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In the ecxperiments based on the turbulent flow visualization
methods the coherent structures has been observed. These struc-
turvs look like regions of reletively ordered motion whose arran-
gement in Bpace and the emergence and disappearance in time are
random., The main goal of a variety of theoretical and experimen-
tal studies on turbulence is to determine the coherent strmetu-
res and their space and time distributions. The ruader ia refe-~
red to Townsend (1976) and to Fiedler (1978). By now the more
complate information aveilasble concerns the structures in freco
turbulent flows: in wekes, jets and mixing layers. In the latter
case in the shadow pictures the structures look like the two=di-
mengional vortices, that merge pairwise thus thickening the mi-
xing layer (Winant & Browand (1974), Brown & Roshko (1974)).

Theoretical investigations usually deal with a simple problem
concerning the time evolution of a shear layer produced after
the development of Helmholtz instability in a plane vortex
sheet rather than with a more complicated problem concerning a
apace-evolving shear layer. At the nonlinear stsge a row of
structures of the "cat's eye" type is formed. Th: further evolu-
"tion of the shear layer is the merging of such structures.

The possible mechanisms of vortex mergings are discussed by
Lundgren & Pointin (1977), Saffman & Baker (1978), Saffman &
Czeto (1980). The attempts of modelling & shear layer as a line
of Rankine's vortices, that merge pairwise, have been made by
Ferziger (1980), Saffman & Baker (1979). Perziger (1980) have
analyged consequences of the energy conservation for that model,
The modelling of a shear layer by the row of Rankine's vortices
seems attractive, What seems to be & serious disadvantage of the
theory is the unjustified choice of the structures configuration.
Moreover, the reason for self-similarity whose existence may be
assumed from the experimental data available, remains unclear.

Roberts & Christiansen (1972), Kida (1975), Saffman & Baker
{1979) suggest that coherent structures in two-dimensional tur-
bulent flows are close to statistical equilibrium state. Aref &
Siggia (1980) investigate the shear layer as a dynamical system
of statistical equilibrium eddies, In numerical simulation, the
vorticity field was approximated by a system of the point vor-
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fices. The successful choice of the a- -rithm enabled Aref &
Siggia to carry out the calculations with an accur?cy a few ti-
mes higher than that achieved by other authors. One can see

from the simulation results, that the vortex layer is a lincar
row of siructures. However, each structure is not a compact vor-
tex but represents a bound state of a few vortex blobs, Aref &
Sigzia auggested that the vorticity profile of these blobs is
the statistical equilibrium one. The statistical equilibrium
state of the point vortices System is found by Lundzren & Poin-
tin {1977) and by Zida (1975),

o the gimpie model Proposed by Aref & Siggia the shear lay-
er is treated as a linear row of statistically equilibrium vor-
tex blods at each stage, The configuration of statistically equ-
iilibrium blobs is completely determined by the magnitudes of its
interral 2nergy and angular momentum {Lundgren & Pointin (1977)).
-0 the iref & Siggia model the congervation laws determine the
&tructﬁrea configuration after an arbitrary number of pairwise
mergings. There is a number of important factors, missed in the
model of Aref & Siggia., In particular, there is no angular mo-~
mentum conservation for an infinite linear row. The conclusion
that the vortex scatter about the midline is of the Gaussian
form is not physically aubatantiated.

In the present paper we reconsider a simple model of & shear-
layer as a row of Statistically equilibrium vortices. The ener-
gy conservation law for & linear row and the total angular mo-
mentum equation are derived. It is shown that the main parameter
of a linear row of vortices, the intermittency factor, can be
determined, to a good accuracy, only from the recurrent formula
for the emergy. The model in which the loss of angular momentum
in the row of vortices is taken into account, is constructed,
The more complicated shear-layer model, the row of clusters
which are bound states of a few vortex blobs, is studied,

2.Modelling of structures by equilibrium vortices

As the shear-layer model, we cunsidef the linear row of an
infinite number of vortex blobs. The vortex blobs are assumed
to merge pairwise giving an infinite row of larger vortices. The
interaction between vortices .decreases very 8lowly with distan-
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ce. So the correct limiting trangition to the infinitely long
TOW is needed, Let ug Separate a subsystem from 2N >> 1 vyorti-
ces and replace the remaining part of the infinite row by a fi-
Ted vortex sheet (see Fig.1). We denote the effective vortex
core radius (gee below) by'f and the row spacing by.ﬂi,_The
fixed vortex gheet Produces an external field for the geparated
part of the row and hinders its rotation &8 a whole. The vorti-
city distribution in each vortex of the row is represented by

/2 27 1 point vortices. In the final formulas the limiting
transition A/~ 5o is carried out under the conditi-
on of keeping D and the vorticity distribution inside each vor-
tex, The intermittency factor D/2f 1s assumed to be congide-
rable., One can expect that the interaction between vortices, re-
duces to a mutual transfer while the distance between them is
large compared to their gsize. The vortex structure is mainly de-
termined by the nonlinear interaction ingide the vortex (Aref &
Siggia 1980) and may be found from the relations of equilibrium
stetistical mechanies (see Appendix), The statistically equilib-
Tium diﬁtribution.nf the isolated vortex blob is determined by
the integrals of motion '
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Here A is the centre of vertioity, / is the strength of point
vertices. The integrals £ and L° are distinguished by insigni-
ficant dimensional constants from the internal energy of the
vortex and its angular momentum (Batchelor 1970). In what fol-
lows they are referred 8imply {0 as the énergy and angular mg-
mantun,.reapectively. In the shear layer, while the vortex blob
are far from the others, ita internal energy and anguler momen-
Tum are expected to conserve approximately, It ig therefore re-~
quired to find out how the quantities £ ana /% change in the vor-
tex merging processes, .

The variation in the internal energy after vortex pairing ig
calculable from the total emergy somservation law. Prior to mer-
ging the total energy of the linear row in an external velocity
field produced by thez?g;tez sheet equals

sl '
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whereiEb ia the internal energy of the vertices 21,
-~ 5 -




=D,(c. +/2)  1is the centre of vorticity of the £ - th
vortam, = WG =AM T W = D —|,-F ,P
is the number of point vartlcea of strength o 111 each structure,
% 4ig the current function of the vortex sheat
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A’(f\r’ﬂ +1) Dg 3ol is the velosgity jump on the vortex sheet;
all = D, . One suggest that the structures interact with each
other and with an external field in the same way as the point
vortices of the total strength f?ﬂf, For a large degree of in-
termittency such an approximation works well. H, is conveni-
nent to represent as a sum of interaction energies of the pairs
of vortices with numbers 24 , 2x*7 and 2x',2x'+1 | where
& , ' run the values 'Ng/z 'NQ/Z*)' %;’2—9'
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The total energy after pairwise merging can be written as follo-
ws
2 2

H = E{E rgﬁz(Qlﬁ J‘(IDS;}-PE;? rwfgﬁﬁ)ga] (2.3)

where Ef ia the internal energy of each vortex after'mérgings'_
By equalizing the right-hand parts of the expressions (2,2) anad
‘2,3), we obtain the desired relation between EJ, and Eﬂ?
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In the limit f"v{;- ~— o2 +the contribution of the enda of the rew
and the difference in the interaction energies with an external
field can be neglected end the sum over X , x' may be extended
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The megnitude of the intermal energy after/7 mergings is deter-
mined by the recurrent fomula
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. In arde:r to define cémpletely
the canfiguratmn of & atatistically equilibrium vortex, it is

necessary to give, besides its energy, the magnitude of its in-
ternal angular momentum. The Hamiltonian of the system of vorti-
ces in Fig.1 is not rotationally invariant and the total anzu-
lar momentum of the row is not conserved,

To study the influence of angular momentum nancanservation,
we consider below & simple model. However, we shall first show
that the most importent parameter of a vortex 1ﬁyer - the inter-
mittency factor - depends 8lightly on the degree of angular mo-
mentum nonconservation, It can be found, to a reasonable sccura-
¢y, from the recurrent formula (2.5) in limit /77 — o .

Iet the initial configuration of a row be determined by para-
meters EE,J? j? and by the magnltuﬂe of the internal angular-
momentum of vortices Lo' After vortex pairing the array is de-
termined by parameters /2,27, ,/0),=2D, , F, and Ly » The re=-
letionship of £,with 4, is unknown.

The equilibrium vorticity profile is determined by dimensi-
onless energy (Lundgren & Pointin (1977)). The dimensionlegs

energies of vnrticenf z":_ prior to and after mergings are de-
fined by egualities
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By using (2.4), we have
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Tt is seen that the limiting value of the parﬁmeterﬂ/zi. depends
only on the dimensionless energy of a vortex

ZL = Texp (-4XE_).

The quantity & is the r.m.s. radius of vortex. If the values

of inverBe dimensionless temperature A (see Appendix) are not
too close to -/ , then L determines the size of the vortex. At

A — =17 +the distribution of vorticity is more and more peaked.

The concentrated core of vorticity proves to be surrounded by
the extended atmoaphere from the point vortices. The quantity £
determines the radius of this atmosphere at A —=-7.

With this in mind, it is convenient to take, as the size of
s vortex, the mean radius rather than the quantity /Z

¢ = [rPlr)d 7

where /(7)) is the equilibrium distribution of vorticity. The
parameter

D aE)=E expl-gaF), (2.8)
o7 = &(E/} .;}"ﬁ )

where é‘_=(f’/’.f_’; , determines the limiting intermittency of the
linear row., The quantity 5 is easy to calculate for perticular
valueg A=0 , A =°= ,A—-7 . By using the analytical exp-
ressions for AP(7°) (see Appendix)we obtain

9 (A==)=2V2/3; 5,(0)=V7/2, (2.9)
5 (1)=T/2 V& ezp (-4TE ), A —-17

The dimensionlesgss energy values cnrrespanding to the above va-

lues are equal to

2 1= <)y (5 ) EO)y(5) @

where C =0.577 is the Euler constant. By substituting (2.9,

{2,10) into /(2. 8}, ‘HE have 3/2 1)
JEIT W :
A{/R m) 25% j§7 zﬁf@) W .i?ﬁs

al-7)=2Vve =3,3

The function A(d)for the other values of A can be calculated
numerically with the use of formulas of Appendix. The relevant
diagram is illustrated in Fig.2, For convenience, on the absgci-
ssa axis we plot not the quantity A , but the sssociated dimen-
sionless energy. Onc can see that the dependence of A on £ is

weak and the reletive difference between the maximum value of
end its minimum value is only 0.14.

In order to determire the configuration of the struciures in
the row and to determine more accurately the value of A , the
magnitude of dimensionless energy £ has to be calculated. Accor-
ding to (2.7), £,is determined by parameter Dy /2L, in the
limit /77 = oo, After pairwise merging the distance /) becomes
two times longer. Tet us deduce the recurrent formuls for Lﬂw
As nnted above, the tctal angular momentum of the array

N2- EHMZ (i‘ f?L) 1s net conserved. Its time dependence
may be 0htaineﬂ by using the equations of motion for point vor-
tices (B&tchelnr (1970), Appendlx}

an? A
AT 5idse it ,;Z Vf/‘r)

where V(7; ) is the velocity field of the vortex sheet, the
current function of which is written above. If the deviations

of the vortices fiom the plane 4=0 are small compared to ANJ),
then

2
a 7 = :
a’z" - mv Z-sv’f V{z;- s (2.11)

where Lf;:; &z H +m

Let us f::.rat congider & simple case of so strong attraction
between vortices that they move to each other not devieting
practicelly from the plane Y 3 =0 . In this case, all ¢, in (2.11)
are small and one can put a’fl/a’f =@, i,e. the total angular mo-
mentum is conserved. The angular momentum /L after merging is
equel to

. 2 2 2 Mz
A Mg A=y Loy 2Dy 2 e 1/2) =1, 1, 2107 (- )]

m

Here /7,, /., is the total number of the point vortices in the
array, /, is the number of structures, 7, 18 the number of po-
int vortices in each structure

ﬂ? =77
.-—'.2 ﬂﬂj AI:‘?Z=2 W{?’
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By equelizingeﬁ. prior to and after pairwise mergings, we obta-
in the recurrent formule

2 2

Ly v 5l T Z D (2.12)

2] 2 ) 2m
Whence & E‘f*g"?.fﬂ[g 5.

2

0 =1 i B 2m 1/

Z:=§32 /{2,0+;§Q(2 7 (2.13)
Within the infinite number of mergings

Sl (2.14)

QL@_E

From (2.7) we get that the dimensionless energy tends to a li-
miting value which is equal to

L

7 ;
E_ =27 L(3/7°) =0, 047, (2.15)

The inverse dimensionless temperature is calculable by means of
formula (Appendix) s

Jf+/1:"&?:5€ (2.16)

éxp (~C- 75) ~0 00066.

The intermittency factor A ia close to its limiting value 3.3
(see Fig.2). :

The recurrent formula ferJL (2.12) coincides with that used
by Aref & Siggie (1980). The dimensionless energy (2.15) is 4
times higher than that obtained by Aref & Siggia and the quan-
tity 7+A (2.16) is nearly by 2 orders of magnitude lower than
that in Aref & Siggia's (1980) theory. These distinctions are
accounted for by that Aref & Siggia (1980) takes into account
only some interactions in the infinite array.

It is noteworth that the formulas (2.12)-(2.16) hold only if
g line of vortex blobs keeps its linear nature at any moment of
time. This assumption makes it possible to use, along with the
energy conservation law, the angular momentum conservation law.

The experimental date (Winant & Browand (1974), Brown &
Roshko (1974)) show that this assumption is too reatrictive. The
vortices are on the midline only at some moments of time between

R g

the mergings. During the merging pfeeeea the vorticea deviate
noticeably from the plene y=0 . So the total angular momentum
is not conserved (see (2.11)).

However, one can expect that the intermal angular momentum
of a vortex is conserved while it is far from ite neighbours.
Also, the summary enguler momentum with respect to the common
centre of vorticity for a pair of vortex blobas, is conserved,
the distance between these vortices being small compared to the
distances to the other vortices. This enables one to assume
that a certain critical distance &, < J,, exists such that the
change of angular momentum resulted from the merging is given
by a formula similar to (2.12)

2
IIH?_

=T
'an+; =Lyt

Pt

The quentity <&, depends on z?m L,

Q=D of zan 22, F )
wherejf is a dimensionlese function, which can be defined nume-
rically. To reveal the degree of influence of the angular momen-
tum nonconservation on a value of the limiting temperature, we
conaider the Tollowing example. :

The vortex bleb trajectories obmerved in the mixing layers
are qualitatively aimilar to the trajectories of point voriices
in the linear array after the losa of stebility (Lamb 1932). The
development of the most repid instability in the linear array
of point vortices leads to the pairwise relative rotation of
vortices along the trajectoriea

ch G —cos H =2,
where X, Y is the relative diatancea of vortices in a peir.
The vortices approach pairwise to a minimum distance which equ-
als to 0.56 of the initial and then move off, The example comsi-
dered by Winant & Browand (1974) shows that the nonpoint verti-
cea can approach to a distance shorter than 0.56 U .

Let us assume that the structures in the shear layer merge
when the distnnee between them. equals o E? , where o < 7.

Then iI Jéz_x1{}+. ({!._ﬂ_ {ZZ V”*}ii
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Tho values off; gnd 7+/ for £=7 are given above (sce (215

'2.16)Y, If «# ] , then from (2.7) and (2,17 we get

e 1 3 (2.18)

Tf the vortices amalgamate at closest separation (o =0.56)

thon

E~0,0002; 7+4203. (2.19)
The comperison of (2.19) with (2.15) end (2.16) shows that the
numerical parasmeter o« influences strongly the values of RO,
defining the vorticity distribution inside the equilibrium
structures, However, the important parameter,ﬁkﬁé doesa not
depend so strongly on the value of «( and the parameter A

may be determined to an accuracy of 0.14, only from the energy
formula end depends even weakly on the choice of the megnitude

of =L .
3. The model of & vortex layer - the row of clusters.

The idea that a free vortex layer may be modelled by a line-
ar row of vortex structures is consistent with the experimental
data. Nevertheless, the recent numerical simulation (Aref & Sig-
zia (1980)) shows that the vortex structures are not apparently
in a fully stetistical equilibrium but they are the bound sta-
tes of a few equilibrium vortices. There is no difficulty in
underﬂtanﬂing e possible reason for emerging such bound states.
According to (2.16), if & ~ [ , then 7+A4 is very small, The
velocity of statistical attraction of two vortices is determi~
ned by their effective scale {(4) which is smell in this case.
Therefore the emerged bound state from two vortices relaxes for
e long time to the atatistically equilibrium state.

The time of developing the instability on a double scale is
only two times lerger than that of developing the most rapid
instability (Saffmen & Baker (1979)). So, the instability of
the next order is excited before occuring the complete relaxa-
tion inside the vortex blob pairs and the bound fours of vortex
blobs are formed, :

As was shown by Novikov & Sedov (1978), a relative motion
of the separated four of point vortices is stochastic. One can

R
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expect therefore that the probability of approaching and merging
the vortex blobs inside the clustera from four blobs increases
singnificantly. A compound though deterministic, motion occurs
in a triple of vertices (Novikov (1976), Aref (1979)). The pro-
bability of collision is likely to increase to a larger extent
as the number of vortices in a cluster increasges.

It is therefore natural to assume that there will be the in-
ternal merging in the clusters of vortices and they turn into
pairs of vortices. The relaxation inside the produced pair will
occur very slowly, and so on.

It is noteworth that the calculations were carried out by
Aref & Siggia (1980) in terms of a two-dimensional hydrodyna-
mica. In experiments the flow deviates from the two-dimensionsal
(Fiedler (1978)). Am well known the curvature of vortex lines
regulta in appearing the self-induced motion. This motion can
hasten the relaxation inside the vortex blob pairs to the sta-
tigstically equilibrium state and considerably decrease the pro-
bability of appearing the bound states from a large number of
vortex bloba. The experimental data available do not allow to
conclude whether a vortex structure is statistically equilibri-
um or it is the bound state of several equilibrium vortex bloba.

llevertheless let us consider a simple model distinguished
from the previous by that the linear row of equilibrium vortex
blobs is replaced by a linear row of clusters (bound states)
from statistically equilibrium vortex blobs. Let a cluster con-
gist of ¢ vortex blobs uniformly spaced on & circumference of
dismeter & . Iet us first sssume that the size of the cluster
is much less than the distance between the clusters 2 .

The energy end angular mamentuﬁ calculations made above are
independent of the configurations of structures in thie appro-
ximation., For this reason we can write down immediately the fi-
nal formulas. The total dimensionless energy and the total an-
gular momentum of a cluster in the limit of a large number of
mergings are equal to (see (2.17), (2.18))

= [ s B
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where fﬂf, is the internal angular momentum of each vortex blob in
the cluster, It is seen from the second equality that the r.m.s.
gize of vortex bleb ,f, ia the smaller the larger.the cluster dia-
meterd is, At &%= a""(' ) .L vanishes, The value &/2= G’/é’
serves as an upper limit of a pDHSlhlE gpread of vortex blobs
about the midline, ;

Let us find the relations between the main parameters of a
row of clusters. In the evolution of the row the number of vor-
tex blobs in the clusters changes from a certain minimum to a
certain maximum, The moments of time for which the recurrent for-
mulag are written, can always be chosen so that a number of vor-
tex blobs in the cluster is minimum. Let us consider, to be con-
érete, & case when this number equals 2, The total energy of the
cluster is 2};‘2

EEHQEV 27 fff?d £9,3)

where :‘_':V- is the internal energy of a vortex, Expressing both
parts of (3.3) via dimensionless energies by means of equalities

E =9 YE sz ot e e %04

we obtain the relations between dimengionless energies

exp G E,) [ Erp(affsy)]/é

(3.4)
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The dimensionless energy of the cluster is related to the para-
meter .ﬁ?/‘?ﬁ-’ by (see (2.7))

D/2L, =T exp (~4ZE, ).

With (3.4) teken into consideration, one can derive the desgired

relation . o4 (EF) _(:f'-{?')g i
2&: TUTNE D T
where ¢f’=é “{;V is the mean radius of a vortex, A (gv)iﬂ the
function plotted in Fig,.2,
The relation (3.5) is obtained in the assumption that the di-
gtance between the vortex blobe & in the pair is small as compa-
red with J) . Let & be comparable with ./ and the angle of incli-
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nation of a vortex blob pair to the midline equal X » The radi-~
us of vortex blobs { is assumed to be small compared to & , 7} .
The interaction energy of two vortex blob pairs spaced #J)
apart depends on the angle A

E
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The simple, but a bit cumbersome calculations, quite similar to
those carried in derivation of (2.6), yields & formula for the
dimensionless complex

e D exp(@IE,) ("Fd’)
é‘L T ME(JWX)*SA(T ),] (3.6)

This formula has the fnm

k., )" =tk )"

Hence, within the infinite number of mergings the quantity 4
is independent of the initial conditions and equals unity. The
relation between the parameters of the row takes the gself-gimi-
lar form

-2 S G msr ot )]

With Z/)<< 7 the formula (3.7) coincides, as should be, with
(3.5). : :

It is of intereat to reveal how the configuration of vorti-
ces in the cluster depends on the other parameters of the rTow.
The configuration of equilibrium vortices is determined by the
magnitude of their dimensionless energy. According to (3.4), E
is connected with the cluster's dimensionless energ:,rf by the

equa.l:.ty 2
i 2t 3.8)

By expreasing here Eﬂ- via the remaining parameters of the row
by means of (3.6), we ¢obtain the required relation. We shall
Btudy it for a simple case -f?fé?ﬁ: / . The values of E and zﬂ
are equal to (3.1) and (3.2)., The equality (3.2) shawa that L
decreases with increasing Z and vanishes at & =&, . Hence, at
e fairly large & <&, the dimensionless energy £, begins to lo-
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wer, too. From Lundgren & Pointin's (1977) theory follows that
the distribution of vorticity tends to the tablelike,

4.Digcussion

The recurrent formulas derived in the present paper for the
simple shear layer models enable a simple assumption to be made
that after a large number of mergingas a further evolution of
the shear layer is gelf-similar. In the gelf-gimilar regime the
sizes of structures £,/ ,d and the distance between them en-
large by a factor of 2 during each merging. The configuration
of structures remains unchangeable, '

The configuration of structures and the magnitude of the di-
mensionless parameters of a shear layer produced after rollup
of the vortex sheet may differ congiderably from the gelf-
similar ones. The rate of approaching the dimensionless para-

- meters to their self-gimilar values is different for different
parameters. According to (2.17), in the simplest model conside-
red above the parameter //2/ takes its gelf-gimilar value

equal to {3/ during 1-2 mergings and then Z becomes two times
largér during each merging., The relaxation of the par:m&ter424§f
is described by the recurrent formula (see (2.6), (2.8))

7
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and occura a bit mslower. This fact should bear in mind in the
analysis of the experimental data because the atructures in the
. mixing layers under obaservation and ealculation carry out a
few mergings only. For example, the calculations of Aref &
Siggia (1980) cover about four mergings.

Despite the idealistic nature of the models considered above,
it is of interest to compare Some- resulta. obtained with the
experimental data. Brown & Roshko (1974) who used not only
their experimental results but the results of & number of other
authors, obtained a self-gimilar value for the intermittency
factor of the vortex structures in g mixing layer. The thick-
neas of a vorticity layer was accepted a8 a typical acale of
the structure

s
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where & = O0< U)/dg/' is the vorticity defined over a average
velocity., The experimental value of the intermittency factor
4§FJEP , Wnere 45 ia the mean interval between the vortices,
calculeted from the results of various suthors is within the
range 345,

The magnitude of the parameter 25/%? can be calculated in
terms of the model in subsection 2, too. The distribution of
vorticity in each structure is given by a single-particle equi-
Librium distribution function (see Appendix). The vorticity
field averaged along the shear layer may be determined in this
cagc es an average over the period of a vortex row. For a fei-
rly large intcrmittency the secale is determined by the relation

S _ (4.2)
F=L/(2[P(d,4)ds).
a

The intermittency factor 22/29 » Which can be determined by
formulas (2.7), (4.2) varies within (3.145.2), depending upon
the parameter 4 , The agreement with experimental data is well,
but one should not exaggerate the importance of this aggreement
gince at present there is no elear understanding how close are
the real mixing layers to the two-dimensional linear row of
equilibrium atructurcs.

'or better underatanding what model corregponds to the real
mixing layera, the experimentsl datae on the dynamics of vorti-
city inaide fthe structures and on the first moments of vortici-
ty distribution £, Z are needea,
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Appendix
Stetistical mechanics of point vortices.

In what follows we mainly reproduce results of Tundgren &
Pointin (1977). The difference in the formulas (A.5), (4.6) are
due to the correction of the sign in the formulas (41) and (47)
of the Lundgren & Pointin work.

The motion of a system of /' point vortices of strength /°
in an infinite region is described by the system of Hamiltonian
equations (Batchelor (1970))

r"’- _ G? ¥ /- R — TR
%.' at Q)J“f.
where H(?;, o B /J'l_ f; g‘}-;«r is the Hamiltonian of the sys-
tem of vortices, . “Jl'?f{- f‘ I[ - In the presence of an external

velocity field des‘éribed h:,r the current function ¥ , the role
of a Hamiltonian is played by f‘:" f‘?”*ff W{f‘) PR gt
time~independent, the Hamlltcrnia.n ig the integral of nmt:.on.
With % =0 the cmrdmates of the centre of vorticity P~—f-:?*
and the quentity L Ty Z(?’ ,—F’) will be, in addition 1:0 H 5
the integral motions (Batnhelcr (1970} ).

The micrncannnlﬂal distribution corresponding tc the integ-
Wy , /7 i8 written as follows

R (TN 7 )-m-d'[‘g,. z {4"/?;5; E)J’[E;’r ,P)Wz,].&{zr—m%/

where & {EJ 4 ) is the density of states defined from the nor-
melization condition. In this case, the entropy S =47 & i
will be a thermodynamic state function and temperature 7—"&%@-&?
will be a parameter of state. The differenti-

ation of the microcanonical digtribution over %’-and integration
over other arguments give rise to the lmown chain of the coup-
led equations for reduced distribution functions A , § <A
For the purpose of its breaking, the Vlasov's mpproximation is

P,E[fj P;(/j';)g(?:;_;) (4.1)

Its validity may be argued as that in the theory of the Coulomb
systems, Since the interaction between vortices decreages very

uged

ML -

s el bbb il e e it e

slowly with distance, the motion of each vortexr will be deter-
mined by the collective action of all the remaining V-7 vor-
tices. The motion of two definite vortices at A2>] will be
mutually independent and the twoparticle distribution function
will be divided inte a product of single-particle distribution
functions. The case /A/—<° correapinda to the hydrodynamic limit.
In this limit the vorticity is connected with the gingle-partic-
le distribution function by the relstion

w (7)) =NP(F)
The condition (A.1) for quite large N makes it possible to the

closed equation for an equilibrium gsingle-particle distribution
function

dRI(7) ;s f#d (A.2)
on j( d-fﬁ 72 JROEIRGE)dry-26,-F) 7215,
where II’ﬂ‘W-/JJﬁ'T is the inverse dimensionless tempera-
ture.'llem'/) 1ls the fluid density, & is the Boltzman's cons-
tant. Tet us introduce the transformetion of variables
5=(5-RIL, BG):LA(7),
since ﬂ{?-}-) is ischopic
S~
at P A.
__T_ddéé?ﬁ +- ; ;é 4’(!:*,!)*3:{2&@/&?'9_)( 2

Some results can be obtained directly from equations (A.2) and
(A.3). Bo, for A= 0

o =
B =g exp(-5°),
with 4~ co i -

s 0 S A 4
i 4 >3
For A4 ---7 the approximate solution of (4.3) is of the form
5 A il i (A.4)
G0 TALH2P e

The constant A is defined by the normalization condition

TA-dTA=-C-la(1+R), £=0,5772  (A.5)

o
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The energy of the system of vorticites with due regard for
(A.1) cen be written down :

INE-N) 2 ol i
i 2 g &??;Eﬂ/?)’e(z)i??d"z=
In the dimensionless varisbles :;E%_

E=pn T JE)-Frtrt], |
E()=z [016, 2 (5,5 (5,045 47,

For asome valueg of the parameterai one can find out the dimansgi-
onless energyf ,using the results presented above. So,

= 7
15}?2)==&E§=(2’-65?£?2L
~ 4
At A — -7 , using the relation (A.4), we have

FA=ezp (1+8TE)
and taking into account the relation (A.5) we get
1+ A= ezp[-CH+1+8HF )-eqo(1+8XE )] 0=05772. (4+8)
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