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Absetr»ract

The simple quantum models stochastic in the classical li-
mit are studied numerically. It is shown that the correlation
properties of the quantum and classical systems becomes quite
different in a very short period of time {:ﬁ, and the dynamics
of a quantum gystem, unlike the classical one, is stable rever-
sible. In this case, the diffusive excitation of the quantum
aystem occurs during the period t* >> 4. at a diffusion rate
close to the classical one, and the continuous component in
the correlation spectrum'is observed during the period t,>>t.
It is shown that in the case of a quasiperiodic-in-time pertur-
bation the time €' inodeusss sharply.



1« Introduction

The interest to the dynamics of nonlinear quantum systems,
(which are stochastic in the classical limit (h = 0)) is cur-
rently growing (see, for example, /1-7/, /8,9/)« A study of
such sgystemse is of large interest for an analysis of the sta-
tistical properties of quantum systems and, for example, for a
atudy of the behaviour of molecules and atoms being in the
field of a strong electromagnetic wave, in the stochasticity
domain /10,11/, as well as for understanding the peculiarities
of the intramolecular dynamics processes f17/. A theoretical
study of such problems, even in the quasiclassic region, faces
significant problems /2-7/, which are due to a local ingtebili-
ty of classic trajectories, leading to an exponential fast
epreading of the classical packet, and also due to an increase
of gquantum corrections with time. In view of this, to study the
properties of gtochastic quantum systems (8QS), by such systems
the quantum systeme stochastic in the classical limit are meant,
the numerical experiments with a eimple model of a quantum ro-
taetor in the field of periodical perturbation have been carri-
ed out. The main result /1/ is that the motion of a SQS is si-
milar, under the definite conditions, to the stochastic motion
of a classical system. So, for example, a diffusive growth of
the rotator energy with time has been observed. But for large
time the rate of diffusion has substantially reduced.

In the present work a number of numerical experiments with
simple SQS models is described. These studies have resulted in
that the correlations in the quantum rotator system, unlike
the classical one (when the measure of the islands of instabi-
lity is quite small) are not decaied exponentially with time,
that confirm the theoretical result /12/ (section2) The dyna-
mice of excitation of a quantum system with two degrees of
freedom has been studied as well (section 3). The regime in
which the leading degree of freedom, exciting to a definite le-
vel only (quantum limitation of diffusion /1/) affects the se-
cond degree of freedom, sc that the exitation lasts diffusive-
ly much longer than for the leading degree of freedom (probab-
1y, unlimitedly). Section 4 analyses the excitation of a quan-



tum rotator by the, external perturbaticn, gue-i . ..iciic in
time (two or three non-commensurable frejuencios)e ™o jiigo -
cal experimenté indicate that thig sase diffeis

from the came of a periodic nerturbesios

the quentum diffusive limitation oong

not prectically time-limited.

2e Quantum correlations in the rotator model

Let us consider a rotator model in an external field with
the Hamiltoniani '

" hio 3] cos b=(7)
H=- 27 26* 8 15 (2.1)

where F is a paragmeier characteriiing the magnitude of per-
turbation, Spe)=2 S(z-nT)is the periodic delta-function

(periodic kicks), J is the moment of ineriis of a rotator,
@ is the sngular variable. Below J = 1.

The revelant classlc problem is described by the Hamilto-
niant
2

H = ..?E +I£0595f(3) (2:2)

and, because of the periodic type of the delta-function, ths
motion of & rotaior is convenient to deseribe by the mappings
F =p + j; sih@

-

§=9+T§

where P, € are the valueg of the variables after a kicik.

The mapping (2.3) has been investigated in detail in /9/,
where the value KT=1 is shown to be the boundary of stabi-
11ty At k T'<1 the motion is stable and variation of the
quantity P is limited (l4pPl£ frﬁ). 1f kT 1, already at

= 5, the motion becomes stochastic. In this cage, elmost
under any initisl conditiona, except for small (at ﬁ? > 1)

———-——1——"'

islands of stability, the closc trajectories diverge exponenti-
elly: d=d, E#Pfl'lf} where d = H_'fdpj’-!-ﬁ!ﬂ)", and hf-tn(gf)
Lut 'Eq"hi) is che KS-entropy /9,13/. Such a local instability
of motion leadée to that the phase # becomes & random variable
and the rotator energy grows hy the diffusion law:

) 4
E = (—L‘;{ . - %—- £+ E(0) (2.4)

beprs g erp(- frg) (o5

Here and below t is the dimensionless time, measured by the
number of kicks. [ne brackets < » imply the averaging over a
large number of the trajectories corresponding to different
initial data.

The motion of the quantum system (2.1) ig also convenient
to describe by the mapping for a wave function ¥ in period T
71/ ;

_ -ikcosb = ;
Yo, te)=€ A=) A wenpiing-iTH)

"= -G -Lr'J]

=g

where A, (€)= %?‘f’(g-&)e ng,fﬂ, k = ﬁﬁ e 2T
It follows from (2.6) that one kick couples, with an exponenti-
al accuracy, & 2 k levels of the unperturbed system, that has
been used in a numerical study of the model (2.1) /1/. The map-
ping (2.6) contains two independent paremeters k, T used below.
We put B = 1, and then, within the quesiclageic limit k -» e
T—vﬂ, k Tmcomst o The performed numericel experiments /1/
have showm that at KT > 1, k 31, in the quantum system (2.1)
e diffusive growth of the rotator energy occurs with a rate
close tc the classical one during s certeain period t*, but at
t > t*tne rate of diffusion slows down and at t > t"an incre-
ase in energy practically stops /1,7/. The time trincreaaes
with increasing the parameter k .
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Additional numérical experiments /4/ have shown that the

Tt - dependence on K may be approximated by the degree law
*-. € k* (see Fig. 1)+ In this case, +% is taken as £ ,
when the energy of the gquantum system differs from the c¢lassi-
cal value by more than 25%. The root-mean-square values of pa-

rameters seem to be equal to: < {9C> = - 0.44, €®> = 1.5.
The theoretical dependence
x 2
t"=Ck (2.7)

obtained in /4,7/ turms out to be within the spread of experi-
mental data with <05z -1.19 (see Fig. 1). Hence, at K >>1
the quantum rotater energy grows, as in the classics, in a dif-
fusive manner during a long period of time.

At the same time, according to the theoretical results
/12/, in the gquantum system the time correlations, exponential-
ly decaied in the classic case at I(T)>1, when the measure of
the islande of gtability ie quite small, the time

L bn k
, bn kT
after, decrease not rapidly than the root of time ( ‘#'3 Ys In
this case, the quantum and classic correlations become comple-
tely different already at € 2 t .. But since the absolute mag-
nitude of correlations proves to be emall ( =< Ofk-ﬁ), they
affect the rotator energy only on the time € 2 1% ‘fr i

(2.8)

For these predictions to be verified /12/, the quantum
model (2.1) have participated in the numerical experiments in
which the correlations

A, iy - A
Rtfe)=.:oma.sﬂicasé’éﬂuosﬁmr.asé?tfa*,- 12
2e

FY A

where C0S 9£= H:f.‘.afﬂaf is the Heisenberg operator at the
moment of time T ’ E'»Q is the operator of evolution of the
Hemiltonian (2.1), <Ol..10> sgtands for the average over the
initisl state, have been calculated. In prineciple, one can
canﬂider the other correlations, for example, the correlations
SLpb . These cogrelations qualitatively behave in the same man-
ner as the cos@ ones, exception is one specific feature ana-

lyzed below (see section 3).

The numericel algorithm of computing correlations was to
define the wave functions %=%w‘>, ‘&ﬂ? Ue Cﬂig'ﬂ” Yesr =
= Uger 107 by means of Eq. (2.6) by the method described in

71,4/ and then to calculate the average: ZRe (< ¥,.}¢0561% -

= R‘t {'&')..

The resulte of numerical experiments are listed in Tab-
le 1+ Also, the classical R,¢ end quantum correlations Rq are
compared at £ = 0,08 Z < 7 (see (2.9)) in the case of the

. . - 1 9

initial claseic state: p = 0, 0= @27 (R, E!casﬁmﬂtd"ﬁ)
and of the corresponding quantum one: W(¢#.0/= f.ew'}. It:is
seen from these data that at KI=§ y 5+A2% , when the meagure
of the iglands of stebility is negligibly emall /9/, the clas-
glcal correlations, at T< 7 decay exponentially with time.
The quantum correlations, in this case, are close to the clas-
sical ones only for € f, >~ 3, but at = ffs they differ by
a factor of a few times. The theoretical value of tg(2.8)
gseems also to be equal to several kicks, that is consistent
with the results of numerical experiments. So, for example,
for K = 40, kT = 5 the gquantum rotator energy differs from
its classlcal value by less than 25% during the period of time
‘ﬁ*w 120 ‘:?‘f-,::.}. In the case k7T = 2, when the measures of
the stable and stochastic components geemeg to be approximately
the same, the classical correlations do not decay with time
and the distinction between Ref and R; remains legs than
20% for the period T=J400 >>t,3(k = 40). Thus, the characte-
ristice not decreasing exponentially with time, for example,
the rotator energy, correlations at KT = 2, seems close du-
ring the time 1‘;* >> 1".'5 » liote aleso that in the stebility regi-
on, kT = 0.5 (k = 20) the distinction between the guantum
end claseical correlations is at a level of 0.1% for = 20
(at k = 5, 2 20 at a level of 10%) «

The typical behaviour of gquaitum correlations is shown in
Figss 2,3« 1t is seen that there are residual correlstions not
decreasing with time. The value of these correlations reduces
as k inereases, but an explicit form of the dependence on k
fails to be found because of a sharp incresse of the memory
required and the cfﬁ:uting time with the growth of k.
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ione mey be evaluatedi_.g

' X lat
The magnitude of reslidual corre ;
ag follows. Let ¥ >7> 'f-’; Then the wave function |¥> @ «
.ﬂ* E.ﬁauf (0> contains approximately k24" harmonics
9(;15 5> 1™ an increase in energy practically stops). Since

d‘f””’? = 1, an average amplitude of harmonicse Q is determi-

ned from the condition Q‘l‘ﬁ"ﬁ; ~ 1 . Then, from the relation
R(e)~<O|¥> ~ Q@ end (2.7) we get the estimate

ke
\R (=) ~ (k*t") “~k i, t+z>t (210

tf<T+ E‘-ﬂ‘f*the number of harmonics in |¥'> will be of the

ﬁ w—
oraer of [k*2 end, hence, on this time interval the correla

tions slows down with the growth of 5 3

- *
{Rﬁff)f W N RN s e € (2.11)

This slowing down seems to be Vvery gslow end the parameter
(ﬁﬁ“’nut o0 large end for this reason the non-decreasing
with-time residual correlations are observed in the numerical
experiment practically immedietely (see Hgn- 2,3).
according to the estimates obtained,

It is noteworth that,
there is no exponenti-

ia !121"':
(2.10), (2+11) end to the resul

el decay of quantum correlations in guch systems wherein the

neasure of the islends of instabilities is strictly equal to

zero (e.ge, the system (2.1)) with the perturbation potential

-zﬁ .ﬂsésf

WEE T el S ign el w
2 g # 5

v(8) = V(-6) , V(8)= vee+2%) ot kT>4)

so show that in such a quantum

The numericel experiments al _
there is no, exponential de-

system, unlike the claseicel one,
cay of correlations.
An interesting feature of quantum correlations of opera-

-

tors €0S € ig that Ry(%)» 0 almost at any € . As a result
of this, the frequency spectrum of correlations is sharply
peaked at &« = 0. The properties of the frequency spectrum
are discussed in detail in section 3.

It should mention that, in the quantum model not only

the exnponential decay of correlations is absent but the K§ -
- entropy h is zero /12/ (in the classical system h =

~ ﬂh {%fj >0 at kT >4 /9/)+ By virtue of this, in the quan=-
tun aystem there is no local insgtability of motion, which oc-
curg in the classical model (2.2) at ’(T >1+. The presence of
the local instability ( h> 0 ) leads to that the dynamics of
a classical system turns out to be actually non-reversible.
Indeed, although the equations of motion of the system with
Hamiltonian (2.2) are reversible (the system's Hamiltonian is
symmetric with respect to the replacement & -+-2 at the mo-
ments of time £T+F , € is integer, and therefore at the
substitution P =*-P at the moments fT*} the trajectory will
move exactly in the inverse direction and returns to the ini-
tial point), as emall perturbation &€ as possible will change
the trajectory in the period 'LE"-' '{"ﬂbscausa of the local in-
stability. In comnnection with this, in the numerical experi-
ments where there are the errors of approximation at the level
& ~ 10~12 (BESM-b) no reversibility in time is present (gee
Figse 4)+ At the same time, the dynamics of a quantum system
proves to be completely resersible (the accuracy of return is
at a level of computer accuracy). Moreover, reversibility oc-
curs even at a random variation of the phases of Fourier-com-
ponenta 4 _of a wave function ¥ within the interval a ¥ at
the moment of reversion (see Fige5,6)s Fig. 6 presents the dis-
tribution function -,i{‘nlz fﬂhjzcver the levels of an unpertur-
bed quzantmn eystem in normalized coordinates Pﬁ, :f’rhjvfa'_lz‘r ’
¥ = }!:_i-' (the clasesical distribution (2.5) in these coordinates
has the simple fﬂm:&g’ L"x]- The sharp peek in Fig. 6 at

N = 0 corresponds to the returning component ( V"!"ﬂftﬂ)n
= (27)°%, the fraction of the nonreturned component is
W~ % 3#1‘6-9{1311&5& variation takes place in the interval
AY¥ = 0.1). The dependence of M on g ¥ is given in Table
2. It is interesting that W, x 0.0 %9<<q even at A ¢ = 1.



The total number of levels in the performed numerical
experiments was A = 2049 (-1024,1024). The initial conditi-
ons were different: excitation of the zero level ounly (M, =
the uniform distribution over & ),the Gaussian distribution
with the width ¢ < 4/, £ 20. Just as in /1,4/, & no signi-
ficant denendence of the motion on initial conditions was ob-
served.

3« Two-dimensional model

The numerical experiments (see section 2) with the model
(2+1) have shown that the statistical properties of a quantum
system are much weaker than thoge of the classical one. At the
same time, of interest is to study how such a system affect
the other degree of freedom if a weak coupling is available.
In the case when the coupling is weak, its influence on the
first degree of freedom may be neglected and excitation of the
second degree of freedom will be determined by the statistical
properties of the motion with respect to the first degree of
freedom.

As an example, let us congider a system with Hamiltonier:

H

a2
% twpr+ (keost, + gcosb cosd ) b (z) s

PE-'_"— h %

Y
where PI- =—¢ _

By solving the Sch.rnedlnger elquatinn with Hamiltonian (3.1)
one gets the mapping for a wave function in a veriod:

v(6,,6,,t+1) = exp(-i(kcos@, +&cos@,cost,))-

-1
{ iln, B, +n,6,
N

which have been used in the numerical experiments. Let us con-
sider the case when € «<1 and for the second degree of free-

dom, onl;,r the ground level is initially excited ( A,h (e} =

= A(H,J 'h..a}' Then. the number of excited levels is determined

(3.2)
—;(;n,rﬂ?'n‘)

10

by the statistical properties of the system (2.1). Indeed,
from the equations for Heigenberg operators we have:

t=

Pl(-&) pzmj-r-gz cas&'fﬁl Sih (b, - «TE,)  (3.3)
1,=1

From (3.3) one can obtain the number of excited levels M

Jl

t-4 I

cn>= E[E(E R tg ] G
ul =8

Due to the exponential decay of correlations in the sums in
(3.4), the main contribution, in the clasgical cage, was glven
by the terms with % =0, therefore the diffusive excitation
Occurs both over the firet (2.4) and the second degree of free-
dom:

2 £*
o g 5'_,' t _ (3.5)
In the quantum system the presence of regidual correlations
(see Figs. 2,3) leads to a sharp restriction of energy growth
over the first degree of freedom at £ » e (the influence of
the second degree of freedom may be neglected, since & <=f Je
Nevertheless, the question on their influence to the excitation
of the second degree of freedom requires additional studies.
If the frequency spectrum R(y) of correlations R(TJ is pure-
ly discrete (this occurs when the quasienergy spectrum /14/ of
the system (2.1) contains only discrete levelg), then for the
values of a parameter @ ! , conciding with discrete frequencies
R(z) » will be quadratically increased, €W, > ~%2 . If the
spectrum fw) contains a continuous component (this may occur
only if the gpectrum of quaslenergies turnms out to be continu-
oug), < H; > grows diffugively with time ( < 1, >"ﬁ' t), the
diffusion factor D ~RwT).

The motion of the quantum system (3.1) has been studied
numerically by ‘means of formula (3¢2)s The parameter & has
been chosen to be equal to 10~° (variations of €within the in-
tervel 10774107 has remained the quantity < n 4% umchangeable
0 en accuracy of up to Oe1%)« The finite number of levels

-400< hys900, -2 < n; £ 2 » has been usged in the run,
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end, because of the smallness of € , < N;» has been deiermined
only by the probability \-.{1: of finding on the levels M=t i ,
because during the whole periocd of running u(,m < 10™%ana,
in view of this, the influence of the levels with n,=$#2 could
be neglected (these levels have been used to control the compu-
ting accuracy). The computing accuracy has _been also controlled
by conservation of the probability W= 2_ [Ay,, l:.‘i- In sll

cases the error & W/ for the total prub;ﬁ:’vﬁi‘;y did not exceed
10" and the dynamics of excitation of the first degree of fre-
edom (e.ge, < Wgd) coincided with the case € = O with an ac-

curacy of up ta Q. 1%.

The numerical experiments have showrn that excitation of
the second degree of freedom depends sunstantislly on s para-
meter )T . In this case, there are three different situations:

1« For the second degree of freedom, Just as for the Ffirst
one, the quantum limitation of the diffusion is observed (see
Fig. 7); at k =5, T = 1, this occurs for @ T = 1, 145,
1.87, 237, 2.42.

2« Por some values of WT, the resonance excitation of
the pecond degree of freedom (-::h;p~ t‘z} is observed, that
takes place for LT = 0,065, 1273 171 AT k = s kw1
(set Pigs. B8.9).

3. In some cases ( Kk = 5, T = 1;£¢JT= 2.4, 2.5, 2.52)
the diffuesive excitation has been observed. It is noteworth
that for T 245 -t:h:'}grnws practically linearly with time
up to T = 2000 (see Pig.{D), while the diffusion limitation
over the first degree of freedom occurs in a few kicks (-t*= 5)e
For @7 = 2¢4; 245 &8 linear growth has been obgerved during
the total time of computing (€ = 750) with the average diffu-
sion factor }f/'bd =a¥:2, respectively (D,,= 5:@ )e

When changing the initial conditions, substantial variati-
ons in the motion have not been observed (for example, the re-
sonances have occured at the same values of a parameter ﬁ?T},
but when changing the parameters k , T (even at kT = const),
the dependence on &) T has become absolutely another (so, for
example, at k = 10, T = 0.5, & T = 1.27 the limitation of the
diffusion process was observed, instead of the resonance).

12

' ;

Expection wce only the value @T = 0 at which < H;'? grew gqua-
dratically with time for ell used values of parameters k, T in
the regions K<d, k»fat KT< { and kT> 4 . In the classical
stability region kT< 4, k>{ the dependence of < n:>on 4
seemed to be close to the classical one, where the resonance
excitation also occured because of the stability of classiceal
motion. Hence, the resonant growth < Iﬂ:)in the quantum ayetem
kT >{, @ Mhculd be interpreted as an indication to the

presence of a stable quantum component. Of course, this problem
should be examined in more detail.

Note also that if the Hamiltonian (3.1) contained sScn 91 :
instead of €0sH; , the excitation of the second degree of Pre-
edom ghould be determined by correlations S{m&; . But since in
thie case, at wW=0 -::n:;- w.:"':'}, the quantum limitation of
the diffusion should occur over the first and second degrees of
freedom.

The availability of resonances for «T#0 indicates the
presence, ln the spectrum of correlations R(z), of a gicrete
component and, as a consequence (see above), of discrete levels
in the spectrum of quasienergies (&,0—€ =a2). Otherwise, a
diffusive growth of < H:}at some values of &« T indicates the .
presence, in the spectrum of quasienergies, a continuous zone
with the width 4&; 3 0.02 (k=5 T=1). However, the finite-
nese of the computing time <_ admits only the lines with
AE ; '&1 and therefore, strictly speaking, one can affirm that
in the zone of quasienergies A&,, the spectrum is either con-
tinuous or coneists of close-lying discrete lines, the distance
between which is 4 &, < 5 1074, Summarizing, one can say that,
besldes two time scales of the motion of the quantum syetem
(2.1) €¢ and t¥*(see section 2 and /7/) there is once more
time scals 'fw on which some weak statistical properties are
8till conserved; so, for example, on these times the diffuaive
excitation of the second degree of freedom in (3.1) occurs. It
is significant that the scale t., exceeds very much % andfy
(T ¥ 3>%), soat k=5, T=1we have ¥gos, ¢ "5 5 ,

f..,« 2 2000 (ses Pig. 5). The question on the determination of
a scals of %, , whether it is finite or infinite, requires
further examination. If £ weo , the spectrum of quantum cor-

13



relations and the spectrum of quasienergies will contaln a con-
tinuous component. It is noteworth that the continuity of the
spectrum of quasienergies does not yet mean the continuity of
the gpectrum of correlations. S50, at T = 47 (the case of &
quantum resonance /1,15/) ¥/, ¢ )= exp(-/ kt cos8) ¥78) and, ac-
cording to (2.9), the spectrum of correlations conegists of on-
ly one discrete line, while the spectrum of quaslenergies, in
this case, in continuous /15/.

4+« A model with non-commensurable frequencies

Along with the case conaidered in the foregoing section,
such a situation can occur when the motion over one degree of
freedom during a certain period of time may be congidered as a
given and periodic one, and the motion over the other degree of
freedom will be then determined by a field of external forces.
For the system (3.1) such a gituation takes place at

TPy >>eT + €F<<{ - In this case, one can suggest, in a
firsat approximation, that the coordinate €: varies periodical-
ly with time: 6, (=) = Q(0) 46, T (= a)pfeld)) , and the
dynamice of the first degree of freedom is then described by
the Hamiltonian (2.1) with time-variable K l‘((t’}nkf gcosels
The experiments have shown that the dynamics of the quantum
gyatem with kf‘!‘) s periodically varying in time, differs sub-
stantially from the cases conpidered in /1,4,7/, when K = const
and kwt'((ﬂ.’rg)- Therefore, a study of such a system is of in-
terest and importance for understanding the SQS propertieas. In
the claseical system (2.2) with the variable k¢#) , just as in
the case with constant k, at (kt&)T2{ the stochastization of
motion occurs. The phase & then varies randomly and the rota-
tor energy grows diffusively with time:

Ect) = %‘1 t + Er0) (441)

2 L 'y
with l'qg = k ¥ E/’g » Thus, the dynemics of classical systems
with the constant end wvariable k have no principal distincti-
ong. At the same time, the dynamics of excitation of a quantum
rotator in these two cases is different.

14

Por example, at constant k the guan.um limitation of
diffusion occurs (see occurs (see /1/ and section 2). It leads
to that at ¢ 5% {:"{aea (2.7)) the rotator energy does not
practically grow. The numerical experiments carried out with
the model (2.1) at k(2)= k+£¢oSWT have shown that in the
case of non-commensurability of frequencies (Jp and JL= -,',—‘,F
and at &€ Z { the quantum rotator energy grows diffusively with
time, the diffusion factor being close to the classical one.
So, at k=0, € =7,¢T =17, &,T = 2 a diffusive growth of
the energy continues during all the period of running t = 1000
(see Figs. 41,4, the distribution over levels being close to
the Gaussian one (2.5) with k = k e, In this case, for k=T,
T=1, £ =0, the time of diffusive growth was only t* 22 10.
If the frequencies were commensurable (&, T'= _—-"3, £,9 are
integer non-commensurable numbers), the quantum limitation of
diffusion were observed, and the moment of time t', from which
the diffusion slowed dm, increased with incraasing ¥ « S0,
t" = 00 at & T=7; t* = 400, WoT » ZI'; =450, W, T=2E:¢%5 1000, T

gfur k=0, € =7, T= 1. Interesting is the regime of motion

atwl, T = 0.1. Because the time of phase shift '(‘.':F ‘% 60 »

P t* = 10 the diffusion diceleration ocecurs during the period

~t* end the growth of energy practically ceases, but in time

n'f;'the phase variation beromes significant and the energy
grows again. Thue, a step-like diffusive growth of energy with
time occurs{ Fig.{3),

A diffusive energy growth was also observed in the essen-
tielly quantum region at k = 0, £ = 3.5, €7 =7, T = 2
(see Fig.14). For small values, £< 4.5, the quantum 1imitatinn
cf diffusion occured, the time t' wae increased from % = 1 to
t* > 2500 when varylng £ from 1 to 4.65 (see Fig-i‘:?]- Within
the intervel 1 £ § € 4.65, the dependence of t" on £ is
close to the exponentigl one, but experimental potentiaslities
do not allow to establish, what happens at € > 4.65. Apparen-
tly, t" will continue to inerease exponentlally with further
increasing € (some estimates for & (k_p,) are given =t the
end of this section). However, since t increase sharply (by
three orders of magnitude) with increaesing € from 1 to 35y
one can suggest that practically there is some .Eﬂ.a- 3.5 above

15



which a non-limited excitation of the guantum rotator lakes
place. This velue of €, is only S,= Eer 35 times higher than
the quantity Te corresponding to the q:.fantum border of stabi-
1lity /10/. So, for the perameters k = O, E = 1, T = 56,

w, T = 2 the ratio of the quantum and classical diffusion fac-
tors st the time ¢ = 200 seems to- be equal to D¢/ Py =

S lied x 10T &£ 1

At K? &3 2 the rotator is also excited diffusively.
(see Pige.16,17)(with B, ~ Dgend the Gaussian distribution
over levels clomse to the classical)
ote that for k = 10, T = 03, £ = 0, the time of quantum 1i-
nitetion of diffusion is t"22 25, while if g = 245 (@, T = 1)
the energy F%jcontinues during the entire pericd of compu-
ting, t = 1000, "The correlation function R(z) , determined by
means of (2.9), is represented, for this case, in Fig. 18. The
Pourier analysis has shown that ¢Y), in contrast to the case
¢ = 0, does not confain clearly observed peaks, that indicates
the continuity of the spectrum of motion of the guantum ayatem
(with an accuracy of experimental regolution being equal %o
Al ~ 1072).

At g < 2 and k» 1, the rate of diffusive excitation of
rotator coinaides,. during some time, with the claisicﬂ one
and then slows down to a certain limiting value ])1 : in the
following thie quantity does not decreage during the entire pe-
riod of running (t = 300). The dependence of the ratio ‘.ﬁ' /)&nn

€ is illustrated in Fig. 19. For comparison, this figure pre-
sents also the dependence of _:'[31 /D on £ in the case when
k()= k+€ 3(t), where F(£/ is randomly veried with time in the
interval [-1,1]e Just es in the case of a periodical variation
of kitlat €2 2, Iy;: Dy end at £< 2 there is a limiting co-
efficient "_B' -r.'.];{, which decreases with E__. At the same valu-
es of € , k, T (€<2) the diffusion rate P, for the rotator
model with rendomly varyling k(ﬂ turns out to be larger than
the value . in the model with periodically varying k(t) (see
Fig. 19). However, the qualitative form of .E - dependence
seems to be the same.

Thus, there is the guantum border of gtability €~ 1+ At
€ <<1 the diffusive excitation of a rotator is sherply dece-

ﬁi

lerated, nt € 2 2 both for fthe neriodical (with noncommensu-

enerzy grows diffusively durling the entire period of computing
vio= '1-;}3} 7ith the diffusion factor :Df "?'-El' One should mention
that such & diffusive excitation, at E£> 1, occurs also in the
eansentinl suantum region T » 1 (for example, for k = 10,

€ = o5, T = 4eb, &)l = 1)« In the region of classical sta-
bility, (x +& )T <« 1, energy variation, just in the classical

In eonclusion of this seciion, some estimations ere given.
Let us consider the case, when Two frequencies sre commensurab-
leo, dava G-J‘,Tsﬂﬁ Here the perturbations nroves to be perio-
dical with the p"ériod from 4 kicks and the time "= f:@
will be determined by a distance between the discrete levels
5f the quasienergy (such estimation method of evaluating t" is
uged in /7/): 'h'*=$~jt—. The guantity 4 is determined Dy
the number of cffectively excited levels of guasienerzy A/q.o‘ 3
which may be 2stimated by the number of excited unperturbed
levels ﬂ{:ﬁvk.\; +# . From these relations we obtain an estima-
te ifor t &

+* & k:,c f'z (4+2)

Let now &= ‘%‘ff,..g , where § is a small deviation.

In this case, the system moves approximately in the same manner
as at LJ,T:-%[J during the time £ Efrﬂg-". i £ 32k - 2

p- €% k" 1’ , there occurs the quantum limitation of diffusion
but at 2&,> t>4p a diffusive growth may begin again, similar-
ly to the case with k = 0, £= 17, X Ll edp T = Dﬁ:"%{}énce,
the quentum limitation of diffusion will be obaserved at least
during some time, if

5' < —%-—T (443
(f) ket

The total measure of all the deviations grows with increasing
i : for ( ?
h Fer
T o bip)eri b g
of

g=4 P=L




and beeemee equel to 1 at §~€ ﬁt*. From this one can obtain
an estimate for t in the cuse of two noncommensurable frequen-
cies:

e &q;'_

where. € i a certain numerical constant. The estimates (4.2)
and (4.4) coincide qualitatively with the available experimen-—
tal data (see Fig. 15) but the more exact comparimon fails be-
cauge of a eharp increase of " with increasing kef and 4

In the case when there are three non-commensurable frequenciesg
(eege, k(z)= k+ E €o% Wy E eOSMY) and :-:.‘?‘s -%ﬂ&-:-s;,

ey T= M-ﬁf_f_ sy the time ¢ H(f,ﬁ 4)’; ﬂ = 0, = Q.
In order the diffusive limitation occurs, t < mwaim( &5 ,E“i)
is required. It follows that the measure of eueh frequencies
seems to be =mall at large k. p ( ﬁgﬁ:"" kc.;. <<1). Therefo-
re, 1n the caese of three and more noncommensurasble frequencies
an unlimited diffusive excitation of a quantum rotator occurs
almost for any o, @) - So, at k = 0, € = 3.5, €T =7, «pT= 2,
&y Ta 2% | tne time t*> 2000.

5« Conclugive remarks

The performed studies show that the statistical properties
of 5353, in comparison with the classical stochastic systems,
are wuch weaker. So, the gquantum systems are exempt from the
exponential decay of correlations (section 2, /12/), which oc-
curs in the classical systems when measure of the islands of
stability is negligibly emall. The total statisgtical propertier
of claseical systems in the quentum case are congerved during
a sghort period of time t ocbn i (2.8), only. At T - T
the correlations in the quentum and classlical systems become
completely different (see Table 1, Fige?2,3). The KS-entropy of
the clasgical and quantum systems are etrongly different, too:
in & 5Q5 the KS-entropy h = 0 /12,16/, while in the correspon-
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ding cv.assical system ‘t& O» Hote that in a 595 h = O not on-
ly when the spectrum of motion of a quanium systen is discrete
(this case was considered in /16/), but when the spectrum of
motion is continuoug, for example in the model (2.1) at'F=:¢'
{the gquantum resonance /1/) the spectrum of quasienergies is
continuous /15/, but | = 0 /12/. The conseguence of the zero
KS-entrony iz a atable reversibility of the guantun evolution
(see gection 2, Figs. S,ﬁ, which is absent in classical stochaa-
tic systems (Fig. 4).

At the same time, the weaker statistical properties, for
exemﬁle diffusion, are conserved in a SQ5 on much larger times
t* o€ -"—'-ut* >> t ]. For the system (2.1) with one degree of
freedom and a pETlDdl”El external forcey, the time & grows with
increasing the guasiclassical parameter, according to (2.7).

As the numerical experiments show (section 3), the continuous
component in the gpectrum of correlations and a diffusive exci-
tation of the other degree of freedom on definite frequencies
are obgerved durlug a larger time interval €, ‘i}t >> 1, At

k =5 t axceeds t nearly by three orders ef megnltuee [eectl—
on 3). The question what determines the third time scele and
whether it ig finite or infinite remmin atill open.

Numerical experiments with a one-dimensional model snd a
two-frequencies external force (section 4) have ghown that in
such a2 sgystem the diffusive scale " increases very sharply
(probably, exponentielly) as the gquasiclassic parameter kep
increases (see Fig.15 and (4.4)). One seemg sufficient to ex-
ceed the quantum bordsr of stebility Ef by 3:5 times
that t would ircrease by three orders of megnitude. If there
are three non-commensurable frequencies (or more) the diffusive
scale prevee'te be, apparently, infinite (see the estimates of
section 4). In thie case, the unlimited diffusive excitation of
a gquantum rotator occurs, and the quantum correlations are de-
caid in a power manner (2,11), and hence the guantum system
poggesges the property of mixing.

Because the external force with non-commensurable frequen-
cieg, in a certain approximation, may be always renregented as
a gystem with ¢+ arge number of degreee of freedom, then the
unlimi ted 4iff ‘e growith of the energy with the diffusion

19
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factor close to the classical isg pPosgible already in the quan-
tum gystem with two degrees of freedom (or more than two) and
the external periodic force. This diffusive excltation takes
place if the classic oriterion of stochasticity if fulfilled
and the gquantum border of stability for a perturbation ig ex-
ceeded /10/. As the numerical experiments show, the quantum
border should be exceeded only by 5?;5 3+5 times for & practi-
cally unlimited exeitation.
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Tehle A1

Ry /Rer Re/Ree Re/Re Re/Res
T R.e k=25 k = 20 Ik = 40 k = 100
0 T 1 1 I I
B =2
1 0.5T6T 02380 00907 O e D00 e aole
2 0.4986 Ca5651 0.9970 C.9994 De 95993
3 D.S614 0+9753 D.0882 0+2990 0.9999
it D.6T794 I1.1785 I.0745 I.0294 I.0053
5 0.5038 145307 I.CT742 09552 09754
b {8504 08371 0.9294 I.1233 T O752
T 0.T648 0.8375 I.0365 0.2678 05946
EE o= 5
I =k TATE Gea3313 09903 0..9977 I.0000
2 0.01229 14.9880 T+4T768 2+ T307 0.9723
3 C.3334 2:02554 0.8543 I1.0774 0.9069
4 0. 08002 5«4549 2.TH56 I1.4921 I.3884
5 0« 09599 I.0T701 2.3252 I.5372 0.1946
b 009167 2+5472 I.9941 2-4490 0.3505
KT = 5 + 28

T =G.03770 -0.6053 0.8963 0.9756 049960
2 0.08725 =4.0183 D.04544 L0256 0.901°2
3 D+1389 T.7423 I.4104 I.1857 De2151
4 O0.01641 =5.6684 D.4188 44308 D.2732
5 0.01945 =9.30B0 =9.4807 4 .9851 2.0925
b 0.02184 D.60b2 2+.1323 —-8.,0998 -3,0714
T 000752 33581 8.7 151 19,6670 -I.1330

it

3

Table 2
K= 2 kKT & 5 t =" 30 (logs are base 10)
log(aY 0.8 0.48 0 -0.52 ~1.0
L0 Uﬁ —D-GE "'G'IED -1’.1 2113 -3-1
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Figure Captions

The dependence of the time of guantum limitation of
diffusion t* on a parameter k. The polnts stand for
experimental values, two straight lines correspond to
a linear interpolation (slope « = 1,5) and to the
theoretical formula (2.7) (alope &£ = 2); loge are
bage 10.

The dependence of quantum correlations R {zee (2.9))
on T for the system (2.1) at k = 5, kT = 5, + = 100,
t = 10’241

The same s in Fig. 2 for k = 40, kT = 5, t = 0,
T = 128.

The time dependence of the energy of a classic rotator
(2.2) for the case of reversion of the motion at mo-
ment t = 150; the motion of the system is non-rever-
gible (kT = 5).

The time dependence of the guantum rotator energy
(2.1) for the case of reversion of the motion and at
a random variation of the phase of amplitudes A“ in
the interval 4% = 0.1 at the moment of time t = 150;
the motion of the gquantum system is entirely reversib-
le (k = 20, kT = 5); the straight line corresponds to
the classic diffusion (2.4), the vertical line corres-
ponde to the moment of time reversion.

The distribution function over the unperturbed levels
of the gystem (2.1) in normalized coordinates (smee
section 2) at the moment of return + = 300, the

straight line corresponds to the classic distribution
(2.5), the broken line stands for the numerical result

The dependence of < W, » on time for the system (3.1)
withk =5, T=1, <« T=4.0, € =102, t = 400.
The straight line corresponds to the classic diffusion

(3e5)a
The game as in Fige 7 for @ T Os

12T«

The game a5 in Fig. 7 for w T

]
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The same as in Pig. 7 for & T = 2,5, t = 2000.

The time dependence of the rotator energy for the
system (2.1) with kiZ2)=k + & cosatat k =0, € = 7,
el- Ty ¢JpT = 2. The straight line corresponds to
the classic diffusion (4.1).

The distribution function over the unperturbed le-
vels of the system (2.1) with k¢2z) = k+ €cosai 2
in normalized coordinates (see section 2) )
for the values in Fig. £iat the time moment % = 1000,
the straight line "a" corresponds to the classic
distribution (2.5) with k = k;; , the straight
line "b" denotes fthe linear interpolation, the bro-
ken line is the experimental result.

The seme as in Fige 11 for k=0, & =7, gT= 1,

%T= Dt‘l-
The same ae in Pige M for k = 0, € = 3.5, ¢ T =17,
wﬂT =2

The dependence of time t" on parameter & for the
model (2.1) with K(%)= K t€cos a),Tat k = 0,
£T =1, %T = 2; logs are base 10.

The same as in Flg. 11 for k = 10,
kKT = 5, T = 1.

'E= 2-5.-

The same as in Fige. 12 for the values of the parame-
ters on Fig. 16, t = 1000.

The dependence of quantum correlations R (see (2.9))
on & for the gystem (2.1) with k(®) = k+ € cose,T’
for the values of the parameters on Fig. 16.

The dependence of the limiting (t = 300) value of

the diffusion factor T), on £ in the model with
ker)= k +£coselp? , €,T =1, 0 -k = 10, x - k = 20;
and in the model with random perturbation: k ¢ €J) =
=k+£;rf},'-k= 10, + = k = 20; kT = 5.
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