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Abstract

The phenomenological theory of crystal ordering is formu-
lated in terms of ldcal crystal-order parameter. This parame-
ter is & set of rank-4 tensors. Phase transition from liquiﬂ
to cryatal nhase is studied for a cubic crystal. The tempera-
ture intervel A T of an overheated cryetal is small:

AT/T¥ £ 0.02. The pre-melting enomalies are shown to exist.



Dense liquid exhibits, ir small volumes, & crystallike
atructure. The main difference between the crystal and the li-
quid is the existence of long-range ordering of the local
structure. ;

To obtuin the complete picture of thermodynamics and
structure properties both in the crystal and denge liquid one
needs & microscopic theory, based on the esctual hamiltonian of
the system. '

The experimental data show that the change both of densi-
ty and energy at crystallization is small (a few percents).
Thess small changes are strongly related to the settilement of
the long-range order. A theory treating these amall changes 1is
expected to be less complicated.

The long-renge effects can be treated by means of the
fielde A (%) of local crystal-order parameters. The "physical
point" x denotes here a small volume V of the system, a
clugter containing M, atoms. Its local structure (local order)
is imposed by strong interactions between the nearest atoms.
The eluster's characteristic length vo=V % 4g large in
comparison to the crystal-latiice pize | consequently, the
macroscopic desecription doesn't account for the traneletional-
inveriance effects. Hevertheleas, the other symmetry elements
(rotation exes, reflection planes etc) can be easily treated.
In other words, the settlement of the long-range correlations
of the local anisotiropy characteristics and not of the transla-
tionsl invariance plays the central role in our theory.

The aim of this work is to introduce the local crysfal-
order paraneter and to study the simplest mocdels of crystal
lattices.

The physical picture of the state of a dense matter we
use ig that of a system of_relatively rigid clusteréa Consider
such a cluster in an effective potential imiteting the inter-’
action with other particlese. For the cluster big enough its
ground state corresponds to a crystal. The low energy excita-
tions are the phonon-like ones. The softest modes, correspon-
ding to the cluster's characteristic length T describe its



deformation and rotation. In this work it is assumed that for
temperatures T QT‘; -.-Tc. being the melting temperatures, the
-fluctuations of the corresponding degrees of freedom determine
the degree of "imperfectnese of long-range crystelline order.

In general, & few types of local crystal order with near-
ly the seme energy may represent the arrangement of atoms in a
cluster; the boundary conditione select the lowest energy one.
For T &Te , the boundary conditione for the cluster are close
to that in an ideal lattice, in opposite to the liquid case
('T“}'T'f Y« At T, the quantitative chenge of boundary conditi-
one tekes place and the local structure may change. In this
work such an effect is not taken into conpideration.

Note, that when the short-renge interactions are not
gtrong enoungh to form a relatively stable cluster our theory
can't be applied. Such & system remains liquid mt any T (ee«ge
liquid He).

The location of atoms in & cluster is uniquely characteri-
zed by the set of mulitipole moments of each independent demgi-
ty component (corresponding to different sortis of atoms, elec-
tron density etec)s. The multipole moments are tensors of appro=-
priate ranks. The zeroth moment (scalar) and the first moment
(vector) describe the fields of the averaged (over the cluster)
dengity and of mass center displacement of a cluster, respec-
tively. The quadrupole moment (irreducible rank-2 tensor) cha-
racterizes the liquid-crystal-type anisotropy of atoms' loca-
tions [1].

The enisotropy, intimately connected with the crystal or-
dering is reflected in the higher multipole moments (tensors
of rank L% 4). In the simplest case of the cubic lattice,
the cubic tensors of rank L { 4 are isotropic. The lowest-
-rank gymmetrical cubic tensor corresponding to the non-trivi=
al (i.e. nonumit) representation of the rotation group 0(3)
is the rank-4 irreducible tensor. Such a tensor characterizes
the directiona of cubic crystal axes. In the case of the hexa-
gonal gymmetry the orientation of the crystal axes is fixed
by rank-6 tensor. The multipole moments corresponding to

rank-4 (rank-6 in the hexagonal case) tensors are necesgary
end suffic ent to reflect the existence of the crystal ordering
(anisotropy). In this peper they are referred to as local crys-
tal-order parameters f\{_h’} + For a given J'ﬁ\(ﬂ, the fluctuations
of short-range degrees of freedom are described by high rank
tengors (L3 4 ). The short-range degrees of freedom have no
straightforward relationl to local c¢vystal ordering. The cha-
racteristic time of their fluctuatione is small in comparison
with thet of renk-4 (rank-6) tensors.

There is an analogy with the nematic-liquid erystal the=-
ory, in which the anisotrony of mclecules' orientations can be
described by geometric or material owder parameter. The former
ie the field of the quadrupole moment of the density, the lat-
ter - the irreducible part of local dielectric (magnetic) suscep-
tibility, that reflects the anisotropy of atoms' locations.
The geometric order parsmeter of a crystal is the field of ir=
reducible rank-4 tensor (the hexagonal crystal is the only
exception), and the material one is the irreducible part of
the elastic constants tensor. Note, that by fixing the fourth
(sixth) multipole moment one fixee only s amall number of all
3m., degrees of freedom of cluster psrticles.

The description of the system is given in terms of m;;icra-
scopic tensor fields !\{f‘j of rank b and lower. The probabili-
ty dW of a given configuration i_h[k":} is

AL s f__w?{-ﬁih}/'[‘} DA ,

where PDA(X) is the measurs in the space of configurations

{h(}ﬂ} » The effective hamiltonian Hi“’l is the average of
Gibbe distribuiion over all microscopic configurations with
rixed AlX) .H{ﬂ'& depends functionally on AX) and is & func-
tion of thermodynamic varisbles. Unlike the fluctuation theory
of second order phase transitions [2], in this theory there is
no universal expansion for H[ﬁ} and one has to introduce the
model effective hamiltonian. The fluctuations of the tensor
field N(X) at point x are rotation CEC:Q and deformation

Eh[x) 1
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NG =300 Ao+ SAX] (2

where f\p is a fixed set of tensors and Sh(x) is due to the
change of invariants of field f\(x) . The asesumption that clus-
ters are rigid implies thet form-fluctuations gﬂ(-ﬂ are small,
i-e.gﬂ{ﬂfﬂ.g{{. { '« When "o increases,the anisotropic part of

A, venishes and the form-fluctuations become dominant. The
"best® v, is obtained from minimal velue of Sh(x\}/ﬁg .

Let's examine the simplest case, i.e. the one-éomponent
denslty problem with cublc gymmetry of local structure {order)s
Congider the mg form-fluctuation case firet. Then

I‘\(_X}:%(_x} /\u y j (3)

where f\u N i"'x(ﬂ are rank-4 cubic tensors. In the gimplest ca-
gse f\; , the geometric characteristics of local structure, de-
seribe 3 mutuslly perpendiculsr axes nﬁ‘:} (L 2,300 8
cubic crystal, so

3 5
(a ' A 0
A cpys () = 2?? Mot Mgy Mg, &

Tensors i"ko and P\(‘ﬂ are reducible ; thelr irreduable parts
can be obtained by substraction of ean igotroplic tensgor. The
gimplest hamiltonian H{_-"‘ulj of locel order interactions is

HiA) = g Ledt T0ex) Aaggs O) Mg s ) . (5

H{ﬂ} will be treated via the mean field approximation (MFA).
Denote :

lh-.tptS‘_'? thwf\? 3 V=5‘L“ :](x} : (6)
One has :

: a3 Huen () 44
{LNapys 7 =2 ‘S Maggsliye =10 9 4y et

A
where Hura‘*’ '“'h.,(.}ra‘ -‘\ms (%) and i’-gﬂ"?[““hm .'"'-"] r!-ca P
The MPA eqe. (6)-(7) give the extremal valuen °f<h¢p.g$>
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for thermodynamic notential ¢’ (< h"?rg\") 3

¢=-Tm1+kwg4mh§~>} (8)
where h,(ff.i'“-.\'?j ig given by eq. (b). ;

The solutions of eqs. (b)=(7) have the cubic symmeiry.
For the non-zero components of averaged local order parameter
(Dupysy » waere Dyge§ is the irreducible part.of Ayp s
one has

Do pp= SACT) (814 \3) (9)

Eqe. (6)=(7) for A(T) were solved numericelly. The plot of A
versus T is given in Pig. 1. The solution A(M=0 corresponds
to the macroscopically isotropic phase (liquid). It minimizes
tb(,‘ﬂ for temperaturesTf(T(Dﬁ , with T," being the soluti-
on of eguation 'alblaﬁl\ﬁ.soﬁﬂ-d:#{] .Tq_* ig the temperature of
ebgolute instability of the liquid phase. The macroscopically
anigotropic phase (erystal) with {'D.st\ynﬁo}(ﬁ #0\; s mini-
mizes (A) for O&TLT¥ , with T¥  denoting the temperatu-
re of absolute instability of the crystal (see Fig. 1). The
melting temperature Tf, , &t which q)[&']‘—'ﬁlfﬁj s 18 close 1o
T
(Tjﬁ*rt)/qf ~ 0.02 (10)
Y in eq. (6) fixes the temperature scale only.

fet's examine the small form-fluctuations (etreins). The.
"strain" contribution to H{-"\} ig, in harmonic approximation
with respect to the strain tensor 'u-dp (see [3] )

HE_L{FE,.'LL‘I . la:xfﬁ.t{gtﬂtx)%ip{x\_l@ug(ﬂ dx 5 (11)

Formula (11) generalizes the well-known one of the theory of
elasticity [3]. i’\qiﬁ(ﬂ is the elastic contacts tensor of -
the cluster located et X & In the case of local cubic symmet-
¥ :

NQOE %cﬂﬁo (12)

i .
where f\g - fixed cublc tenpor of rank 4. Thermodynamics of




the system can be obtained from the the thermodynamic potentisl

O(Tyszp) =Tt 5 T =Djeduye ™,

H:H{ﬁ‘l +HﬂL#U;PSu“FCX}J'x 3 v

where G‘:‘_? ie stress tensor.

Hote that the answer to the question wheiher siress r“P i
can be created by surface forces depends on the dynamics of
the relaxation process of parameters. This problem is beyond
the scope of this letter.

In the case of an isotropic J'ﬁto the elastic term Hr.L is
4 - independent. When Ap contains an anisotropic part, the
contributions to mean elastic constantas tensor can be calcula-
ted in & way proposed by Lifshitz and Rozenzwelg [41. The con-
tributions to the heat capacity (B Csp) and to the coefficient
of linear expansion (Ao, )} due to anisotropic character of
atome' arrangement (crystalline order) are

_ / - 4|2
By~ A5 o (o) i

&

The smellnese of the temperature interval ﬂT/T: of
metastable erystal, egq. (10), resulte in the existence of pre-
melting phenomena nearfrg « The more detalled analysis is gi-
ven in [5] for a different model hamiltonian.

The most characteristic features of the theory - the nu-

merical walue of &T{Tf and the pre-melting phenomenas - are s

commen for the continuous - rotation model and the discrete
one (i.e., where only a few relative orientations are wllowed).
The later one, equivalent to the 4-gtate Potte model is studi-

ed in [5_1. ' f

In the case of lower eymmeiry of the local order parame-
ter Np 2 set of phgse transitions between the crystalline pha=

geg with different point symmetry occurs; the liquid - cr:,rstal
mesophase may exist. The detsils will be publisghed elsewhere.

We thank J-Enﬂﬂwalski. W«M«Habutowskii and B«.I.3humilo
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Fig. 1. Temperature dependence of amplitude A.



