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Abestract

The cage of the lowest posgible symmetry of the local or-
dering in the theory of crystal order developed in [1] ~ (3]
is gtudied. The assoclated crystal order parameter ig a tricli-
nic rank-4 irreducible tensor f\(:;”. The decomposition of

f\(;') into the point-symmetries is glven ; 1its geometrical
interpretatiom le proposed. The role of the liquid-crystal or-
der parameter in phase trangitions in crystals is investigated.
The algoritha of calculatinn's necessary to determine the point
gsymme try-change at the phase trensition ie presented.



e Intraodustion

“te oryatals and the liguids in the vineinity of the crye-
tllization temoerature T, ore dense myotens with mean ol stan-
ap between the atoms of orcer of the atom's naizee As ithe re-
ault cf atrcny; repulpive forcea, the thermal kimetic vnergy
~an't be the origin of the strong flusiuations of interatomic
di stances. In such o syatem, the location of atoms in a volume
with the radius of a few Interatomis dietances, exhibits sirong
sorrelationg. In otuer worde, in systems zonsldered there exists
the losal order. The correlaticns of luzal order at distences
la~re as comparad to the memn nearept-neighbour distance are
connected with mucl smaller energles. The discontinuous changes
of the nrorertien of the syelem ansociated with the symmetry-
-change are the phase transitions (melting-crystellization, the
lattice-agymmetry changes)s The statistical mechanice of the ho-
mogeneoug chanies of atome' ordering plays the principsal role
in the theory of the crystal's order, proposed in [1]-[3]+ The
idea that the local structure of the liquid neer its crystalli-
zation temperature resemtles that of the crystal was put for-
ward in Frenkel'e kinetic theory of fluids [4]. The articles
[ﬁ]u[jlgivc, to some degree, the realization of Frenkel's ide-
as. In our theory, the local order is described by the ﬂatf\@q
of tensor fields. The fialdf\(xj is deseribed, in polnt X , by
the multiple moments of the denglty of the components of the
gysten. The multipole momente are calculated in a small volume
&V centerea in X . with the radius of a few interatomic dis-
tancea. The experiﬁental data show that at normal temperatures
and pressures (T<:1D3°K, p<f102 stm) the phyeical point (clus-
ter) cﬁntainaruiﬂz atoms. Consequently, the fialdsfx(x) have
the semi-macroscopic character.

The mimplest cases with cubic-symmetry local order were
studied in [1]-[2]. The globel symmetry of the eystem changes
from the isotropic symmetry (liquid) to the cubic one (crystalk
The case of the rhombic symmetry of locel order was studied in
[3]. Such e system exhibits the following phases: liquid, meso-
phage (the liquid erystal), the cubic, tetragonal and rhombic
crystals For the special values of the interaction constants



the mesophase or the cubic phase don't exist.

In general the local order has the lowest posasible symmet-
rY. The eim of this paper is to study the types and properties
of the local order parametarf\(x) and the aseociated phase
trangitions in the system.

2+ The crystal-order hamiltonian

The local order parameter f\()ﬂ characterizes the local
order in a small volume & containing W.,”> 1 atoms. In or-
der to fix a few first multipole moments a relatively emall
number of all 3 n; cluster's degrees of freedom (DOF) should be
fixed. The rest of DOF describe the short-wavelength fluctuati-
one in a clusgter itself. The integration of Gibbs distribution
over this DOF glves the probability distribution of the configu-

rations {A(ﬂ} of rield \(X)

wiA)} = exP( d?—H_%h(ﬂ}_] =&j}e"?(j:_{-ﬂ‘) 5158

where fi__f'ﬂ} meang Eha summ over all configurations with

fixed }r\(x)} and H is the microscopic hamiltonian of the sys-
tems H {A(x)} 1is the effective hamiltonian of the local order
parsmeter. Note that the description of the cluster in terms of
all the multipole moments is one of the versions of the micro-

scopic theory. The number of the multipole moments included

and the highest rank of the tensor ueed in our spemi-macroscopic
deseription follow from eimple requirements. Namely, these ten-
sors should describe properly the atoms' ordering in any of the
Phases. In order to distfinguish between the orystal and the 1i-
quid the tensor with rank Y 3 4 are necessary [1]-[3].

The irreducible rank-4 tensor with cubic symmetry was as
well applied in the description of the kinetics of the cubic
erystal melting in Hess work [‘.ﬂ- The thermodynamic potential
and the relaxation equation in [5] were introduced in snalogy
with the liquid-crystal case.

In statistical theory of cryetal order[i]-[3] the essenti-
al role is played by the effective hamiltonien H{AGQ) . The

multipolse corresponding to the higher - rank tensors describe
the emall-gcale characteristics. One expecte that the pummati=

on nver these short-wavelength DOFP (see eq. 1) doesn't produce
the long-range interactions in E1{jﬂx « The treatment of the
simnle models H*.,_,I“'.j] carried out in papers [1] ]—_3] showe that
at temperatures where the cryatal is asbsolutely stsble the cry-
atal order doesn’'t daviate strongly from an ideal one (i.e. at
T = 0)s Hence, (1) th.e molecular fieird approximation can be
uged snd 11) the behaviour of the system near its melting point
1s practically model-independent.

The general form of the effective hamlltonian of cryetal
order with two-body interactions only is [*I:]

H= Ko‘f, 15}3.::{&3}

e (x. "-‘) (."\ 6.2 , f\ k“j\h]'\w jl) S

m.{l ;
. (S
where Tu,, 1l » scalar function and 4'\ (K) denotes the fileld

aof the irreducible rank - 5 tensors The function J(l'*r'[‘ﬂ ;
nlayving the role of the exchange integral, tends qujc}ciy : Ta it
at [ﬂr’“[‘} 4 » The formulas (1) and (?) give the statistical-
-macharic description of the semi-macroscepic {(cluster) struc-
ture of the crystal and the asgpociated phase transitions: 1i-
quid-crystal a d cryetal PT.

The character of the approximation depends on the claaas of
sonfigurations accounted for in the partition fumction b
. ‘idw{ﬁ_iaﬁ,{\;{j + Por most of the erystels (He cr.a%sl is the
axception) the rigid-form approximation

F'\(?‘i\'“ C{LX_J;H Qf\rg\) = &_q{\x‘} 3)

an be epplied [1]. Here Akxj is the rototion in poirt X ;1{\0
ig g pet of tensor fielde that cheracterize the fixed local or-
der in a given coordinate-frame.

Small form=fluctuations Ef\(ﬂaan be cescribed in terms of

.,he interaction crf.l"\(xj with a straun field "Uud[}[xj « The par-

ition function 73 can be evaluated in a sgtandsrd viay b] In
papex L‘t] thls problem was treated in a phenomenclogical way.

W
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In this paper we moply rigid-form approximation {3) and
the corrections zren't taxen into mocount. Coneajuentiy, the
Phase traneition ie determined by 1) formulas ©1) = (- zt o
11} the measure CLQ](K; and IT1) the parameter Jﬁ"*-:*f "

4s The properties of the iocal order

g
parqmeterfio

The number L  in formula (2) is the smallest rank of the
tenmsor describing fully the orientation in gpace of the gyatem
of crystailegraphic axee of a given crystsl. For all the crys-
tals but the hLexagonal oneo it is necessary snd sufficient to
pat n = 4 (n = 6 for hexagonal symmetry). The higher-rank ten-
sors desacribe the details of the locations of the ztoms in a
cluster and play the second role in a eluster deseription of e
PT. The symmetry of the even rank tensor phyeical characteripg-
tice of the crystal is uniquely determined by e renk-€& tensor.
The gymmetry of the phyeical properties of the crystal is gi-
ven in terms of point-groups. It can be fully clasgified with
the help of a rank-6 tensor. In thie case the "universality
class" is the Laue claes; the point-groups within a given Laue
clars can be distinguished by the odd=-rank tensora only. Analo
gously, the rank-4 tensors give rigse to the universality clas-
ses which are crystallogrephic syngonieam. The details of the
classification scheme of the point-symmetries with respect to
the eryatal order parameter will be published elsewhere.

In this paper the n = 4 case is studied (n = & case can
be worked out in a similar way). The local crystal order para-
meterrﬂ(xw i8, in spproximation (3), a set of fields Afw(f}
(K = 1, s¢+ 4}, given by the fixed tErl'mmu:-:s1"\."@J ﬁx}have, in gene-
ral, the lowest possible point-gymmetry, l.e. the triclinic
one. The local-order symmetry is given bye "mixture® of all the
point symmetries, with cceffiCLenta depending on numerical va-
lues of the components of ﬂ\K « At low temperatures the sya-
tem's symmetry is the trirlinic one; however at elevated tempe-
ratures the PT to phases with higher symmetries may occur. Let
us decompose the tengors Fﬁgo into point-group invarient ten-
sorg. Conglder the case k = 4, importent in the present theory.
Denote by P the set of point-symmetry groups that form a bagis
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for the decomposition of fﬁgﬁ . The rank-4 tensors characteri-
ze, as stated before, ine crystallographic systems (eyngoniesn),
go the cet P should be chosen starting from s scheme they
obeyes Such & scheme is giv:'an in Fig. 1 (oee, e«.g. [7}). Let us
gtudy, for definiteness, the get P forwed by the following
point-symmetries: m3m, 4/mmm, mum, c/m, 1 « The decomposition
of f\r*' can be obtained ae follows. A G - invariant tensor

o
can - obtained by taking the average of a general tensor A

o . group G
A E:. & {4)
<H ?b Fﬂ qEGS

Po write down * = irreducible rank-4 tensor it is convenient
to use the tenle with the minimal numbe- of componente necee-
eary to recstore the tensor (see, e«.ge. [8]). For the triclinic-
-gymmetry nonor one hae
L S b Ny SR G . ¢ __12
Eaincl-b: TR T
) Lo it : =08
No= leaiZaif Th™tL | 3
a+bj-e-f -9-hi-k-L [*
the other components follow from the internal-a metry argu-
ments. The coordinate system K, where P\ (4) j5 given by
(%) forms the crystallophysical coordinate ayatem of & cubeae
The 43 symmetry-elements of the m3m group (the symmetry group
of & cube) are associated with K. One obtaine from (4), where
G = m3m, Il = 48 and A = f\(4}, the m3m - invariant tensor
m3m in this coordinate system. It is useful to extract D n3m

{41
from f\
{ (1)1
Nn B (Hm szm} 15 S e (6)

The next step is to extract from f\{g)lits tetrgonal (4/mmm)
part. The proper crystallophysic coordinate-system is, of cour-
se, the cube's coordinate system K. One can not select, a pri-
ori, one of the axes of K along which there laye the long edge
of the tetragonal parallele piped, so the three decompositions
are to be congtructed. The one that correesponds to the proper
orientation of the 4-fold symmetry axis meximizies the ftetrago-




nal part D, .. of 1 + Dyp depends on one parame-er on-

ly (see below, (8)) so the choice is unique. Subetracting
Difmﬂm from f\ii one obtains (analogously to “£)}) the ten-
gor fﬁidj « Ita rhombic component D orm  © 80 be easlly obtal-

ned; the ﬂrystﬂllcphya cal coordinate sya+em colncides with K.

The tensor ﬂf4}111 = AT D, has the triclinic aym-

i\ o mmr
i) - e . o o
metry. I\ Eﬁjjt' is the superposition of three monoclini~-

—aymmeiry tensors, with the two-fold symmetry arves loying along
the axes of the coordinate system K. Note that the guperpopiti-~
in of two monoelinic - aymmetry tensors hza thz triclinie gym-—

ﬂi4}11.

metry. lence, it is convenient to aplit into two

irtg, one ‘DHK”} with a monoclinic (2/m), the other (D)
with the. triclinic, synm ﬂatry. The decomposition of f\td} into

the point-symmetry groups of P is

i I ™
f = )] y
i o I ¢ S (T
oL eV
where D is the o\ - invariant nonor. The decomposition co-

efficients Cy ware introduced to make possible to use the
standard form of the tensors D, + For the symmetries discusaed
above the standard forms D, are as foilowsi

(8)

e D

The decompomition coefficients depend on a;b,c1:

s % = PO A
“m3m S\ I}H:;""J Cojrmmm= 6 (?“E'Fﬂ“_b); FﬂmrH:% _ﬂ)
(9}
C - o
'-..--erm - {:-‘— iy

Let us make s few couments on the de-omnogition (7).
Firatly, it is only ijm that has the genersl Torm allowed by
cymrmeiry requirements. It followe from the procedure described
zbove {formula (%)) that D, (A # m3m) does nut contein perts
more symmetric than o

2> 9D =

g€/’

vwhere o 18 a subgroup of ﬁ » Thiag property is to be taken
into account while interpreting the gymmetry-change at PT. The
genieral and puecial form of D, remaind of the general and Bpe=
cial simple form of crystals (see, e.g.iﬂj}. Secondly, the get
{udx slven by formulas (8) is independent on the initial choi-
ce of the coordinate gystem Ke it is not true for the coeffi-
cienta L o The triclinic-symmetry nonor has nine components
(gee (»}), but only aix of them are ageociated with invariants
{1see describe the shape of the corresponding volume 5V of
the syatem). The other three components fix the coordinate sys=
tem only. Let's use the orbifrariness of the Lhaica of K to lo-
wer the number of non-cubic components of Px (4) from 8 to 5.

-

(10}

For exsample, all the three monoclinic tensors can be reduced to
the special form D{ff'” with g = -h etc (see (8))e On the other
hand the number of the independent components of a triclinic-
-gymmetry devimtbor f\ﬁ;} (traceleas symmeiric rank-2 tengor)
is 5. Thia fact mskes possible to write down the decomposition

(T} in the special coordinate system Ka as follows

(4) D A
A\ :Emng ¥ f\g P\ﬂ : (11)

0 ™ n

where tilda "~ _" denotes the irreducible part. Formula (11)
is the system of five equations for five unknown components of
ho + In this work it is assumed that the solutions of (11)
exigt for any of the gtudied point-gymmetries. This assumption

O



was proved in the case of rhombic symmetry of A [;'} and f\{j':' .
The scalar version of (17) is
L=1+m . (12)

Her~ L denotes the number of invariants of j\(g} and m ig
the number of independent components of f\f§} for a given
Foint symmetry. Eqs. (11) - (/) cen be easily interpretcd in
geometrie tzrms. /\{E} is m liquid -crystal order parameter
that is described by an ellipsoid. Ueing geometric lian<uage
the cubic, tetragonal and rhombic symmetries correspond to the
cube and the ellipsoid with common mein axes snd the ellipasoid
reducing to sphera, uniaxial and biaxial, respectively. The
trigonal symmetry corresponds to the uniaxial ellipsoid laying
along one of the main diagonale of the cube. Tle geometrical
repregentation of f\(g] for triclinic and monoclinic symmetri-
es is given by a cube and a biaxial ellipsoid with one common
axle for the monoclinic gymmetry and no common axes in case of
the triclinic symmetry. In the former case the nurhe» of DOF
that characterize the mutual orientation of the cube and the
ellipsoid is one; in the latter-three. The decompoaition coef-
ficients determine the dimensions and mutuel orientation of the
cube and the ellipsoid: cm}m - the cube-side length, c4fmnm
together with C = - the ellipsoid-exes lengths, ¢V, 5 (the
parameters of the three special monceclinic tensors DE?;}} fix
the orientation of the ellipscid's coordinate gystem with res-
pect to the special crystallophysical coordinate gystem KG of

the cube.

In the special coordinate system Ku the cubie component
ijmﬂhjm.of f\&gl has not, in general, the m?f}mal rossib-
le value. In any coordinate system Cnim~ E”'_‘ (ﬁn SRR .
The "meximal-cubic" coordinate system requirement imposes some
constraints on the Euler anglest, E,,E,. These constraints are
not, in general, fulfilled by the aalutianEf?Eﬁij?? degeri-
bing the special coordinate system KO- The geometrical inter-
pretation of the local order parameter !\{g}, based on formu-
la (11), has the teneorial character. Hence, in any coordinate
system the symmetry propertiees of the local order paerameter are
That of the system of two figuress the cube and the ellipaoid.
It is important that there exists such a coordinate gystem

10
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where the decompogition (7) dces not contain tenaors with.
symmetries lower than of fﬁcg}
L] L]

4+ The symmetry-change at the vhase traneition

The loecal ¢1watal;§§der parameter ig given by the tensor
5 7 i) -
fields D . (x) end A ‘%) (%) (k = 4» n = 4). The PT in the
gysiem studied should be described in terms of these fields.
Suppose the cryetal heg the invereion center. Then the gimp~-
lest form of hamiltonian (2) i, forn = 4 [}]
I___! ] L i ; :
) =i, B PE T e (13)
HEc 1s the self-crystalline interaction, H'c - the 1iquid-cry—
Btal-t int 4
¥Ype in erac?é?n end Hint describes the interaction of
Daam (%) with A\ (2) (g
T X)+ PFor examples of the model hamiltoni-
ang of the Heisenberg model type see paper [ﬁ? where the speci-
al case of rhombic aymmetry of f\{¢ ¢ :

: . . '\ o WaB investigated. The
Spentanous breakdown of A = symmetry takeg pPlace ag a phage
iransition. The most general sequence of PT ig given by P. For
=] 1 i r

Pecial valuesg cf -y end ¢4 5 gome of these phases sna PT
may dlsappear; the mesophase may exist. The simrlest exempleg
of the symmetry ch

E fw TY chenge at PT were examined englitically in
paper | 3 [« In general, the problem of the symmetry change at
PT can be solved, in thig thﬂory, at leasgt Numerically.

When the crystallization takes place into the cubic phase
the PT is slways the Pirst order one (discontinoug) [E]-[j]
The order parameter for the lower-temperature PT is the rén;-
=2 tensor. The character of the pr ie-atuﬁieﬁ, for that cage
in works of E.M. Lifshic [é]. ;

Formula (7) allows one to find the degree of deviation of
a.given cryetel from the cubic one. The dimensiong of the lat-
tice elementary cells show that most of the crystale are near-
}y cubic. For example, in elements with rhombic symme try L
\BrE, Ga, P, S) the non-cubic part of f\[4} consgtitutes
less than 20 percents of the cubic part. >

11
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Fige 1.

Pigure captions

The ralatinnﬁ between the crystallographic syngonies.
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