions on y -infinites, i.e., on
g-.:-[-_ cd and 3 — — o0 ., The interrelation between

these two approaches will be considered elsewhere.
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