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EFFECTIVE WARROWING OF THE SPECTRAL DISTRIBUTION AT  MULTIPLE
PASSAGE OF PHOTONS THROUGH A FREE ELECTRON LASER (FEL)

V.I.Baier, A.I.Miletein

Institute of Nuclear FPhysics,
630090, Novosibirsk, USSR

Abatract

_ Tt is shown that the spectral density at the centre of the
radiation line is effectively increased if the gain of a FEL is
of the order of unity and when the signal repeatedly passes

through an optical cavity beéauae of the nonlinear interaction
between harmonics. The action of a FEL is studied for the case

of a non-monoenergetic electron beam.
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1., Introduction

n & series of papers by the suthors /1-4/ the theory of
the asction of free electron lasers is developed. The case of
small gaina, th(‘!, ig considered in the paper /1/. The pspers
72,4/ are devoted to the action of FELs at arbitrary gains in
the linesr regime. As the ondulstor length, and hence the signal,
grows, nonlinear phase oscillations begin  determine the ac-:
tion of a FEL. The system of nonlinear equations describing
these oscillations is derived and their dynamics during a single
passage of the photon beam is analysed in the papers /3,47,

In fhe present paper this system of equations is applied %o
solve 2 problems.Section 2 treats the action of a FEL in the lin-
ear regime when the incident electron beam is a non-monoenergetic:

one. Section 3 deals with the kinetics of building up a photon

bunch during its repeated passages through an optical cavity.

2, The Action of a FEL in the Case¢ of 8 Hnn—ﬂnncen&rgetié Beam

Since the beams used in & FEL are not monoenergetic, of
interest is, undoubtedly, how a FEL acts ‘n the case when the
energy of an incident beam is described by a cerfsin distribu-
tion function. In order to analyse this question, it is conveni-

ent to use the ﬂyst&m of equationa (15)=(16) in Ref./3/
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The quantity = ﬁauarmirmﬁ ’chf— field intensity of fthe wave:
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where H,:, is the field strength of the lattice {ondulator),
a= mﬁ/guoﬁ_ ¢),. i the plasma frequency,d, = ‘?:'E-f?

a ¥ F ¥ ‘,b ¥ )
¥I. is the electron beam density, \)a the lattice frequency,

£ 1ig the dimensionless coordinate (the exis of the lattice

!,.rﬂ
is directed slong the x-axis): §= "E'_"_q gl @_{-{n, Yo
oo
.8 the Lorentz factor of incident particles,'T F’r__ WE@‘}-—X)
255V : av/

o= imﬂ is the resonance frequency, [L— G ch/ﬁ’n\fo N
is 8 relative width of the signal in case of a monochromatic
incident beam; the cnmponent of the particle’s 4-velocity 1is the
following: _ffl‘f‘ ({ , j.e. @ 4is the dimentionless longi-
tudinal particle mnmentimi counted off the asverage momentum in the
beam; f(ﬁ}},) is the initial distribution in the beam.
Let us consider the generation process in -the linear regime,

! -z/zz(q} l &4 , when the different harmonics of the outgolng
signal Eiln not interact with each other, and one can put
E(S’TJ:E"EE@, where 2€ 1is the harmonic's frequency counted

off the resonance one in terms of " (see Ref./3/). Linearizing

the system (2.1) wa obtain
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If f(ﬁa) = gl@é) ., equation (2.4) is converted to equation (3)
in Ref./2/. Equation (2.4) is convenient to solve using the

Laplace transformation, and we have as a result
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This result is a solution of the initial problem for an arbitra-
ry distribution function f(ﬂ;)

Fnr studying the limiting cases the distribution function

may be 'wri‘tten as followas:
.:E {sﬂ -_. —f tP (—-) ‘ (2-6)

where ﬁ ig the ,'characteristic width of the .distribution:
W(ax) differs a great deal from O only at x.< 1. For the case
A% 1 it is convenient to return to equation (2.4). Making the
subsatitution | ,S/
- cats
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and assuming that the rate of & phase veriation is low, we obtain
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iAfter taking the integral in (2.8) we have
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- where R’(x)_. 4?¢"X is the characteristic function of

the problem at small gains (see formulas (11) and (12) in Ref,
/1/). Formulas (2.9) holds st S<KZ for any values ufﬁ_
well as at ﬁ}}i ﬁndﬁs»i « In the last case the function
,Q(x') is reduced (with an accuracy of up to a factor) to the
derivative in the r? ~function., Then we find from (2.9) and
(2.7) :
/ Z(r-)/e = 7s S (o)

= e (2.10)
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Let us discuss the results obtained. Formula (2.9) has &
simple physical meaning: to find a gain (if it is emall) in
the case when the incident beam is non-moncenergetic, one ghould
average the gain (dependent on the longitudinal momentum) over
the distribution function of the initiasl parficles. In the case
of a narrow (compared to the variation scale of the gpectral
curve) distribution we have the result for a monocenergetic beam
with emell corrections. For a wide ﬁiatrihutiun, the destructive
jnterference holds which leads to a substantial decrease of the
gain.

For illustration of these arguments let us consider the Lo-
rentz’s distribution:

4 185 .
fee) = 7 Seroe (2.11)

Then at ﬁS(ﬂ we have from (2.9) and (2.7)
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where -? (}() = {*dx (':“x )) The first two terms

in (2.,12) e the result for a monoenergetic beem and the last
term with a small factor, MBs«l, is the correction. At ASs»1
and A» 1 we have from (2.10

B> e have from ( IQSJA e
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Jhiame /\- g /6 . It is seen that for a wide

beam the gain turna out to be strongly suppressed compared to

that for a monoenergetic beam when §>»> 1 (see Refs./2,4/).

Moreover, = maximum of the spectral curve is shifted to the point

Y-

x=- = , l2¢\>> 4 , while for a monoenergetic besm thie
maximm is reached at XK= 1.
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3, Kinetics of Building up a Photon Beam During Repesated
Passage

If the magnetic lattice (ondulator) is long enough, then
the photon beam generated in a FEL attaine a maximum {just after
the phase oscillations become important) during a single pass-
age. The kineties for this case is described in Refs./2-4/. How-
ever, at a relatively shori length of the ondulator it may turn
out to be desirable to equip a FEL with an optical cavity and
to use multiple passage of the photon beam. To describe the ac-

tion of a FEL in this eituation, the system (15)~(16) in Ref./3/

may be used also:
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with the boundary condlitions
P (ﬂi n{a) == ﬂ{a) Wﬂ)z a} Ehfi(a):(f'?)fh(&) (3.2)

where I2 i the total lose coefficient, W is the passage
number, $,= 'Q'....'?..a“/% . Z, ia the length of the nﬁdulator;
the remaining n‘;tatian_is given im the foregoing section. The
system (3.1)-(3.2) is a dimensionless one and describes the uni-
versal beheviour of the system. It has been solved mmerically
for varieus valuaes ef &, é.mi Q . As found out, &t 2 <« 1
the change of 2 does not lead to any qualitative effeets.

In connection with this, ¥  was chosen to be equsl to 0.0%5.
The calculated results for .S;ﬁ = 3 are given in PFigs. 1 and 2 and
for §, = 5 in Fige. 3 and 4. Pig.1 shows the evolution of the

total signel {the integral over all harmonica) e a functiem ef

S
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the number of passages N, The quantity [i:;;}is plotted
along the ordinate axis (f{ﬂ) is the dimensionless intensity,
f(n);—/zﬂfz. see formula (2.3)); in this casaﬁ = 0,01,
Fig.2 shows the evolution of the gignal for a definite h&nmmnic
(whose frequency in terms of 3=} “}%;/5 (\—r-‘«-..{) is given near
each curve). The quantityr(ﬂ) is glcmg tlﬁr ordinate axie;
note that .IT%C) is the dimensionless spectral density of the
intenaity:f;' g?l’(ﬁt’.) , and _ﬁ’a) = 0.01. Analogous
reaults for §, = 5 are shown in Figs. 3 and 4. :
The analysis of Figs. 1-4 allows the following conclusions

to be made:

1. The total intensity of the signal grows slowly (diffusive-

1ly) with the number of passages.

2. Because of the nonlinear interaction between harmonics,

the signal intensity,at frequencies far from the resonance ones,

begin vanish. It follows that the spectral density at the centre

of the radiation line (band) substantially grows.
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Fig.1. The average outgoing slgnal (the roct from the mesn : - Fig.2. The dimensionless spectral density of the intensity
tntonstty) in Giensionless unite, Tin)= [Zal”, o0 ¢ | ' IT) of the outgoing signal at a given harmonic
function of the mumber of passsges .  at &, = 3 end as a function of the number of passages K at S = 3
pz m 0,05, and 12 = 0.05.
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Fig.4. Similar to Fig.2 for g = 5.

Fig.3. Similar to Fig.1 for S, = %
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